立体几何中的有关证明与综合问题

合集下载

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。

立体几何体的相交与投影综合练习题

立体几何体的相交与投影综合练习题

立体几何体的相交与投影综合练习题在几何学中,立体几何体的相交与投影是一项重要的内容。

通过研究几何体的相交关系和投影方式,我们可以更好地理解三维物体在二维平面上的呈现形式。

本文将为您提供一些立体几何体相交与投影的综合练习题,以帮助您巩固相关知识。

一、相交的几何体1. 练习题:在三维空间中,有一个正方体和一个长方体相交,求它们的相交面积。

解答:正方体的边长为a,长方体的长、宽、高分别为b、c、d。

根据几何知识,两个立体几何体相交面积等于它们共有的平面图形的面积。

在该题中,正方体与长方体相交的面为一个长方形,长为a和b 的较小值,宽为b和c的较小值。

则相交面积为较小值之积,即min(a,b) * min(b,c)。

2. 练习题:一个锥形和一个球体相交,求它们的相交体积。

解答:锥形的底面半径为r,高为h,球体的半径为R。

相交的部分可以视为一个圆锥体,其底面半径为r,高为h。

根据几何知识,圆锥体的体积等于其底面半径的平方乘以高再乘以1/3。

则相交体积为π * r^2 * h / 3。

二、投影的几何体3. 练习题:一个长方体沿x轴正方向投影到yz平面,求投影后的形状。

解答:长方体的边长分别为a、b、c。

在投影过程中,x轴正方向的线段与yz平面垂直投影后,变为一个点;y轴和z轴方向的线段在投影过程中保持不变。

因此,投影后的形状是在yz平面上的一个矩形,长为b,宽为c。

4. 练习题:一个正方体同时沿x、y、z轴方向投影到xy、yz、zx平面,求投影后的形状。

解答:正方体的边长为a。

在投影过程中,三个轴方向的线段都与相应平面垂直投影后,变为一个点。

因此,投影后的形状是在xy平面上的一个正方形,边长为a。

三、相交和投影综合5. 练习题:一个球体和一个柱体相交,且柱体的高度等于球体的直径,求它们的相交体积。

解答:球体的半径为R,柱体的底面半径为r,高度为2R。

相交的部分为柱体的上半部分。

根据几何知识,柱体的体积为底面积的乘以高度。

初一数学证明题解题技巧总结

初一数学证明题解题技巧总结

初一数学证明题解题技巧总结数学立体几何证明解题技巧1平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算.(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

高考数学复习专题:立体几何中的有关证明与综合问题

高考数学复习专题:立体几何中的有关证明与综合问题

立体几何中的有关证明与综合问题例1. 已知斜三棱柱ABC-A ’B ’C ’的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),B ’在底面上的射影D 落在BC 上。

(1)求证:AC ⊥面BB ’C ’C 。

(2)当α为何值时,AB ’⊥BC ’,且使得D 恰为BC 的中点。

讲解:(1)∵ B ’D ⊥面ABC ,AC ⊂面ABC ,∴ B ’D ⊥AC ,又AC ⊥BC ,BC ∩B ’D=D , ∴ AC ⊥面BB ’C ’C 。

(2)由三垂线定理知道:要使AB ’⊥BC ’,需且只需AB ’在面BB ’C ’C 内的射影B ’C ⊥BC ’。

即四边形BB ’C ’C 为菱形。

此时,BC=BB ’。

因为B ’D ⊥面ABC ,所以,BD B '∠就是侧棱B ’B 与底面ABC 所成的角。

由D 恰好落在BC 上,且为BC 的中点,所以,此时BD B '∠=︒60。

即当α=︒60时,AB ’⊥BC ’,且使得D 恰为BC 的中点。

例2. 如图:已知四棱锥ABCD P -中,底面四边形为正方形,侧面PDC 为正三角形,且平面PDC ⊥底面ABCD ,E 为PC 中点。

(1)求证:平面EDB ⊥平面PBC ; (2)求二面角C DE B --的平面角的正切值。

讲解:(1)要证两个平面互相垂直,常规的想法是:证明其中一个平面过另一个平面的一条垂线。

首先观察图中已有的直线,不难发现,由于侧面PDC 为正三角形,所以,PC DE ⊥,那么我们自然想到:是否有PBC DE 面⊥?这样的想法一经产生,证明它并不是一件困难的事情。

