单片机实现数字式稳压电源
基于单片机的智能稳压电源设计

基于单片机的智能稳压电源设计摘要本智能稳压电源利用16位单片机SPCE061A为控制核心,可预置输出电压值并显示在液晶显示模块(LCD)上,通过其内置的A/D输出对PWM进行调制,再控制大功率开关管导通,再经过滤波输出。
同时通过采样电路将实际输出值反馈到单片机中构成闭环系统,进行比较、调整,提高了电源的输出精度。
输出电压范围为0.01v~10v,而且可以步进调整输出的电压值。
关键词:智能;单片机;PWM调制;稳压电源Design of Smart Power Supply Based on SCMWu Renjie(College of Physics Science and Information Engineering, Jishou University, Jishou,Hunan 416000)AbstractThe 16 Bit SCM SPCE061A was used as the control unit in this design, the output voltage value can be protested form the keyboard and displayed it on the LCD module .At the same time, its built-in A / D converter moderate the output as pulse width moderation(pwm), and switch on the output, after that output through a filter . At the same time the circuit would sample the actual output value and feedback the output to the SCM’s input system, after comparing and adjusting to improve the output accuracy. Output voltage range from 0.01 v to 10v, it can also stepping adjust the output voltage value.Key words:intelligent;SCM;PWM modulation;power supply目录第一章引言 (1)第二章方案论证与设计 (2)2.1 系统整体方案论证 (2)2.2数据采集和处理器选择 (2)2.3 电源供电电路 (2)2.4 显示电路模块 (2)第三章系统总体设计方案及设计框图 (3)第四章系统模块电路分析 (4)4.1 SPCE061A[1]单片机最小系统概述 (4)4.1.1 ADC 的控制 (5)4.1.2 DAC 的控制 (6)4.1.3 IO 端口结构 (7)4.1.4 单片机端口资源的分配 (8)4.2 电压控制电路 (8)4.2.1 ADC、DAC电压调整电路 (9)4.2.2 脉宽调节电路的工作原理 (10)4.2.3 脉宽调制电路参数的选择 (12)4.2.4 开关管输出的电路参数的选择 (13)4.2.5 平滑电容电阻的参数选取 (13)4.3 键盘设计 (14)4.4 液晶显示 (14)4.5 正负电源供电电路 (18)第五章软件流程图 (19)5.1 主程序 (19)5.2 键盘程序 (19)5.3 闭环调整子程序 (20)第六章系统测试和误差分析 (22)6.1 系统功能测试 (22)6.2 系统误差分析 (22)参考文献 (23)附录 (24)结束语 (30)基于单片机的智能稳压电源设计引言第一章引言直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。
基于单片机的数控直流稳压电源设计

PRACTICE区域治理基于单片机的数控直流稳压电源设计江苏大学京江学院 陈金华摘要:随着新时代的到来,我国整体国力有了很大提高,这也有利于我国电子技术产业的快速发展。
在电子技术领域当中,不管是任何类型的电子设施都有一个共同一致的电路,这就是电路电源,唯有取得了电路电源的支撑,才可以较好地使电子设施取到良好的运转以及工作。
