先进传感器的应用与发展

先进传感器的应用与发展
先进传感器的应用与发展

先进传感器的应用与发展传感器(transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。我国的国家标准对传感器的定义是“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”,而在新韦伯斯特大辞典上的定义是“从一个系统接受功率,通常另一种形式将功率送到第二个系统中的器件”。

从这些定义上看,我们身边处处都有传感器的身影:楼道的声控灯,办公楼的自动门,手里用的触屏手机、相机,电子眼,红外线报警器,流量计,测速计,电子称,乃至一个小小的温度计,在某种意义上讲,也是一个简易的传感器。科技的发展,让传感器也有一个用简易到复杂的发展过程,到了现在,传感器在控制过程中的应用已经是相当的广泛,并且依旧有广阔的发展空间。

人们常将传感器称为人类五官的延长,因此传感器可以粗略的依靠视觉、听觉、嗅觉、味觉、触觉而分为五大类,下面就以这五大类传感器来谈谈现在的先进的传感器在过程控制工业与生活中的应用,以及这些传感器未来的发展趋势。

一、光敏传感器

光敏传感器类似于人类的视觉,可以依靠光线的颜色与亮度来进行系统的调节。其分类并不仅仅限于最简单的那些阻值随光线强弱变化的光敏电阻,光电管、光电倍增管、太阳能电池、红外线传感器、紫外线传感器、色彩传感器、图像传感器等等都属于光敏传感器的范畴。下面简单介绍几类与控制领域相关的传感器的应用。

红外线传感器:如上文所说的自动门,当传感器检测到高温(生命体)信号时,可以控制门的自动打开,等高温信号在一定距离外消失后,又可以把门关上,这类应用,属于在未来很有研究潜力的领域——智能家居的范围。而一些重要的场合应用的红外线报警器,可以有效的进行防盗。红外线成像仪的作用类似于图像传感器,但是主要检测的高温物体,并且可以利用红外线的穿透性来检测一些在障碍物外的高温物体,这是图像传感器所不能达到的。

光敏电阻:生活中比较常见的楼道电灯的声光控开关,这类开关可以保证在白天光线较强的情况下,电灯是不能被打开的。而到了夜晚或者光线不足的情况时。可以通过声音来打开电灯。这样可以有效的节省能源。现在的触屏手机中的某些产品也有一些光敏电阻,可以根据所处环境的光线强弱来自动调节手机屏幕的亮度,这种人性化的设计也得益于光敏电阻的应用。

图像传感器:这类传感器的应用更为广泛,照相机、摄像头,尤其是现在的

设备都是数字类型的传感器,其应用是如此的广泛。而且发展势头之猛也是大家有目共睹的:十年前的30w像素的摄像头,到现在动辄几千万像素的摄像头,其图像质量及图像的处理手段都在稳固的提高,现在有一类摄像头,可以通过捕捉物体的运动来控制对象的运动,当然最成熟与广泛的应用是这类系统在一些模拟赛车等的游戏上的应用,但是其也可以用在工业过程中。

二、声敏传感器

声敏传感器最典型的代表就是超声波传感器,超声波传感技术应用在生产实践的不同方面,而医学应用是其最主要的应用之一,下面以医学为例子说明超声波传感技术的应用。超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。因而推广容易,受到医务工作者和患者的欢迎。超声波诊断可以基于不同的医学原理,我们来看看其中有代表性的一种所谓的A型方法。这个方法是利用超声波的反射。当超声波在人体组织中传播遇到两层声阻抗不同的介质界面是,在该界面就产生反射回声。每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的振幅的高低。

在工业方面,超声波的典型应用是对金属的无损探伤和超声波测厚两种。过去,许多技术因为无法探测到物体组织内部而受到阻碍,超声波传感技术的出现改变了这种状况。当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。在未来的应用中,超声波将与信息技术、新材料技术结合起来,将出现更多的智能化、高灵敏度的超声波传感器。

超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。

超声波距离传感器可以广泛应用在物位(液位)监测,机器人防撞,各种超声波接近开关,以及防盗报警等相关领域,工作可靠,安装方便,防水型,发射夹角较小,灵敏度高,方便与工业显示仪表连接,也提供发射夹角较大的探头。

三、气敏传感器

气敏传感器是一种检测特定气体的传感器。它主要包括半导体气敏传感器、接触燃烧式气敏传感器和电化学气敏传感器等,其中用的最多的是半导体气敏传感器。它的应用主要有:一氧化碳气体的检测、瓦斯气体的检测、煤气的检测、氟利昂(R11、R12)的检测、呼气中乙醇的检测、人体口腔口臭的检测等等。

它将气体种类及其与浓度有关的信息转换成电信号,根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息,从而可以进行检测、监

控、报警;还可以通过接口电路与计算机组成自动检测、控制和报警系统。

气敏传感器的最典型应用,莫过于现在交警手中的那个检测司机呼出的气中的酒精含量的仪器。还有一类气敏传感器可以用来进行一氧化碳气体、瓦斯气体与煤气等的检测,在关键的场合用来报警。

