响应面法在试验设计中应用

合集下载

box-behnken响应面法

box-behnken响应面法

box-behnken响应面法Box-Behnken响应面法是一种常用的响应面优化方法,它结合了中心组合设计和响应面分析的优点,在实验设计和优化中得到广泛应用。

下面我们将详细介绍Box-Behnken响应面法的原理和应用。

一、Box-Behnken 设计Box-Behnken设计是一种响应面实验设计方法,旨在用最少的实验次数,通过响应面分析找到最佳条件。

Box-Behnken设计由Box和Behnken于1960年提出,应用于多元响应表面优化设计,适用于多变量的响应函数模型。

Box-Behnken设计的特点是方便实现,易解释,可用于中等规模的设计,同时可以用于探究两个或三个因素的交互作用。

Box-Behnken设计通常使用正交设计来确定试验方案,设计中每个因素设3个水平,试验用到15个试验点,这是因为在15个点的设计下,Box-Behnken设备所有的变量之间可以实现二次模型。

在试验设计中,每个自变量有三个不同的水平,而因变量的响应由二次表面模型产生。

Box-Behnken响应面分析的原理是通过关注响应Surface上的关键点来确定最佳的参数配置。

通过测量响应Surface上的点,可以建立一个数学模型,以便为最佳操作条件提供数学解决方案。

在实践中,Box-Behnken响应面法广泛应用于化学、物理、工程等多个领域,主要应用于新产品开发、新工艺、新技术等领域。

Box-Behnken响应面法适用于形貌、结构等复杂的响应表面,还能够优化复杂的响应变量。

在制药业中,可以利用Box-Behnken响应面法设计和优化新的药品的制造过程。

在化学领域,Box-Behnken响应面法可以用于设计新的实验和优化新化学过程。

在食品和冶金工业等其他领域也有广泛的应用。

在实际应用中,Box-Behnken响应面法可以用于多种实验设计,包括中心组合设计、正交方阵等。

响应面分析帮助标识最适合的实验因素和最佳条件的组合,以及如何调整这些因素,以实现最大化响应变量。

响应面法在试验设计与优化中的应用

响应面法在试验设计与优化中的应用
第2 O卷 第 4期
21 0 1年 1 月 2
河 南 教 育 学 院 学报 ( 自然 科 学 版 )
Ju n l f e a s tt o d c t n( aua S i c dt n o ra o n n I tue f u ai N trl c n eE io ) H n i E o e i
的响应 值 , 在此 基础上 优化 最优 响应值 以及 最佳试 验条 件. 因此 , 须通 过 大量 试 验数 据 构建 一 个合 适 的 数 必 学模 型 ( 即建模 ) 表示 和分析 响应 面 以寻找最 优 区域 或确 定最佳 优化 条件 .若模 型 中只有 一个试 验 因素或 自 变量 , 响应 曲面 为二 维空 间 中的一条 曲线 ; 若有两个 试验 因素 或 自变 量 时 , 响应 曲面则为 三维 空间 中的 曲面. 响应 面法 的优点 是在 试验 条件优 化过 程 中可 以连续 地对 试 验 因素 的各 个 水平 进 行 分析 , 克服 了正 交 试 验 只能对 一个个 孤立 的试 验点进 行分 析和 不能给 出直 观 图形 的缺 陷 , 以响应 面 法被 广 泛应 用 于试 验 设 计 所 与工 艺优 化研究 . 应面法 最 常用 的软件 为 D s nE p r 8 0系列 , 在 S A E S 响 ei x et . g 可 T T A E官 方 网站 ¨ 下 载. 下 面以文 献 [ ] 3 为例 , 简单介 绍 响应面 法及 D s nE p ̄软件 的应用 . ei x e g 1 试 验 因素 的选取 和单 因素最 优取 值点确 定
响应 面法 ( ep neS r c to ቤተ መጻሕፍቲ ባይዱ S , R sos uf eMe d R M) 也称 响应 曲面法 , a h 是通 过对 响应 曲面及 等 高线 的分析 寻求最 优工艺 参数 , 采用 多元 二次 回归方 程来 拟合 响应值 与 因素 之 间函数关 系 的一 种优 化统 计方 法 ¨ . 方 法将 该

响应面法在试验设计与优化中的应用

响应面法在试验设计与优化中的应用

响应面法在试验设计与优化中的应用一、本文概述响应面法是一种广泛应用于试验设计与优化领域的统计方法,它通过构建响应面模型来探究输入变量与输出变量之间的关系,进而实现对系统性能的优化。