直流稳压电源在电子技术领域占有十分重要的地位,这是当中不可或缺的主要设施之一。
本文章重要对基于单片机的数控直流稳压电源的设计实行了详细的研究,用单片机成为中心,对直流稳压电源实施了设计,一开始对系统硬件方面的设计进行了研究,其次,又对系统软件方面的设计实行了研究。
关键词:单片机;数控直流稳压;电源设计中图分类号:TL825 文献标识码:A 文章编号:2096-4595(2020)29-0207-0001电子技术产业是关系到社会生产和人民生活的非常主要产业,其发展始终受到社会各界的极度注重。
而直流稳压电源成为电子领域当中的一种不可或缺的设施,普遍地运用于教育、科学研究等行业。
以往的多性能直流稳压电源繁杂性能较高,并且在性能方面还较为单一,在可靠性方面很难得以保障,往往受到各种方面因素的干扰而带来一定的影响,很难得以控制。
另外,长时间运用直流电源还会产生各项在质量原因的相关问题,如波段导关与电位器发生的对接不合理等问题,这不只是影响到输出的准确性以及及时性问题,且还减少了直流稳压电源该拥有的运用时间。
单片机即单片微控制器拥有价格低、体格小等特征,将其利用于直流电源的设计当中,以确保直流电源的更新。
本文章重要是以单片机为关键,设计了一样精确度高智能化的直流稳压电源,详细状况如下。
一、直流稳压电源系统的性能特征科学地制定直流稳压电源的输出电压,以0V-9V较好,并制定输出电压。
本试验系统由AT89S51单片机、LCD1602显示电压模板与D/A变换模板、电压模板以及数据收集模板等合成,并可达到多样性能。
基于单片机的数控直流稳压电源设计

第26卷 第1期《新疆师范大学学报》(自然科学版)Vol.26,No.1 2007年3月Journal of Xinjiang Normal University Mar.2007(Natural Sciences Edition)基于单片机的数控直流稳压电源设计刘楚湘1, 杜 勇1, 尤双枫2(1.新疆师范大学数理信息学院,新疆乌鲁木齐830054;2.新疆军区自动化工作站,新疆乌鲁木齐830042)3摘要:将单片机数字控制技术,有机地融入直流稳压电源的设计中,设计出一款数字化通用直流稳压电源。
该电源具有数码显示、数字输入调压、电压调节精度高的特点。
通过软件编程,易于实现功能的扩展。
关键词:直流稳压电源;单片机;数字闭环控制中图分类号: TN71019 文献标识码: A 文章编号: 1008296592(2007)20120050203直流稳压电源是电子技术领域不可缺少的设备。
常见的直流稳压电源,大都采用串联反馈式稳压原理,通过调整输出端取样电阻支路中的电位器来调整输出电压。
由于电位器阻值变化的非线性和调整范围窄,使普通直流稳压电源难以实现输出电压的精确调整。
目前,直流稳压电源已朝着多功能和数字化的方向发展,本文以单片机为核心,结合数字反馈控制技术,设计出一种输出电压在0~12V之间并以0.5V为步进值进行电压精确调整的数控直流稳压电源电路。
该电路具有电压调整简便,读数直观,电压输出稳定,便于智能化管理的特点,有效地克服了传统电源的不足。
1 系统功能系统电压调节范围为0~12V,最大输出电流2A,具有过载和短路保护功能。
数字显示有4位,其中1位功能显示,另3位显示输出电压以及电路参数设定值。
键盘设有4个键,功能选择键,步进增减键以及确认键。
功能选择键用于启动参数设定状态,步进增减键用于设定参数数值,确认键用于输入设定值电源开机设定值为前次使用值。
此时按键,则电压显示值出现闪烁现象,表示进入参数设定状态。
基于单片机的直流稳压电源毕业设计

基于单片机的直流稳压电源毕业设计基于单片机的直流稳压电源是一种能够提供稳定的直流电压输出的装置。
它广泛应用于各种电子设备和电子系统中,并且对电子设备的正常工作起到至关重要的作用。
本文将介绍这样一个基于单片机的直流稳压电源的毕业设计,并详细讨论其设计原理、电路图和功能。
首先,我们来介绍这个直流稳压电源的设计原理。
该电源的设计采用了单片机作为控制核心,通过精确的反馈控制来保持稳定的输出电压。