四、化学传感器

化学传感器(chemical sensor)对各种化学物质敏感并将其浓度转换为电信号进行检测的仪器。对比于人的感觉器官,化学传感器大体对应于人的嗅觉和味觉器官。但并不是单纯的人器官的模拟,还能感受人的器官不能感受的某些物质,如H2、CO。其主要用于化学测量。化学传感器常用于生产流程分析和环境污染监测。化学传感器在矿产资源的探测、气象观测和遥测、工业自动化、医学上远距离诊断和实时监测、农业上生鲜保存和鱼群探测、防盗、安全报警和节能等各方面都有重要的应用。

另有一类生物传感器,对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)与适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。一般可以应用于测定分析食品中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等。这类传感器融生物学、化学、物理学、信息科学及相关技术于一体,已经成为一个十分活跃的研究领域。其发展前景广不可言。

五、压敏、温敏、流体传感器

这类传感器对应的是人类的触觉,其在人们的日常生活中的应用十分广泛。

压敏传感器:现在的一些商店已经采用电子称进行称重,并且可以输入货物的单价直接得出顾客需要付的钱数,极大的减轻了卖家的脑力负担,也避免了一些顾客不识商家的杆秤而带来的怕被商家欺骗的可能性。这类电子称简单易用,便于存放管理,是一类非常实用的传感器。

温敏传感器:温敏传感器在人们的生活中也比较广泛,除去常见的水银温度计不说(这类温度计属于传感器与否饱受争议),现在已经有了一类电子指示的温敏传感器,其应用热电偶来进行温度的测量,应用到医学上,也省去了用普通的温度计还要等待一段时间的麻烦。一些家庭里或者公共场合也有电子温度计来监测室温,便于人们调节室内环境。

流体传感器:现在的楼房住户里基本上都安装了水表与煤气表,这类仪表都是典型的流体传感器,其类型有的可以监测流体的流速,有的可以监测流体的流量,不管应用在工业上还是生活中,都是一类相当实用的传感器。

打卡制度打卡制度

打卡制度

传感器的技术应用与发展前景

传 感 器 的 技 术 应 用 与 发 展 趋 势 院系:新联学院 专业:10电子信息工程 姓名:王俊锋 学号:1002174050

传感器的技术应用与发展趋势 摘要:随着信息科学、生物科学以及材料科学的日益进步,传感器技术也随着发展很迅速, 日常生活的各个领域它已越来越受到广泛的关注。将来的传感器技术会向微型化、多功能化、智能化以及网络化的方向发展。 关键词:传感器技术;应用; 现状;发展趋势;微型化;多功能化;智能化;网络化随着科学技术的迅猛发展, 在机械制造、交通运输、石油化工以及医疗卫生等领域,传感器技术的应用越来越广泛,它正逐渐地渗透到人们的日常生活中去。 从某种程度上来讲, 衡量一个国家科学技术现代化程度的重要标志是传感器技术水平的高低,主要体现在传感器能够较好地实现自动控制水平和测试技术的高低。作为测量与自动控制的重要环节的传感器,不仅是新技术革命的重要技术基础,而且还是当今信息社会的重要技术基础。笔者就当前一些重要的领域里,讲述了传感器技术的应用情况,并按照目前传感器技术的发展现状,对其将来的发展方向加以预测。 一、传感器的定义以及分类 (一)传感器的定义 从广义上来说,传感器是指将被测量对象的某一确定的信息具有定量检出与感知功能,而且根据一定的规律能够转化为与之相符的有价值认识信号的装置或者元器件。从狭义上来说,可以感受被测量,而且可以根据特定的规律把其转化为性质相同或不同的输出信号的装置。 (二)传感器的分类 1.传感器种类及品种繁多,原理也各式各样。 2.按照输入物理量的分类,传感器常以别测物理量命名,如位移传感器,速度传感器、温度传感器、压力传感器等; 3.按照工作原理分类,传感器的命名常能够根据工作原理,如应变式、电容式、电感式、热点式、光电传感器等; 4.按输出信号分类,可分为模拟传感器和数字式传感器。若输出量为模拟量则成为模拟式,输出量为数字式则称为数字式传感器等。 5.按照被测量的性质,可分为物理传感器、化学传感器和生物传感器三大类。 (1)物理传感器原理及应用 物理传感器是利用某些物理效应,把被测量转化成为便于处理的能量形式的信号装置,其输出的信号和输入的信号有确定的关系。常用的物理传感器有光电式传感器、压电式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。 (2)化学传感器原理及应用 化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,将被测信号量的微小变化转换成电信号。常用的有气敏、湿敏和离子传感器。 (3)生物传感器原理及应用 生物传感器是利用生物分子探测生物反应信息的器件。换句话说,它是利用生物的或有生命物质分子的识别功能与信号转换器相结合,将生物反应所引起的化学、物理变化变换成