∵ 面PDC ⊥底面ABCD ,交线为DC ,∴ DE 在平面ABCD 内的射影就是DC 。

在正方形ABCD 中,DC ⊥CB , ∴ DE ⊥CB 。

又C BC PC =⋂,PBC BC PC 面⊂,, ∴ DE ⊥PBC 面。

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

三年高考(2016-2018)数学(理)真题分项专题25 立体几何中综合问题(含解析)

三年高考(2016-2018)数学(理)真题分项专题25 立体几何中综合问题(含解析)

专题25 立体几何中综合问题考纲解读明方向分析解读 1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.2018年高考全景展示1.【2018年理数天津卷】如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).详解:依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.点睛:本题主要考查空间向量的应用,线面平行的证明,二面角问题等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线F G方向向量数量积不为零,可得结论. 详解:解:(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D (1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.3.【2018年江苏卷】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 4.【2018年江苏卷】在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A 1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明. 5.【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】分析:(1)首先从题的条件中确定相应的垂直关系,即BF⊥PF,BF⊥EF,又因为,利用线面垂直的判定定理可以得出BF⊥平面PEF,又平面ABFD,利用面面垂直的判定定理证得平面PEF⊥平面ABFD.(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD的法向量,设DP与平面ABFD所成角为,利用线面角的定义,可以求得,得到结果.详解:(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.6.【2018年全国卷Ⅲ理】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】分析:(1)先证平面CMD,得,再证,进而完成证明。