具体来说,单片机通过测量输出电压并与设定的目标值进行比较,然后相应地调整控制电路的工作状态,以实现电压的稳定输出。
单片机还可以监测电源的工作状态,并在出现异常情况时采取相应的保护措施,以防止电源和连接的设备受到损坏。
其次,我们来看看这个直流稳压电源的电路图。
电路图中包括了电源输入部分、控制部分和输出部分。
电源输入部分主要包括输入电源接口、输入滤波电路和过压保护电路。
控制部分由单片机和与之连接的外围电路组成,用于控制电源的工作状态和输出电压。
输出部分由电压稳压电路和输出滤波电路组成,用于提供稳定的输出电压。
此外,电路图还包括了保护电路,用于保护电源和负载设备免受过电流、过压和过热等异常情况的影响。
最后,我们来讨论一下这个直流稳压电源的功能。
该电源具有以下几个主要功能:1.稳定输出电压:通过单片机的精确控制,电源可以提供稳定的输出电压,以满足负载设备的要求。
2.输入保护:通过过压保护电路,电源可以在输入电源过压时及时切断电源输入,以保护电源和负载设备。
3.负载保护:通过输出过电流保护电路,电源可以在输出电流超出额定值时及时切断电源输出,以保护电源和负载设备。
4.温度保护:通过温度传感器和过热保护电路,电源可以在工作温度超出安全范围时及时切断电源输出,以确保电源的安全运行。
总结起来,这个基于单片机的直流稳压电源是一种功能强大的装置,能够提供稳定的输出电压,并具有输入和负载保护功能。
它的设计原理、电路图和功能使得其能够广泛应用于各种电子设备和电子系统中。
单片机的数字稳压电源

单片机的数字稳压电源随着科技的不断发展,单片机已经成为了各种电子设备中不可或缺的核心部件。
而为了确保单片机的正常运行,提供稳定可靠的电源是非常重要的。
本文将介绍单片机数字稳压电源的原理、特点以及应用场景。
一、数字稳压电源的原理数字稳压电源是一种使用数字控制技术来调节输出电压的稳压电源。
它通过采集输入电压和输出电压的信号,并进行比较和计算,控制开关管的导通时间,从而实现对输出电压的稳定调节。
数字稳压电源的基本原理是采用了反馈控制和PWM调制的技术。
具体来说,它通过采集输出电压的反馈信号,与参考电压进行比较,并根据比较结果调整开关管的导通时间,使输出电压保持在设定值附近。
二、数字稳压电源的特点1. 稳定性高:数字稳压电源采用了反馈控制技术,可以实现对输出电压的精确调节,从而保证了电源的稳定性。
2. 可调性强:数字稳压电源可以根据需要调节输出电压的大小,适应不同的电子设备需求。
3. 响应速度快:数字稳压电源采用了PWM调制技术,可以快速响应输入电压的变化,保持输出电压的稳定。
4. 效率高:数字稳压电源采用了开关管控制的方式,可以减小功率损耗,提高电源的效率。
5. 可靠性好:数字稳压电源采用了数字控制技术,减少了电路的复杂性,提高了电源的可靠性。
三、数字稳压电源的应用场景数字稳压电源广泛应用于各种电子设备中,特别是需要稳定电压供给的场合。
以下是一些常见的应用场景:1. 单片机开发:在单片机开发过程中,需要提供稳定可靠的电源供给,以确保单片机正常运行。
2. 通信设备:在各种通信设备中,数字稳压电源可以提供稳定的电压供给,保证通信信号的传输质量。
3. 工业控制:在工业自动化控制系统中,数字稳压电源可以为各种传感器、执行器等设备提供稳定的电源供给。
4. 医疗设备:在医疗设备中,数字稳压电源可以为各种医疗仪器提供稳定的电压供给,保证医疗操作的安全性和可靠性。
总结:数字稳压电源是一种使用数字控制技术来调节输出电压的稳压电源。
基于单片机的数控直流稳压电源设计

基于单片机的数控直流稳压电源设计一、概述随着科技的飞速发展,电子设备在我们的日常生活和工业生产中扮演着越来越重要的角色。
这些设备的稳定运行离不开一个关键的组件——电源。
在各种电源类型中,直流稳压电源因其输出电压稳定、负载调整率好、效率高等优点,被广泛应用于各种电子设备和精密仪器中。
传统的直流稳压电源通常采用模拟电路设计,但这种方法存在着电路复杂、稳定性差、调整困难等问题。
为了解决这些问题,本文提出了一种基于单片机的数控直流稳压电源设计方案。
本设计采用单片机作为控制核心,通过编程实现对电源输出电压的精确控制和调整。