传感器的应用现状及发展趋势-论文2011-11-16

传感器技术的研究应用现状与发展前景 传感器技术作为信息技术的三大基础之一,是当前各发达国家竞相发展的高技术是进入21 世纪以来优先发展的十大顶尖技术之一。传感器在科学技术领域、工农业生产以及日常生活中发挥着越来越重要的作用。人类社会对传感器提出的越来越高的要求是传感器技术发展的强大动力,而现代科学技术突飞猛进则提供了坚强的后盾。传感器是信息系统的源头, 在某种程度上是决定系统特性和性能指标的关键部件。本文回顾了传感器技术的发展历史,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究应用状况,并通过简述当前的应用实例,展望了现代传感器技术的发展和应用前景。 1.引言 传感器是将物理、化学、生物等自然科学和机械、土木、化工等工程技术中的非电信号转换成电信号的换能器。当今社会的发展是信息化社会的发展,在信息时代人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理,而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统,它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的大脑,把通信系统比喻为传递信息的神经系统,那么传感器就是感知和获取信息的感觉器官。传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置现代传感器技术具有巨大的应用潜力拥有广泛的开发空间,发展前景十分广阔。 2.传感器的发展历史及分类 2.1传感器技术的发展历史 传感器技术是20世纪的中期才刚刚问世的,在那时与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段并没有投入到实际生产与广泛应用转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目

传感器技术与应用第3版习题答案

《传感器技术与应用第3版》习题参考答案 习题1 1.什么叫传感器?它由哪几部分组成? 答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。传感器通常由敏感元件和转换元件组成。其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。 2. 传感器在自动测控系统中起什么作用? 答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。自动测控系统是完成这一系列技术措施之一的装置。一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。 3. 传感器分类有哪几种?各有什么优、缺点? 答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。 按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。 按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。 4. 什么是传感器的静态特性?它由哪些技术指标描述? 答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。它有线性度、灵敏度、重复性、迟滞现象、分辨力、稳定性、漂移等技术指标。 5. 为什么传感器要有良好的动态特性?什么是阶跃响应法和频率响应法? 答:在动态(快速变化)的输入信号情况下,要求传感器能迅速准确地响应和再现被测信号的变化。因此,需要传感器具有良好的动态特性。 测试和检验传感器的动态特性有瞬态响应法和频率响应法。阶跃响应法即瞬态响应法,是给传感器输入一个单位阶跃函数的被测量,测量其输出特性。动态特性优良的传感器的输出特性应该上升沿陡,顶部平直。 频率响应法是给传感器输入各种频率不同而幅值相同,初相位为零的正弦函数的被测量,测量其输出的正弦函数输出量的幅值和相位与频率的关系。动态特性优良的传感器,输出的正弦函数输出量的幅值对于各频率是相同的,相位与各频率成线性关系。

光电传感器在生活中的应用-

光电传感器在生活中的应用 ——CCD图像传感器 摘要: 在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 光电传感器由于反应速度快,能实现非接触测量,而且精度高、分辨力高、可靠性好,加之半导体光敏器件具有体积小、重量轻、功耗低、便于集成等优点,因而广泛应用于军事、宇航、通信、检测与工业自动化控制等多种领域中。当前,世界上光电传感领域的发展可分为两大方向:原理性研究与应用开发。随着光电技术的日趋成熟,对光电传感器实用化的开发成为整个领域发展的热点和关键。 关键字:光电传感器;CCD图像传感器 正文 一、CCD的工作方式 ?CCD和传统底片相比,CCD 更接近于人眼对视觉的工作方式。只不过,人眼 的视网膜是由负责光强度感应的杆细胞和色彩感应的锥细胞,分工合作组成视觉感应。 CCD经过长达35年的发展,大致的形状和运作方式都已经定型。 CCD 的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。 ?CCD(Charge Coupled Devices,CCD)由大量独立光敏元件组成,每个光敏元 件也叫—个像素。这些光敏元件通常是按矩阵排列的,光线透过镜头照射到光电二极管上,并被转换成电荷。每个元件上的电荷量取决于它所受到的光照强度,图像光信号转换为电信号。当CCD工作时,CCD将各个像素的信息经过模傲转换器处理后变成数字信号,数字信号以一一定格式压缩后存入缓存内,然后图像数据根据不间的需要以数字信号和视频信号的方式输出。

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

(完整版)传感器的目前现状与发展趋势综述

传感器的目前现状与发展趋势 吴伟 1106032008 材控2班 摘要:传感器是高度自动化系统乃至现代尖端技术必不可少的一个关键组成部分。传感器技术是世界各国竞相发展的高新技术,也是进入21 世纪以来优先发展的十大顶尖技术之一。传感器技术所涉及的知识领域非常广泛,其研究和发展也越来越多地和其他学科技术的发展紧密联系。本文首先介绍了传感器的基本知识和传感器技术的发展历史。之后,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究状况。最后,展望了现代传感器技术的发展和应用前景。 关键词:传感器技术;传感器;研究现状;趋势 引言 当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的“大脑”,把通信系统比喻为传递信息的“神经系统”,那么传感器就是感知和获取信息的“感觉器官”。 传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。 1 传感器的基本知识