高中数学的归纳立体几何与微积分的综合应用

高中数学的归纳立体几何与微积分的综合应用

高中数学的归纳立体几何与微积分的综合应用在高中数学的学习中,归纳、立体几何和微积分是非常重要的内容。

本文将探讨这三个部分是如何相互应用的。

一、归纳的作用归纳是数学中一种非常重要的推理方法,通过观察和总结一系列例子的共同特征,从而提炼出普遍规律。

在立体几何和微积分的学习中,归纳的作用不可小觑。

在立体几何中,归纳可以帮助我们发现不同几何体的性质和特征。

通过观察一系列立体的例子,我们可以总结出它们的面数、棱数、顶点数等基本特征,从而建立起对各种几何体的认识。

例如,通过归纳,我们可以发现所有正方体的六个面都是正方形,边长相等,这是一种普遍规律。

在微积分中,归纳可以帮助我们总结出数列和级数的通项公式。

通过观察数列或级数的前几项,我们可以猜测它们的通项公式,然后利用归纳法证明。

例如,通过归纳,我们可以总结出等差数列的通项公式为an=a1+(n-1)d,其中a1是首项,d是公差。

二、立体几何与微积分的应用在高中数学中,立体几何和微积分是两个独立的学科,但在实际问题中,它们常常需要相互应用。

立体几何中的体积和表面积公式,可以通过微积分的方法来证明。

例如,对于球体的体积公式V=4/3πr^3,我们可以通过用微积分方法计算球体的曲面旋转体积来证明。

同样地,对于圆柱体的侧面积公式S=2πrh,我们可以利用微积分方法计算柱体的曲面积分来证明。

微积分中的求导和积分也可以在立体几何问题中得到应用。

当我们需要求一个曲面的切平面或者切线时,可以利用函数的导数来解决。

当我们需要求一个曲面的面积或者体积时,可以通过函数的积分来解决。

例如,在求解旋转曲面的表面积或者体积时,我们可以利用旋转体的计算公式并运用积分方法。

三、实际问题的综合应用在真实生活中,数学的应用往往是综合性的,需要综合运用归纳、立体几何和微积分的知识来解决问题。

例如,对于一个汽车制造商来说,他们需要设计一个容量为V的汽车油箱。

通过观察一系列汽车的油箱,我们可以发现它们的形状大多是长方体或者圆柱体。

数学立体几何的应用

数学立体几何的应用

数学立体几何的应用一、引言立体几何是数学的一个重要分支,其应用广泛而深入。

通过研究立体几何,我们可以更好地理解空间关系,并将其运用于日常生活和实际问题中。

本教案将着重介绍数学立体几何的应用领域以及教学方法。

二、数学立体几何的应用领域1. 建筑设计:建筑师需要运用立体几何的知识来设计房屋的形状、结构和空间布局。

例如,在设计一个拱形屋顶时,需要通过计算角度和弧线来确定屋顶的形状和尺寸。

2. 工程测量:在工程领域,立体几何可应用于测量和标记建筑物的尺寸、面积和容积。

例如,在测量一个建筑物的体积时,可以通过分解为不同形状的立体体积来计算。

3. 三维模型设计:在电脑图形学和游戏开发领域,立体几何被广泛应用于三维模型的设计与开发。

通过了解和运用立体几何的原理,设计师可以创建逼真的虚拟场景和角色模型。

4. 包装设计:立体几何的知识对于包装设计师而言非常重要。

他们需要考虑产品的形状、尺寸和包装材料,以确保产品在运输和存储过程中的安全和便捷。

5. 地图制作:制作地图也需要立体几何的应用。

制图师通过使用立体几何的原理,将三维地理信息转化为平面地图,使之具有地理空间的准确性和美观性。

三、数学立体几何的教学方法1. 观察与实践:教师可以引导学生观察日常生活中的立体图形,如建筑物、家具、玩具等,并鼓励学生对其形状和特征进行实地测量和观察。

2. 规律总结与归纳:通过引导学生进行讨论和探究,帮助他们总结出立体图形的特征和性质,如面、边、顶点的数量,以及各种形状的特点等。

3. 建模与求解:教师可以使用模型或图形展示工具,引导学生进行建模思维,将实际问题转化为数学问题,并通过计算和解决问题来巩固立体几何的应用技能。

4. 探究与发现:激发学生的学习兴趣和思维能力,引导他们进行立体几何的探究和发现,培养他们的分析和解决问题的能力。

5. 综合与拓展:将数学立体几何与其他学科进行综合,如物理、化学和计算机科学等,引导学生将所学立体几何的知识应用到实际问题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的有关证明与综合问题例1. 已知斜三棱柱ABC-A ’B ’C ’的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),B ’在底面上的射影D落在BC 上。

(1)求证:AC ⊥面BB ’C ’C 。

(2)当α为何值时,AB ’⊥BC ’,且使得D 恰为BC 的中点。

讲解:(1)∵ B ’D ⊥面ABC ,AC ⊂面ABC ,∴ B ’D ⊥AC ,又AC ⊥BC ,BC ∩B ’D=D , ∴ AC ⊥面BB ’C ’C 。

(2)由三垂线定理知道:要使AB ’⊥BC ’,需且只需AB ’在面BB ’C ’C 内的射影B ’C ⊥BC ’。

即四边形BB ’C ’C 为菱形。

此时,BC=BB ’。

因为B ’D ⊥面ABC ,所以,BD B '∠就是侧棱B ’B 与底面ABC 所成的角。

由D 恰好落在BC 上,且为BC 的中点,所以,此时BD B '∠=︒60。

即当α=︒60时,AB ’⊥BC ’,且使得D 恰为BC 的中点。

例2. 如图:已知四棱锥ABCD P -中,底面四边形为正方形,侧面PDC 为正三角形,且平面PDC ⊥底面ABCD ,E 为PC 中点。

(1)求证:平面EDB ⊥平面PBC ; (2)求二面角C DE B --的平面角的正切值。

讲解:(1)要证两个平面互相垂直,常规的想法是:证明其中一个平面过另一个平面的一条垂线。

首先观察图中已有的直线,不难发现,由于侧面PDC 为正三角形,所以,PC DE ⊥,那么我们自然想到:是否有PBC DE 面⊥?这样的想法一经产生,证明它并不是一件困难的事情。