相比于传统的模拟电路设计,基于单片机的数控直流稳压电源具有以下优点:单片机具有强大的计算和处理能力,能够实现复杂的控制算法,从而提高电源的稳定性和精度单片机可以通过软件编程实现各种功能,具有很强的灵活性和可扩展性单片机的使用可以大大简化电路设计,降低成本,提高系统的可靠性。
本文将详细介绍基于单片机的数控直流稳压电源的设计原理、硬件电路和软件程序。
我们将介绍电源的设计原理和基本组成,包括单片机控制模块、电源模块、显示模块等我们将详细介绍硬件电路的设计和实现,包括电源电路、单片机接口电路、显示电路等我们将介绍软件程序的设计和实现,包括主程序、控制算法、显示程序等。
1. 数控直流稳压电源的应用背景与意义随着科技的快速发展,电力电子技术广泛应用于各个行业和领域,直流稳压电源作为其中的关键组成部分,其性能的稳定性和可靠性直接影响着整个系统的运行效果。
传统的直流稳压电源多采用模拟电路实现,其调节精度、稳定性以及智能化程度相对较低,难以满足现代电子设备对电源的高性能要求。
开发一种高性能、智能化的数控直流稳压电源具有重要意义。
数控直流稳压电源通过引入单片机控制技术,实现了对电源输出电压和电流的精确控制。
它可以根据实际需求,通过编程灵活调整输出电压和电流的大小,提高了电源的适应性和灵活性。
同时,数控直流稳压电源还具备过流、过压、过热等多重保护功能,有效提高了电源的安全性和可靠性。
基于单片机的可编程直流稳压电源设计

摘要:随着电力电子技术的迅速发展,直流电源应用非常广泛,其好坏直接影响着电气设备或控制系统的工作性能。
目前,市场上各种直流电源的基本环节大致相同,都包括交流电源、交流变压器、整流电路、滤波稳压电路等。
文章介绍了将单片机控制系统应用于直流稳压电源的方法和原理,实现了稳压电源的数控调节,在宽输出电压下实现了0.1v步进调节,并分析了稳压工作原理和电压调节方法。
该电源具有电压调整简便、电压输出稳定、便于智能化管理等特点。
随着电力电子技术的迅速发展,直流电源应用非常广泛,其好坏直接影响着电气设备或控制系统的工作性能。
直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。
传统的多功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。
而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。
其良好的性价比更能为人们所接受,因此,具有一定的设计价值。
一、系统设计(一)方框图设计。
该电路采用单片机(AT89C51)作为主控电路,由三端集成稳压器(LM317)作为稳压输出部分。
另外,电路还增加参考电压电路、D/A转换电路、电压放大电路、显示电路等部分电路。
其方框图如图1所示:图1 用单片机制作的直流稳压可调电源框图整个电路的运行需要模拟电压源提供+5V,±15V的模拟电压,以便使电路中的集成数字芯片能够正常工作。
电路运行时,首先由单片机设置初始电压值,并送显示电路显示。
然后将电压值送D/A转换电路进行数模转换,再经放大电路进行电压放大,最终反馈到三端集成稳压器(LM317)输出模拟电压。
(二)硬件设计。
本电路的硬件组成部分主要由单片机(AT89C51)、变压器、整流电路、滤波电路、稳压器(LM317)、参考电压电路、D/A转换电路(DA0832)、放大电路、显示电路等组成。
硬件电路如图2所示,整个电路通过单片机(AT89C51)控制,P0口和DAC0832的数据口直接相连,DA的CS和WR1连接后接P26,WR2和XFER接地,让DA工作在单缓冲方式下。
单片机数控电源

数控电源LM317 是一个各项指标都优秀的线性稳压电路,用它制作的稳压电源电压调整率、负载调率都很高,另外它的保护功能均很完善。
用M8 去控制它可得到一个可调电压,最大电流1.5A 的稳压电源。
基本原理,用M8的PWM作数模转换,经过两级RC滤波后得到0 一5V的控制电压,PWM 是用M8 的定时器 1 来实现的,有10 位的分辨能力,控制电压从0 一5V 分1024 步进行,这个控制电压经过运放U3A 放大后得到-1.25V 一18.75V 的控制电压到LM317 的调整端,实现电压的调整,输出电压Uout=Uu3a 十1.25VUout 电源输出电压,Uu3a 运放U3A 的输出电压为了降低功耗电源的输入电压由继电器K1 切换,当输出电压<=9V 时K1 切换到12V ,输出电压>9V 时切换到24V。