1.1 传感器的定义和组成 广义地说,传感器是指将被测量转化为可感知或定量认识的信号的传感器。从狭义方面讲,感受被测量,并按一定规律将其转化为同种或别种性质的输出信号的装置。传感器一般由敏感元件、转换元件、测量电路和辅助电源四部分组成,其中敏感元件和转换元件可能合二为一,而有的传感器不需要辅助电源。 1.2 传感器技术的基本特性 在测试过程中,要求传感器能感受到被测量的变化并将其不失真地转换成容易测量的量。被测量有两种形式:一种是稳定的,称为静态信号;一种是随着时间变化的,称为动态信号。由于输入量的状态不同,传感器的输入特性也不同,因此,传感器的基本特性一般用静态特性和动态特性来描述。衡量传感器的静态特性指标有线性度、灵敏度、迟滞、重复性、分辨率和漂移等。影响传感器的动态特性主要是传感器的固有因素,如温度传感器的热惯性等,动态特性还与传感器输入量的变化形式有关。 2 传感器技术的发展历史与回顾 传感器技术是在20世纪的中期才刚刚问世的。在那时,与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段,并没有投入到实际生产与广泛应用中,转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目的科研研发以及各国军事技术、航空航天领域的试验研究。然而,随着各国机械工业、电子、计算机、自动化等相关信息化产业的迅猛发展,以日本和欧美等西方国家为代表的传感器研发及其相关技术产业的发展已在国际市场中逐步占有了重要的份额。 我国从20世纪60年代开始传感技术的研究与开发,经过从“六五”到“九五”的国家攻关,在传感器研究开发、设计、制造、可靠性改进等方面获得长足的进步,初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了一批可喜的、为世界瞩目的发明专利与工况监控系统或仪器的成果。但从总体上讲,它还不能适应我国经济与科技的迅速发展,我国不少传感器、信号

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器技术的应用及其发展

传感器技术的应用及其发展 摘要:传感器是新技术革命和信息社会的重要技术基础,传感器技术是实现测试与自动控制的重要环节,而测试技术与自动控制水平 高低,是衡量一个国家科学技术现代化程度的重要标志。本文列举了传感器技术在当前一些重要领域里的应用,并讲述了其发展趋势。 关键词:传感器技术应用现状发展趋势 一、引言 传感器技术是当今世界令人瞩目,迅速发展的高新技术之一,也是当代科学发展的一个重要标志,与通许技术、计算机技术共同构成21世纪信息产业的三大支柱。如果说计算机是人类大脑的扩展,那么传感器就是人类五官的延伸。因此各发达国家都将传感器技术作为本世纪重点技术加以发展。随着国内工业自动化、信息化和国防现代化的发展,传感器的年需求量持续增长。传感器的应用也越来越广泛、已渗透到各个专业领域。但是目前国内传感器技术的创新和新产品开发能力落后于国内外先进水平,制约了我国工业自动化和信息化技术的发展。 二、传感器介绍 传感器一般由敏感元件、传感元件和其他辅助件组成,有时也将信号调节与转换电路、辅助电源作为传感器的组成部分。传感器通常可以按照一系列方法进行分类。根据输入物理量的分类,传感器常以别测物理量命名,如位移传感器,速度传感器、温度传感器、压力传感器等;根据工作原理分类,传感器常可以依据工作原理进行命名,如应变式、电容式、电感式、热电式、光电传感器等;按输出信号分类,可分为模拟传感器和数字式传感器。输出量为模拟量则称为模拟式,输出量为数字式则称为数字式传感器等等。 三、主要传感器技术分类 传感器技术是当前代表国家综合科研水平的重要技术,传感器技术的具体应用是传感器技术转化的重要途径和方法。加强对传感器技术应用的研究也是了解传感器技术发展现状并对其未来发展进行预测的基础和前提。 3.1 光电传感器技术

传感器技术与应用试题及答案(二)

传感器技术与应用试题及答案(二) 传感器技术与应用试题及答案(二) 题号一、选择题(本大题共20小题,每小题2分,共40分) 1、以下不属于我国电工仪表中常用的模拟仪表精度等级的是( ) A 0.1 B 0.2 C 5 D 2 2、( )又可分为累进性的、周期性的和按复杂规律变化的几种类型。 A 系统误差 B 变值系统误差 C 恒值系统误差 D 随机误差 3、改变电感传感器的引线电缆后,( ) A不必对整个仪器重新标定 B 必须对整个仪器重新调零 C 必须对整个仪器重新标定 D不必对整个仪器重新调零 4、在电容传感器中,若采用调频法测量转换电路,则电路中( )。 A、电容和电感均为变量 B、电容是变量,电感保持不变 C、电感是变量,电容保持不变 D、电容和电感均保持