∵ 面PDC ⊥底面ABCD ,交线为DC ,∴ DE 在平面ABCD 内的射影就是DC 。

在正方形ABCD 中,DC ⊥CB , ∴ DE ⊥CB 。

又C BC PC =⋂,PBC BC PC 面⊂,,ACC'∴ DE ⊥PBC 面。

又⊂DE 面EDB ,∴ 平面EDB ⊥平面PBC 。

(2)由(1)的证明可知:DE ⊥PBC 面。

所以,BEC ∠就是二面角CDE B --的平面角。

∵ 面PDC ⊥底面ABCD ,交线为DC ,又平面ABCD 内的直线CB ⊥ DC 。

∴ CB ⊥面PDC 。

又⊂PC 面PDC , ∴ CB ⊥PC 。

在Rt ECB ∆中,2tan ==∠CEBCBEC 。

点评:求二面角的平面角,实际上是找到棱的一个垂面,事实上,这个垂面同时垂直于二面角的两个半平面。

例3.如图:在四棱锥ABCD S -中,SA ⊥平面ABCD ,∠2π=∠=ADC BAD ,a AD AB 2==,a CD =,E 为SB 的中点。

(1)求证://CE 平面SAD ; (2)当点E 到平面SCD 的距离为多少时,平面SBC 与平面SAD 所成的二面角为︒45?讲解:题目中涉及到平面SBC 与平面SAD 所成的二面角,所以,应作出这两个平面的交线(即二面角的棱)。

另一方面,要证//CE 平面SAD ,应该设法证明CE 平行于面SAD 内的一条直线,充分利用中点(中位线)的性质,不难发现,刚刚做出的二面角的棱正好符合要求。

(1)延长BC 、AD 交于点F 。

在FAB ∆中,∠2π=∠=ADC BAD ,所以,AB 、CD 都与AF 垂直,所以,CD//AB ,所以,CDF ∆∽BAF ∆。

又a AB 2=,a CD =,所以,点D 、C 分别为线段AF 、BF 的中点。

又因为E 为SB 的中点,所以,EC 为SBC ∆的中位线,所以,EC//SF 。

又SAD EC 面⊄,SAD SF 面⊂,所以,//CE 平面SAD 。

(2)因为:SA ⊥平面ABCD ,AB ⊂平面ABCD ,所以,AB ⊥SA 。

又AB ⊥AF ,A SA AF =⋂,所以,AB ⊥面SAF 。

过A 作AH ⊥SF 于H ,连BH ,则BH ⊥SF ,所以,BHA ∠就是平面SBC 与平面SAD 所成的二面角的平面角。

在Rt BHA ∆中,要使BHA ∠=︒45,需且只需AH=AB=a 2。

此时,在∆SAF 中,()aa a SA AFAHSF SA 42422⋅+=⋅=,所以,a SA 334=。

在三棱锥S-ACD 中,设点A 到面SCD 的距离为h ,则h=a ADSA SA AD SD SA AD CD SD SADCAD S SA S SCD ACD 4142222=+⋅=⋅=⋅⋅⋅=⋅∆∆因为AB//DC ,所以,AB//面SCD 。

所以,点A 、B 到面SCD 的距离相等。

又因为E 为SB 中点,所以,点E 到平面SCD 的距离就等于点B 到面SCD 距离的一半,即8142=h 。

点评:探索性的问题,有些采用先猜后证的方法,有些则是将问题进行等价转化,在转化的过程中不断探求结论。

例4.如图,已知⊥PA 面ABC ,BCAD ⊥于D ,1===AD CD BC 。

(1)令x PD =,θ=∠BPC ,试把θtan 表示为x 的函数,并求其最大值;(2)在直线PA 上是否存在一点Q ,使得BAC BQC ∠>∠?讲解 (1)为寻求θtan 与x 的关系,首先可以将θ转化为PBD PCD ∠-∠。

∵ ⊥PA 面ABC ,BC AD ⊥于D , ∴ BD PD ⊥。

∴ 2tan ,tan xBD PD PBD x DC PD PCD ==∠==∠。

∴ θtan ()2212tan 2+=⋅+-=∠-∠=x x x x x x PBD PCD 。

∵ AD 为PD 在面ABD 上的射影。

∴ 1=>AD PD ,即1>x 。

∴ θtan 422212122=≤+=+=x x x x。

即θtan 的最大值为42,等号当且仅当2=x 时取得。

(2)由正切函数的单调性可知:点Q 的存在性等价于:是否存在点Q 使得tan BAC BQC ∠>∠tan 。

()31tan tan =∠-∠=∠ABD ACD BAC 。

令θtan 22+=x x 31>,解得:21<<x ,与1>x 交集非空。

∴ 满足条件的点Q 存在。

点评 本题将立体几何与代数融为一体,不仅要求学生有一定的空间想象力,而且,作好问题的转化是解决此题的关键。

例5. 如图所示:正四棱锥ABCD P -中,侧棱PA 与底面ABCD 所成角的正切值为26。

(1)求侧面PAD 与底面ABCD 所成二面角的大小;(2)若E 是PB 中点,求异面直线PD 与AE 所成角的正切值;(3)在侧面PAD 上寻找一点F ,使得EF ⊥侧面PBC 。