本文旨在深入探讨响应面法在试验设计与优化中的应用,详细阐述其原理、实施步骤、优缺点及案例分析,为相关领域的研究人员和实践者提供理论指导和实践参考。

文章首先介绍了响应面法的基本概念和发展历程,然后重点分析了其在实际应用中的操作流程,包括试验设计、模型建立、模型验证和优化求解等步骤。

本文还对响应面法的优缺点进行了详细讨论,并结合具体案例,展示了该方法在不同领域的应用效果。

通过本文的阅读,读者可以全面了解响应面法的原理和应用,为自身的科研工作或实际问题解决提供有益的参考和借鉴。

二、响应面法的基本原理响应面法(Response Surface Methodology, RSM)是一种优化和决策的技术,主要用于探索和解决多变量问题。

该方法通过建立一个描述多个输入变量(或因子)与输出响应之间关系的数学模型,即响应面模型,来预测和优化系统的性能。

响应面法的基本原理主要基于统计学的回归分析和实验设计。

通过精心设计的实验,收集一系列输入变量和对应输出响应的数据。

这些数据用于拟合一个数学模型,该模型能够描述输入变量与输出响应之间的非线性关系。

常见的响应面模型包括多项式模型、高斯模型等。

在拟合模型后,可以通过分析模型的系数和统计显著性来评估输入变量对输出响应的影响。

响应面法还提供了图形化的工具,如响应面图和等高线图,用于直观展示输入变量之间的交互作用以及最优参数区域。

通过最大化或最小化响应面模型,可以找到使输出响应达到最优的输入变量组合。

这些最优解可以用于指导实际生产或研究过程,提高系统的性能和效率。

响应面法的基本原理是通过实验设计和数据分析,建立一个描述输入与输出关系的数学模型,并通过优化模型来找到使输出响应最优的输入变量组合。

这种方法在多变量优化问题中具有广泛的应用价值,尤其在工程、农业、生物、医学等领域中得到了广泛的应用。

响应面法在试验设计与优化中的应用

响应面法在试验设计与优化中的应用

响应面法在试验设计与优化中的应用李莉;张赛;何强;胡学斌【摘要】为了提供响应面在试验设计与优化中的使用方法,介绍了响应面法的基本定义、模型构建原理及特点,结合废水处理工艺优化的实例对响应面法的试验方案设计、模型建立、模型检验、模型优化等方面进行了阐述.结果表明,响应面法是一种综合试验设计和数学建模的优化方法,可有效减少试验次数,并可考察影响因素之间的交互作用.采用Design-Export软件进行响应面法的试验设计与分析,可给出直观等高线图和三维立体图,建立预测模型,并且能够对模型适应性、模型和系数显著性和失拟项进行检验,从而进一步进行方差分析、模型诊断.通过对响应面建立的模型进行优化求解,可提出试验优化方案,解决响应面法在试验设计与优化的实际应用中遇到的问题.【期刊名称】《实验室研究与探索》【年(卷),期】2015(034)008【总页数】5页(P41-45)【关键词】响应面法;试验设计;数据处理【作者】李莉;张赛;何强;胡学斌【作者单位】重庆大学三峡库区生态环境教育部重点实验室,重庆400045;重庆大学三峡库区生态环境教育部重点实验室,重庆400045;重庆大学三峡库区生态环境教育部重点实验室,重庆400045;重庆大学三峡库区生态环境教育部重点实验室,重庆400045【正文语种】中文【中图分类】O212.60 引言响应面法(Response Surface Methodology,RSM)是由Box等提出的一种试验设计方法[1],是一种综合试验设计和数学建模的优化方法,通过对具有代表性的局部各点进行试验,回归拟合全局范围内因素与结果间的函数关系,并且取得各因素最优水平值[2]。

最初用于物理试验的拟合,近年来已成为国际上新发展的一种优化理论方法,广泛应用于化工、农业、制药、环境和机械工程等领域,国内外许多学者和研究人员对此进行了大量研究[3-7]。