不变 5、在两片间隙为1mm的两块平行极板的间隙中插入( ),可测得最大的容量。 A、塑料薄膜 B、干的纸 C、湿的纸 D、玻璃薄片 6、热电阻测量转换电路采用三线制是为了( ) 。 A、提高测量灵敏度 B、减小非线性误差 C、提高电磁兼容性 D、减小引线电阻的影响 7、当石英晶体受压时,电荷产生在( ) 。 A、Z面上 B、X面上 C、Y面上 D、X、Y、Z面上 8、汽车衡所用的测力弹性敏感元件是( )。 A、悬臂梁 B、弹簧管 C、实心轴 D、圆环 9、在热电偶测温回路中经常使用补偿导线的最主要的目的是( )。 A、补偿热电偶冷端热电势的损失 B、起冷端温度补偿作用 C、将热电偶冷端延长到远离高温区的地方 D、提高灵敏度 10、在仿型机床当中利用电感式传感器来检测工件尺寸,该加工检测装置是采了( )测量方法。 A、微差式 B、零位式 C、偏差式 D、零点式 11、测得某检测仪表的输入信号中,有用信号为20毫伏,干扰电压也为20毫伏, 则此时的信噪比为( )。

光电传感器及应用教案.

学习情境(项目)5授课说明 学习领域名称:家电传感器应用授课教师:课程总学时: 72 项目5:节能灯与光电传感器学时数: 16 累计学时: 48 授课时间安排与执行记录 授课班级 智能家电授课地点 授课日期资讯7 10月6日1-4 节 家电产品控制 实训室 计划0.5 10月9日1-4 节 家电产品控制 实训室 决策0.5 家电产品控制 实训室 实施 6 家电产品控制 实训室 检查 1 家电产品控制 实训室 评估 1 家电产品控制 实训室 参考资料PPT、网络资源、节能灯控制电路 教学方法宏观:引导文法微观:见下 教学目标 知识目标: 1.光电式传感器的分类及工作原理 2.光电式传感器特性 3.红外热释电传感器的分类及工作原理 4.红外热释电传感器特性 5.菲尼尔透镜工作原理及作用技能目标: 6.测量电路构成; 7.光敏电阻在节能灯智能控制中的作用 8.红外热释电传感器实际应用中的安装 9.光敏与红外热释电在节能灯控制策略 中的实施 态度目标: 10.培养学生的沟通能力及团队协作精神 11.养成良好的职业道德 12.提高质量、成本、安全、环保意识 重点: 13.红外热释电传感器特性 1.测量电路 2.光敏电阻的选用与电路设计 3.光敏与红外热释电在节能灯控制策略中的实施 难点: 1.各类光电式传感器的工作原理 2.光电式传感器的特性 3.菲尼尔透镜工作原理及作用 资讯:7学时(注:1学时=45 min,下同) 教学提纲主要内容教学资源及工具教学方法参考时间备注 1.目标描述下发设计任务书,描述项目学 习目标 实物展示、PPT 设计任务书 讲授法 演示法 15 min 下发引导文 2.布置任务1)交代项目任务 2)发放相关学习资料 PPT 讲授法 演示法 15 min

传感器技术发展现状及趋势

传感器技术发展现状及趋势 桂林航天工业学院 课程论文 题目:传感器技术发展现状及趋势 专业:工商企业管理(生产运作与质量管理) 姓名:罗并 学号:20190820Z00102 指导教师:陈少航 2019年 6月12日 传感器技术发展现状及趋势 在信息化社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探 测技术的支持。生活在信息时代的人们,绝大部分的日常生活与信息资源的开发,采集, 传送和处理息息相关。分析当前信息与技术发展状态,21世纪的先进传感器必须具备小型化,智能化,多功能化和网络化等优良特征。 为了能够与信息时代信息量激增,要求捕获和处理信息的能力日益增强的技术发展趋 势保持一致,对于传感器性能指标(包括精确性,可靠性,灵敏性等)的要求越来越严格; 与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标 准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被 各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小,重量轻,反应快,灵敏度高以及成本低等优点。 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD) 的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本,高性能的 新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能 够满足科技发展需求的微型化的方向发展。 智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新 型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用 领域,如分布式实时探测,网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。,智能化传感器具有以下优点: (1)智能化传感器不但能够对信息进行处理,分析和调节,能够对所测的数值及其误 差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行