这种线性稳压电源损耗比较大,LM317 的散热用了一个P3 CPU 散热器和风扇,由M8 计算当LM317 上的功耗大于4W 时启动风扇工作,这样可降低噪声和延长风扇的使用寿命,我作过测试,采用这种散热方式,在各电压范围内均可连续满负荷工作。
电源设置有一个截止型电流保护,由软件控制,调节范围0 一 1.5A ,我们可跟据自已实验内容来设置这个保护值,当输出电流大于这个设定保护值时,电源关闭输出电压为0V ,并产生声音报警。
为了使用方便,初始值为最大输出电流1.500A 。
电源的的工作状态如图所示电源的停止关闭状态电源的测量有一定误差按键S1 作为电源输出的启动、停止开关,按一下开,再按一下关。
S2、S3 调节输出电压的加减,S4、S5 调节输出电流的保护值,这四个按键开关均有步进调节、连续调节和按下一定时间后快速调节功能。
电源的调整,调节R16 使LCD 显示电压与电源输出电压一致。
调节R20 使LCD 显示电流与输出电流一致。
电路板上还有一个通讯接口,要加电平转换的,可以做一个上位机软件来实现电源更多功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章绪论本章将简单介绍系统设计的目的及意义,国外电源技术的发展状况,系统的研究方法,论文构成及系统的研究容。
1.1研究目的及意义在当代科技与经济高速发展的过程中,电源起到关键性的作用。
电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。
电力电子技术是电能的最佳应用技术之一[3]。
当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。
随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。
随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。
电源在使用时会造成很多不良后果,因此电源的数字化控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数控直流稳压电源就是一个很好的典型例子,人们对它的要求也越来越高,要想为现代人工作、科研,生活、提供更好的,更方便的设施就需要从数字电子技术入手,一切向数字化,智能化方向发展。
对我们学生而言,在大学的实验室里和课程设计里面,有一个稳定可调的直流电源是很有必要的。
因传统的直流稳压电源输出电压是通过粗调波段开关及细调电位器来调节的,并由电压表指示电压值的大小。
这种直流稳压电源存在读数不直观、电位器易磨损、稳压精度不高、不易调准、电路构成复杂、体积大等缺点,而基于单片机控制的数字式可调稳压电源能较好地解决了以上问题。
本题采用单片机和其它元器件及外围电路,开发一个数字式可调稳压电源。
能够设定输出电压值、电压值输出显示、存储等功能。
通过此系统的设计,让开发者更深刻的掌握单片机基本原理,并熟悉一些外围电路的扩展,以及进一步提高C语言的硬件编程能力。
1.2 国外发展状况电力电子技术已发展成为一门完整的、自成体系的高科技技术,电源技术属于电力电子技术的畴[3]。
电源技术主要是为信息产业服务的,信息技术的发展又对电源技术提出了更高的要求,从而促进了电源技术的发展,两者相辅相成才有了现今蓬勃发展的信息产业和电源产业。
迄今为止,电源已成为非常重要的基础科技和产业,并广泛应用于各行业,从日常生活到最尖端的科学都离不开电源技术的参与和支持,其发展趋势为高频、高效、高密度化,低压、大电流化和多元化。
同时,封装结构、外形尺寸日趋接近国际标准化,以适应全球一体化市场的要求。
当前在国外电源产业中,占主导地位的产品有各种线性稳压电源、通讯用的AC/DC开关电源、DC/DC开关电源、交流变频调速电源、电解电镀电源、高频逆变式整流焊接电源、中频感应加热电源、电力操作电源、正弦波逆变电源、UPS、可靠高效低污染的光伏逆变电源、风光互补型电源等。