与目前广泛使用的正交试验设计法相比较,正交试验不能在指定的整个区域获得试验因素和响应目标之间的明确函数表达式,从而无法获得设计变量的最优组合和响应目标的最优值。

响应面法在实验设计中的应用

响应面法在实验设计中的应用

响应面法在实验设计中的应用在科学研究中,实验是最基础的研究手段之一。

为了让实验设计更加精准和高效,研究者需要有一定的实验设计和分析能力。

响应面法是一种常用的实验设计方法,能快速确定影响因素与响应值之间的关系,大大提高了实验设计的效率。

一、响应面法的基本概念响应面法是一种建立影响因素与响应值之间关系模型的方法。

在响应面法中,研究者首先选取一组实验方案,通过实验获得不同因素水平下的响应值,并建立影响因素与响应值之间关系的数学模型。

通过模型预测不同因素水平下的响应值,为优化实验条件提供指导。

二、响应面法的步骤响应面法的应用需要以下步骤:1. 确定实验因素和水平实验因素是影响响应值的因素,如温度、压力、pH值等。

实验水平是实验因素在实验过程中设定的特定取值。

2. 设计实验方案根据实验因素和水平设计实验方案。

实验设计的目的是尽量少的实验次数获得实验数据,建立响应模型。

3. 进行实验在实验过程中,根据实验方案对实验进行操作,并记录数据。

4. 分析数据分析实验数据,根据实验数据建立影响因素和响应值之间的数学模型。

可以使用回归分析方法,建立线性或非线性模型。

5. 验证模型通过验证模型的预测值与实验值的拟合程度,来确认模型的可用性。

6. 进行优化通过模型预测不同因素水平下的响应值,找到最优的实验因素组合,来优化实验条件。

三、响应面法的应用响应面法在科学研究、工程设计、生产控制等领域中得到广泛应用。

例如在化学合成过程中,响应面法可以优化反应条件和提高反应效率;在制造领域中,响应面法可以优化产品质量和提高生产效率。

四、响应面法存在的问题响应面法虽然能大大提高实验设计的效率和精度,但是也存在一些问题。

比如,响应面法建立的模型只适用于实验条件和范围内,因此其预测能力存在一定的局限性。

同时,在实验设计过程中,实验过程和实验条件的控制都是至关重要的,任何偏差都会影响实验结果的可靠性和准确性。

总之,响应面法是一种实验设计的重要方法,通过其可以有效找到影响因素与响应值之间的关系,提供对实验条件的优化建议。

响应面优化方法在化学反应工程中的应用

响应面优化方法在化学反应工程中的应用

响应面优化方法在化学反应工程中的应用一、引言化学反应工程是指利用化学原理及相关工艺参数进行化学反应的工程化设计与优化,它是化学工程学科的一个重要分支。

在化学反应过程中,反应条件对反应结果的影响是非常复杂和普遍的,因此设计合适的反应工艺条件和寻找最佳的反应条件是非常必要和重要的。

目前,响应面优化方法已被广泛应用于化学反应工程的优化设计中。

在本文中,我们将重点探讨响应面优化方法在化学反应工程中的应用。

二、响应面优化方法响应面优化方法是设计实验的一种常用方法,主要适用于多因素反应过程的优化。

响应面优化是通过构建数学模型和分析实验结果来寻找最优化条件的过程。

在化学反应工程中,响应面优化方法通常用于优化反应条件,包括温度、反应时间、反应物的浓度和反应物的比例,以及反应介质的类型和性质等。

通常,响应面优化方法可以分为两类:一是基于试验设计的响应面优化,二是基于数学模型的响应面优化。

1.基于试验设计的响应面优化基于试验设计的响应面优化是一种通过设计特定实验来逐步逼近最优条件的方法。

该方法的核心思想是通过交互作用来发现反应条件和反应物性质之间的关系,并找出最优条件。

在化学反应工程中,常用的实验设计包括单因素实验设计、正交实验设计、Box-Behnken设计和中心复合设计等。

这些设计方法可以帮助研究人员减少实验次数和时间,提高实验精度和效率,从而更好地反映各因素之间的关系。

2.基于数学模型的响应面优化基于数学模型的响应面优化是通过建立数学模型和分析实验结果来寻找最优化条件的一种方法。

该方法可以用于预测和优化复杂多元线性模型,并将其用于反应工程的设计和优化。

该方法主要分为线性模型和非线性模型两种方法。

线性模型通常包括多元线性回归模型、主成分回归模型和偏最小二乘回归模型等。

非线性模型通常包括响应面模型和神经网络等。

响应面模型是通过回归分析方法建立的数学模型,其主要用于描述反应条件和反应产物之间的关系。

神经网络是一种基于人工智能的模型,其主要特征是能够对大量数据进行高效处理和预测,可以用于预测反应结果,优化反应条件和模拟反应过程。

响应面法的理论与应用

响应面法的理论与应用

引言
引言
在生物技术迅猛发展的时代,生物过程的优化对于提高产物的产量、质量和 生产效率具有至关重要的意义。响应面法是一种通过对生物过程各个参数进行优 化,实现目标产物高效合成的数值模拟方法。本次演示将介绍响应面法的基本原 理及其在生物过程优化中的应用案例,同时分析其局限性和未来发展方向。
响应面法的基本原理
应用响应面法进行试验设计与优化的步骤