先进传感器的应用与发展

先进传感器的应用与发展传感器(transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。我国的国家标准对传感器的定义是“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”,而在新韦伯斯特大辞典上的定义是“从一个系统接受功率,通常另一种形式将功率送到第二个系统中的器件”。 从这些定义上看,我们身边处处都有传感器的身影:楼道的声控灯,办公楼的自动门,手里用的触屏手机、相机,电子眼,红外线报警器,流量计,测速计,电子称,乃至一个小小的温度计,在某种意义上讲,也是一个简易的传感器。科技的发展,让传感器也有一个用简易到复杂的发展过程,到了现在,传感器在控制过程中的应用已经是相当的广泛,并且依旧有广阔的发展空间。 人们常将传感器称为人类五官的延长,因此传感器可以粗略的依靠视觉、听觉、嗅觉、味觉、触觉而分为五大类,下面就以这五大类传感器来谈谈现在的先进的传感器在过程控制工业与生活中的应用,以及这些传感器未来的发展趋势。 一、光敏传感器 光敏传感器类似于人类的视觉,可以依靠光线的颜色与亮度来进行系统的调节。其分类并不仅仅限于最简单的那些阻值随光线强弱变化的光敏电阻,光电管、光电倍增管、太阳能电池、红外线传感器、紫外线传感器、色彩传感器、图像传感器等等都属于光敏传感器的范畴。下面简单介绍几类与控制领域相关的传感器的应用。 红外线传感器:如上文所说的自动门,当传感器检测到高温(生命体)信号时,可以控制门的自动打开,等高温信号在一定距离外消失后,又可以把门关上,这类应用,属于在未来很有研究潜力的领域——智能家居的范围。而一些重要的场合应用的红外线报警器,可以有效的进行防盗。红外线成像仪的作用类似于图像传感器,但是主要检测的高温物体,并且可以利用红外线的穿透性来检测一些在障碍物外的高温物体,这是图像传感器所不能达到的。 光敏电阻:生活中比较常见的楼道电灯的声光控开关,这类开关可以保证在白天光线较强的情况下,电灯是不能被打开的。而到了夜晚或者光线不足的情况时。可以通过声音来打开电灯。这样可以有效的节省能源。现在的触屏手机中的某些产品也有一些光敏电阻,可以根据所处环境的光线强弱来自动调节手机屏幕的亮度,这种人性化的设计也得益于光敏电阻的应用。 图像传感器:这类传感器的应用更为广泛,照相机、摄像头,尤其是现在的

压电式传感器的发展与应用

压电式传感器的发展与 应用 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师 ***** 完成时间 2011-11-28 前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用 压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点

是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型 5种基本形式(见图)。压电晶体是各向异性的,并非所有晶体都 能在这 5种状态下产生压电效应。例如石英晶体就没 有体积变形压电效应,但具有良好的厚度变形和长度 变形压电效应。 压电效应是压电传感器的主要工作原理,压电传 感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮

光电传感器在汽车上的应用及发展

传感器与检测技术论文 题目:光电传感器在汽车上的应用班级:2013级电子信息工程1班学号: :俊旭 指导老师:江华 2016.5.2

摘要 光电传感器是把被测量的变化转换成光信号的变化,然后,借助光电元件把光信号转换成电信号来实现控制。如光电开关、光感电阻、光感二极管、光电池、光纤等。光电式传感器在检测和控制领域中应用非常广泛,它是采用光电元件作为检测元件的传感器,具有反应快、精度高、非接触等优点,而且可测参数多,结构简单,形式灵活多样。本文列举了光电传感器技术在一些领域里的应用。并阐述了当前传感器技术的发展现状以及发展趋势。 关键词:光电传感器;汽车;应用;

目录 一、引言 二、光电传感器 2.1 光电传感器的概念 2.2 光电传感器的工作原理 2.3 光电传感器的分类 三、光电式传感器在汽车上的应用 3.1 光电式车高传感器 3.2 光电式转向传感器 3.3光电式光量传感器 3.4 光电式车速传感器 四、参考文献

一、引言 随着汽车电子技术的迅速发展及电控单元运用的普及,新型汽车为了提高动力性、经济性、安全性、舒适性以及减少排气污染,已广泛应用电子控制技术。从发动机的燃油喷射系统、点火装置、进气装置、废气排放、故障自诊断到底盘的传动系统、行驶系统、转向制动系统以及车身和辅助设备等普遍采用了电子控制技术。在汽车电子控制系统中,传感器担负着采集和传输功能,它是电子控制中非常重要的部件,其技术性能的好坏,直接影响汽车电子控制系统的工作情况。汽车传感器主要有温度传感器、压力传感器、空气流量传感器、位置与角度传感器、气体浓度传感器、速度与加速度传感器、爆燃与碰撞传感器等几十种。 本文主要讲述了传感器在汽车技术中的应用以及各种汽车传感器的工作原理和在汽车技术中的作用。其中转速传感器是检测发动机的转速、空气流量传感器检测发动机的进气量以更好的控制空燃比、节气门位置传感器是将节气门开度转换为电信号,通过ECU控制喷油量、进气温度传感器是检测发动机的进气温度,将进气温度转变为电压信号输入ECU作为喷油修正信号、氧传感器是根据化学平衡原理计算出对应的氧浓度,达到监测和控制炉燃烧空然比,保证产品质量及尾气排放达标的测量元件。