而产品价格、性能指标、品牌效应及使用寿命一直是用户最关心的问题。
这就促使国外电源生产商朝着应用技术数字化、硬件结构模块化、产品性能绿色化智能化的方向发展。
1.3研究方法此次毕业设计我从一开始选题就目的明确,在毕业设计课题确定下来后,通过运用大学三年所学的专业知识和查阅参考了一系列的资料完成的。
针对题目的要求,首先对整个设计思路进行规划,例如:要用到什么模块,模块应该怎样分布,怎么协调好这些模块。
然后针对方案的可行性进行反复的参照对比,敲定最终设计方案,在敲定方案之后,查阅参考相关资料进行硬件电路的各个模块的设计,同时软件模块也同步进行,经过不断的检测,编译,将正确的代码下载到硬件电路中,最后一次次的调试系统,通过不断的修改来完善系统。
1.4 论文构成及研究容本文总体概括了单片机实现数字式可调稳压电源的原理、着重介绍了单片机实现数字式可调稳压电源的硬件电路设计和软件设计。
在各章节中,突出讲述了各功能模块的设计思路,具体设计情况,以及模块之间的联系。
本系统主要研究数字式可调稳压电源如何实现数控、稳压、掉电存储和输出电压显示,其中包含一些必要的硬件设计和软件设计。
第2章数字式可调稳压电源原理介绍在实验室里通常所用到的直流电源都是用调节电位器来达到调节电压的目的,由于电位器的温漂较大,使得输出的电压会有所漂移,而且用电位器调节电压操作起来不是很方便。
本文所介绍的数字式可调稳压电源与传统的稳压电源相比,具有操作方便,电压稳定度高的特点。
它由单片机AT89S52、4×4键盘、数码管、数模转换芯片DAC0832、存储芯片24C01、放大电路等部分构成,能实现输出电压显示、设定、存储及音响提示操作等功能,其原理包括键盘扫描原理、数码管动态显示原理、模数转换原理及I2C总线原理。
在本章中主要介绍在设计过程中所涉及到的原理。
2.1 方案选择及总体设计原理介绍1、方案分析与选择方案一:数控部分用单片机带动数模转换芯片提供线性稳压电压的参考电压。
优点:对于单片机,系统工作在开环状态,对数模转换的精度要求较高,设计成本低。
缺点:功耗较大,LED数码管输出显示不是系统的精确输出电压,须对它进行软件补偿。
方案二:数控部分用AVR单片机的PWM组成开关电源,再利用AVR的AD转换对输出电压进行实时转换,利用软件进行电压调整以达到稳压[4]。
系统框图如图2.1图2.1方案二框图优点:硬件简单,稳压的大部分工作由软件完成,对单片机的运行速度要求很高,利用手头的ATmaga16L单片机最高8MHz工作频率很难达到速度要求。
对软件要求较高,功耗小。
缺点:输出纹波电压较大,对硬件的要求很高。
方案三:用AVR单片机控制PWM芯片组成开关电源。
优点:降低了对单片机的运行速度要求。
缺点:电路较复杂(该方案很快被否定)。
方案二简单的电路结构起初对设计者很吸引,但是后来了解到AVR单片机的PWM的精度用于开关电源比较勉强,而且开关电源有个通病:纹波电压大,考虑到设计目标对电源的功耗要求不是很严,同时为了保证纹波足够小也鉴于自身对于51单片机和线性电源较为熟练,故选择方案一。
2、总体设计原理本设计采用AT89S52单片机作为整机的控制单元,利用4×4键盘输入数字量,通过控制单元输出数字信号,再经过D/A转换器(DA0832)输出模拟量,最后经过运算放大器隔离放大,控制输出功率管的基极,随着输出功率管的基极电压的变化,间接地改变输出电压的大小。
2.2 单片机AT89S52介绍AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。
使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。
片上Flash允许程序存储器在系统可编程,亦适于常规编程器。
在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案[5]。