试确定点F 的位置,并加以证明。

讲解: (1)连BD AC ,交于点O ,连PO ,则PO ⊥面ABCD , ∴ ∠PAO 就是PA 与底面ABCD 所成的角, ∴ tan ∠PAO=26。

设AB=1,则PO=AO •tan ∠PAO =23。

设F 为AD 中点,连FO 、PO ,则OF ⊥AD ,所以,PF ⊥AD ,所以,PFO ∠就是B侧面PAD 与底面ABCD 所成二面角的平面角。

在Rt PFO ∆中,3tan ==∠FOPOPFO ,∴ 3π=∠PFO 。

即面PAD 与底面ABCD 所成二面角的大小为3π (2)由(1)的作法可知:O 为BD 中点,又因为E 为PD 中点,所以,EO =//PD 21。

∴ EOD ∠就是异面直线PD 与AE 所成的角。

在Rt PDO ∆中,2522=+=PO OD PD 。

∴ 45=EO 。

由BD AO ⊥,PO AO ⊥可知:⊥AO 面PBD 。

所以,EO AO ⊥。

在Rt AOE ∆中,5102tan ==∠EO AO AEO 。

∴ 异面直线PD 与AE 所成的角为5102arctan。

(3)对于这一类探索性的问题,作为一种探索,我们首先可以将条件放宽一些,即先找到面PBC 的一条垂线,然后再平移到点E 即可。

为了达到上述目的,我们可以从考虑面面垂直入手,不难发现:PBC PFO 面面⊥。

延长FO 交BC 于点G ,连接PG 。

设H 为PG 中点,连接GH EH ,。

∵ 四棱锥ABCD P -为正四棱锥且F 为AD 中点,所以,G 为BC 中点, ∴ PG BC ⊥,FG BC ⊥。

∴ PFG BC 面⊥。

∴ 面PBC ⊥PFG 面。

∵ PG PF =,3π=∠PFO ,∴ PFG ∆为正三角形。

∴ PG FH ⊥,∴ PBC FH 面⊥。

取AF 中点为K ,连EK ,则由FK HE //及FK HE =得四边形HEKF 为平行四边形,所以,FH KE //。

∴PBC KE 面⊥。

点评 开放性问题中,“退一步去想”(先只满足部分条件)、“将命题加强”往往是找到解题的突破口的方法。

1.(2000年全国高考题)如图,已知平行六面体ABCD-1111D C B A 的底面ABCD 是菱形,且CB C 1∠=BCD ∠=ο60。

(I )证明:C C 1⊥BD ;(II )假定CD=2,C C 1=23,记面BD C 1为α,面CBD 为β,求二面角 βα--BD 的平面角的余弦值; (III )当1CC CD的值为多少时,能使⊥C A 1平面BD C 1?请给出证明。

[答案与提示:(Ⅰ)略;(Ⅱ)33;(Ⅲ)1CC CD =1。

2.(2002年全国高考)如图:正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。

点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ()20<<a . (Ⅰ)求MN 的长;(Ⅱ)当a 为何值时,MN 的长最小; (Ⅲ)当MN 的长最小时,求面MNA 与面MNB 所成的二面角α的大小。

[答案与提示:(Ⅰ)21222+⎪⎪⎭⎫ ⎝⎛-=a MN ()20<<a ;(Ⅱ)22=a 时,MN的长最小,为22;(Ⅲ)⎪⎭⎫⎝⎛-31arccos ] 3.(2002年北京高考)如图:在多面体1111D C B A ABCD -中,上、下底面平行C DM B ENA F且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E 、F 两点,上下底面矩形的长、宽分别为d c 、与b a 、,且d b c a >>,,两底面间的距离为h 。

(1)求侧面11A ABB 与底面ABCD 所成二面角的大小;(2)证明:ABCD EF 面//(3)在估测该多面体的体积时,经常运用近似公式h S V ⋅=中截面估来计算。

已知它的体积公式是()下底面中截面上底面S S S hV ++=46。

相关文档
最新文档