光电传感器原理及应用

光电传感器原理及应用 院系:电气与机械工程学院 班 级: 13级电气2班 姓 名: 李 刚 学号: 131050147 PINGDINGSHANUNIVERSITY

前言 随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过程中,人们常常要进行自动筛选、自动传送,安全防护,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 光电传感器的原理 理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池、光电耦合器件等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v 为光波频率,h 为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限称 为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 在光线作用下,物体的导电性能发生变化或产生光电电动势的效应称为内光电效应。内光电效应可分为以下两类: (1)光电导效应 在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子—空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。 (2)光生伏特效应 在光线的作用下能够使物体产生一定方向的电动势的现象称为光生伏特效应。基于该效应的光电器件有光电池。 w hv -=2mv 21w hc K =λ

当前传感器技术的应用与发展

当前传感器技术的应用与发展 【摘要】传感器技术是当前科技的现代信息技术前沿技术之一,传感器技术水平高低作为一个国家科技发展水平高低的重要标志。传感器产业技术含量高、经济效益好、渗透能力强、市场前景广等特点,本文对常见传感器技术进行了说明,展望了传感器技术未来发展趋势。 【关键词】传感器技术光纤红外 一、引言 传感器是对被测对象的某一信息具有响应与检出功能,按照一定规律转换成输出信号的装置。传感器是研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。传感器技术是当前前沿技术,同计算机技术和通信技术共同被称为信息技术的三大支柱,现代传感器技术具有巨大的应用空间,其具有巨大发展前景。 二、传感器概述 传感器是指将被测量转化为定量认识的信号的传感器,其感受被测量,并按规律转化为输出信号的装置。传感器由敏感元件、转换元件、测量电路和辅助电源四部分组成。传感器能感受到被测量的变化并将其不失真地转换成容易测量的量。被测量有一般有两种形式,一种是稳定的,称为静态信号。另一种是随着时间变化的,称为动态信号。传感器的基本特性用静态特性和动态特性来描述,衡量传感器的静态特性指标有线性度、灵敏度、迟滞、重复性、分辨率和漂移等。影响传感器的动态特性主要是传感器的固有因素,如温度传感器的热惯性等,动态特性还与传感器输入量的变化形式有关[1]。

三、传感器技术历史 传感器技术是二十世纪中期出现的,随着各国机械工业、电子、计算机、自动化等相关信息化产业的迅猛发展,欧美西方国家传感器研发及其相关技术产业的发展处于领先地位。我国从二十世纪六十年代开始传感技术的研究与开发,当前在传感器研究开发、设计、制造、可靠性改进等方面具备了一定能力,现初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了具有世界领先的成果。但国产传感器还不能完全适应我国经济与科技的迅速发展要求。 四、传感器技术的应用 (一)光纤测量技术。光纤测量技术的特点是分散测量的能力强。对测量值进行处理输出后,一根光纤整个长度可作为单独传感器,可提供优于点测量的断面测量。其灵敏度高、响应速度快、动态范围大、防电磁场干扰、超高压绝缘、无源性、防燃防爆、适于远距离遥测、多路系统无地回路串音干扰、体积小、机械强度大、可灵活柔性挠曲、材料资源丰富、成本低等优点。光纤可实现的传感信息量很广。例如光导纤维本身就对压力和应变力极为敏感,光纤可同时作为压力、温度和应力传感器而使用。发达国家已将光纤用于测量磁、声、力、温度、位移、旋转、加速度、液位、扭矩、应变、电流、电压、传象和某些化学量等。光纤分布式温度传感器最大优点之一,是能经济地实现对大量地点的温度监视。国外正逐渐将它用于对电站关键部件的温度监视。例如DTS用光电元件测量出沿光纤整段长度的温度信号值,并实现连续刷新。人员可在控制室内通过屏幕观察温度变化情况,并可在设备温度恶化时作出相应操作。DTS有抗电磁干扰的能力,特别适合于在电磁或射频干扰的恶劣环境中使用。(二)红外测量技术。利用红外热效应及穿透力而开发的热图像红外传感器,用于检查金属、非金属等热处理和加工工序,监视轴承发热情况并对其进行热分析,对重要设备如发电机、汽轮机等进行非破坏性检查等。例如红外摄像机、红外辐射测温计、红外辐射热成像仪及其