AT89S52具有以下标准功能[5]:1、与MCS-51单片机产品兼容;2、8K字节在系统可编程Flash存储器;3、1000次擦写周期;4、全静态操作:0Hz~33Hz;5、三级加密程序存储器;6、32个可编程I/O口线;7、三个16位定时器/计数器;8、八个中断源;9、全双工UART串行通道;10、低功耗空闲和掉电模式;11、掉电后中断可唤醒;12、看门狗定时器;13、双数据指针;14、掉电标识符。
另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止[6]。
其引脚结构如图2.2图2.2 AT89S52引脚结构2.3 矩阵式键盘扫描原理键盘是由若干按键所组成的开关矩阵,它是微型计算机最常用的输入设备,用户可以通过键盘向计算机输入指令,地址和数据。
通常单片机系统采用非编码键盘。
非编码键盘通过软件来识别键盘上的闭合键,它具有结构简单、使用灵活等特点,因此被广泛应用于单片机系统[7]。
组成键盘的按键有触点式和非触点式两种,单片机中的按键一般由机械触点构成。
按键的读取容易引起误操作,抖动时间的长短由按键的机械特性决定,一般为5~10ms,为了使CPU能正确读出口线的状态,对于每一次按键只做一次响应,这就必须考虑如何去抖动。
常用的去抖动方法有两种:硬件法和软件法,单片机通常采用软件法去抖动[7]。
由于键盘的触点在闭合和断开的时候会产生抖动,这时触点的逻辑电平是不稳定的,如不采取妥善处理的话,将引起按键命令错误或重复执行,在这里采用软件延时的方法来避开抖动,延时时间10ms.4×4矩阵式键盘(如图2.3)的按键识别方法:行扫描法又称逐行扫描查询法,是一种常用的按键识别方法,其过程如下:为判断键盘是否有键按下,将全部列线置为低电平,全部行线置为高电平,然后读行线的状态[7]。
只要有一行的电平为低电平,则表明键盘中有按键按下。
然后依次将行线置为低电平,即在置某根行线为低电平时,其它行线为高电平。
在确定某根行线位置为低电平后逐行检测各列的电平状态。
若某列线为低电平,则该列线与置低电平的行线相交叉处的按键就是闭合键。
图2.3 4×4矩阵式键盘2.4 数码管动态显示原理如图2.4, 共阴LED 数码管由7只发光二极管共阴连接并按8字形结构排列而成。
这样,我们将这些二极管的正极接高低不同的电位,把所有的负极接地,当正极为高电位时相应的二极管就会导通而发光,从而使数码管呈现不同的字符。
共阳LED数码管,即选通位接高电平,a,b,c,d,e,f,g,h端接高或低电平,如想让数码管显示“0”,就必须使g,h和选通位为高电平,其他引脚均为低电平[7]。
在设计电路时,可将数码管这几个引脚分别接到单片机的引脚上,还要加上限流电阻,这样就可由程序控制数码管的工作情况了。
所谓数码管动态显示,就是逐位地轮流点亮各位数码管(扫描)。
对于每一位数码管而言,每隔一段时间点亮一次。
数码管的点亮既与点亮的导通电流有关,也与点亮时间和间隔时间的比例有关。
调整电流和时间参数,可实现亮度较高,较为稳定的显示,同时可减小工作电流。
此次设计中用4位共阳数码管作为显示输出电压值,采用多路复用显示,这是指对于每个显示只驱动1/4时间。
因为只要在20HZ-50HZ之间循环所有显示,由于人眼存在视觉残留,在这样的显示方式下,数码管看起来是同时点亮的[7]。
图2.4 LED数码管结构图2.5 DAC0832及24C01使用介绍DAC0832是以CMOS工艺制造的8位D/A转换芯片,它的分辨率为8位,即从1/255到1。
其特点:8位并行、中速(建立时间1us)、电流型、价格低廉、接口简单,在单片机控制系统中得到了广泛的应用[8]。
图2.5所示是它的部结构图。
图2.5 DAC0832部结构从图2.5中可见,DAC0832由两个寄存器和一个8位D/A转换器组成,它的引脚功能如下:1、Vcc:芯片电源电压, +5V~+15V;2、VREF:参考电压, -10V~+10V ;3、RFB:反馈电阻引出端, 此端可接运算放大器输出端;4、AGND/DGND:模拟信号地/数字信号地;5、DI7~ DI0:数字量输入信号;6、ILE:输入锁存允许信号, 高电平有效;7、CS:片选信号, 低电平有效;8、WR1:写信号1,低电平有效;9、WR2:写信号2,低电平有效;10、XFER:转移控制信号,低电平有效;11、IOUT1、IOUT2:电流输出引脚。