光电传感器的应用发展

光电传感器的应用与发展 一、引文 光电传感器主要作为一种检测装置,目前常用的光传感器类型主要有光电管、光电倍增管和半导体光敏元件。由于它具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,体积小,已经获得了广泛应用。 1.工作原理 光电传感器是通过把光强度的变化转换成电信号的变化来实现的,一般情况下,它有三部分组成,可分为发送器、接收器和检测电路。投光器发出的光束被物体阻断或部分反射,受光器最终作出判断,发射器发射光束一般来源于半导体的光源——发光二极管和激光二极管,光束不间断的发射或改变脉冲宽度,接收器有光电二极管或光电三极管组成,在接收器前面装有光学元件——透镜或光圈,在其后面检测电路,滤出有效信号和应用信号,实现控制。 图1 光电传感器的四种基本形式 光电式传感器是以光电器件作为转换元件的传感器,它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。如自动门传感、色标检出等。 2.结构与分类 在光的照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。这种物

理现象称为光电效应。通常把光电效应分为三类: 在光线作用下能使电子逸出物体表面的现象称为外光电效应。基于外光电效应的光电元件有光电管、光电倍增管等。 图2 光电管基本结构 在光线作用下能使物体的电阻率改变的现象称为内光电效应。基于内光电效应的光电元件有光敏电阻、光敏晶体管等。 图3 光敏电阻基本结构 在光线作用下,物体产生一定方向电动势的现象称为光生伏特效应。基于光生伏特效应的光电元件有光电池等。 二、研究现状与前景 1.工作特点 1)检测距离长。在对射型中保留10m 以上的检测距离等,便能实现其他检测手段。 2)对检测物体的限制少。由于以检测物体引起的遮光和反射为检测原理,所以不象接近 传感器等将检测物体限定在金属,它可对玻璃.塑料.木材.液体等几乎所有物体进行检测。 3)响应时间短。光本身为高速,并且传感器的电路都由电子零件构成,所以不包含机械性 工作时间。 4)分辨率高。能通过高级设计技术使投光光束集中在小光点,或通过构成特殊的受光光

新型传感器的应用及发展方向

新型传感器的应用及发展方向 传感器技术是实现测试和自动控制的重要环节。它的主要特征是能准确地传递和检测出某一形态的信息,并将它转换成另一形态的信息。随着科学技术的迅猛发展,其越来越广泛的应用于科学技术的各个领域。传感器是一种检测装置,是实现自动检测和自动控制的首要环节。它能感受到被测量的信息,将检测感受到的信息,并按照一定的规律转换成可用输出信号,来满足信息的传输、处理、存储、显示、记录以及控制等的要求。在机电一体化的系统中,传感器处系统之首,是机电一体化系统达到高水平的有效保证。随着人类探知领域的不断深入,各种信息的传递速度将越来越快, 处理信息的能力也将越来越强,因此,就要求相对应的信息采集传感技术也要跟上发展的步伐,这也就决定了传感器将越来越被广泛运用、无处不在。 一、差压式流量传感器 1、介绍 差压式流量传感器又称节流式流量传感器,它是利用管路内的节流装置,将管道中流体的瞬时流量转换成节流装置前后的压力差的原理来实现的。压式流量传感器发展较早,技术成熟而较完善,而且结构简单,对流体的种类、温度、压力限制较少, 因而应用广泛。 差压式流量传感器流量测量系统主要由节流装置和差压计(或差压变送器)组成。节流装置的作用是把被测流体的流量转换成压差信号,差压计则对压差信号进行测量并显示测量值,差压变送器能把差压信号转换为与流量对应的标准电信号或气信号,以供显示、记录或控制。 1.1、工作原理 356 42 1q p 2p 3 p 1—节流装置;2—压力信号管路;3—差压变送器;4—电流信号传输线;5— 开方器;6—显示仪表节流装置 差压流量变送器

充满管道的流体,当它流经管道内的节流件时,如上图所示,流速将在节流件处形成局部收缩,因而流速增加,静压力降低,于是在节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当节流装置形式或管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。 二、电磁流量传感器 1、介绍 电磁流量传感器是由电磁流量计和电磁流量转换器组成,用于测量导电液体与浆液的瞬时流量与体积流量。电磁流量传感器在结构上可分为分体式和一体式两种,分体式电磁流量传感器的传感器与转换器为各自独立结构,传感器装在管道上,转换器可安装在离传感器200m 以内的场所。那么它的工作原理是基于法拉第电磁感应定律,即导电液体在磁场中作切割磁力线运动时,导体中产生感应电压,其感应电压为:U=DBvK 式中:K=仪表常数B=磁感应强度D=测量管的内直径v=测量管截面内的平均流速测量流量时,流体流过垂直于流动方向的磁场,导电性液体的流动感应出一个与平均流速成正比的电压,因此要求被测的流动液体具有最低限度的电导率。电磁流量传感器是根据法拉弟电磁感应定律来测量导电性液体的流量的。是基于垂直于磁场运动的导体会在导体上感应出与导体垂直、并与流体速度成线性比例关系电压的原理构成的。电磁流量传感器适用于对导电液体的平均流速(m/s )进行测量。如测量血液的平均流速。 1.1、工作原理 S N E x B 电磁流量传感器原理

相关文档
最新文档