4、执行实验:按照设计好的实验方案进行实验,并收集数据。 5、数据分析:使用统计方法对实验数据进行拟合,得到输入与输出之间的数 学模型。
应用响应面法进行试验设计与优化的步骤
6、模型验证:使用独立的数据集来验证模型的准确性,以确保它能够准确地 预测未来的实验结果。
响应面法的局限性和未来发展方 向
响应面法的局限性和未来发展方向
虽然响应面法在生物过程优化中取得了显著成果,但仍存在一些局限性,如 对模型的过度拟合和对实际生物过程的简化等。为了克服这些局限性,未来研究 方向包括:
响应面法的局限性和未来发展方向
1、完善模型的可信度和鲁棒性:通过对模型进行交叉验证和敏感性分析等方 法,提高模型的预测能力和稳定性。
参考内容
引言
引言
在科学研究和工业生产中,试验设计与优化是一项至关重要的任务。好的试 验设计可以有效地减少误差、提高效率,从而帮助我们更好地理解并优化复杂的 系统。响应面法是一种常用的试验设计方法,它通过构建一个数学模型来描述输 入参数与输出结果之间的关系。在许多领域,如化学、生物、工程等,响应面法 都得到了广泛的应用。本次演示将探讨响应面法在试验设计与优化中的应用。
总结与展望
3、考虑非线性关系:在现实世界中,许多现象之间的关系可能是非线性的。 未来的研究可以更多地非线性关系的处理方法,以提高响应面法的适用性和解释 力。

响应面试验设计

响应面试验设计
这种设计失去了旋转性。 但保留了序贯性,即前一次 在立方点上已经做过的试验 结果,在后续的CCF设计中 可以继续使用,可以在二阶 回归中采用。
中心点的个数选择
满足旋转性的前提下,如果适当选择Nc,则 可以使整个试验区域内的预测值都有一致均匀精 度(uniform precision)。见下表:
• 但有时认为,这样做的试验次数多,代价太 大, Nc其实取2以上也可以;如果中心点的 选取主要是为了估计试验误差, Nc取4以上 也够了。
Journal of Food Science
影响因子
(2006年数据)
10.452
6.352 3.799 2.358 2.327 1.535 1.387 1.375 1.209 1.084 0.99
2000年来CNKI数据库中以“主题=响应面设计”检索的文章数 量
SDOL中2003以来以“ITLE-ABSTR-KEY(response surface method)” 检索得到的文献数量
但由于把区组也作为一个因素来安排, 增加了分析的复杂程度。
旋转性(rotatable)
旋转设计具有在设计中心等距点上预测方差 恒定的性质,这改善了预测精度。
α的选取
在α的选取上可以有多种出发点,旋转性是
个很有意义的考虑。在k个因素的情况下,应 取
α=2k/4
当k=2, α=1.414;当k=3,α =1.682;
• 总之,当时间和资源条件都允许时,应尽可 能按推荐的Nc个数去安排试验,设计结果和 推测出的最佳点都比较可信。实在需要减少 试验次数时,中心点至少也要2-5次。
2.Box-Behnken试验设计源自将各试验点取在立方体棱的中点上
三因子布点示意图
特点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 概述
– SAS系统全称为Statistical Analysis System。 – SAS系统最早由美国北卡罗来纳州立大学的两位生 物统计学研究生编制,并于1976年成立了SAS软件 研究所,正式推出SAS软件。 – SAS现在的最新版本为9.1版,根据不同的安装方式, 所占硬盘空间大约为1-2G。 – 目前应用比较广泛的版本还有6.12版和8.2版。
Central Composite Design,CCD
基本概念

立方点 轴向点 中心点 区组 旋转性
三因子中心复合设计布点示意图
立方点(cube point)
立方点,也称立方体点、角点,即2水平对 应的“-1”和“+1”点。各点坐标皆为+1或-1。 在k个因素的情况下,共有2k个立方点
一般步骤
1.确定因素及水平,注意水平数为2,因素 数一般不超过4个,因素均为计量值数据; 2.创建“中心复合”或“Box-Behnken”设 计; 3.确定试验运行顺序(Display Design); 4.进行试验并收集数据; 5.分析试验数据; 6.优化因素的设置水平。
1. 中心复合试验设计
• 什么叫做(优化)试验设计方法? – 把数学上优化理论、技术应用于试验设计中, 科学的安排试验、处理试验结果的方法。 – 采用科学的方法去安排试验,处理试验结果, 以最少的人力和物力消费,在最短的时间内 取得更多、更好的生产和科研成果的最有效 的技术方法。
■随后,
F.Yates,R.C.Bose,O.Kempthome,W.G.Coch ran,D.R.Cox和G.E.P.Box对试验设计都作 出了杰出的贡献,使该分支在理论上日趋 完善,在应用上日趋广泛。 ■50年代,日本统计学家田口玄一将试验设 计中应用最广的正交设计表格化,在方法 解说方面深入浅出为试验设计的更广泛使 用作出了众所周知的贡献。
2.Box-Behnken试验设计
将各试验点取在立方体棱的中点上
三因子布点示意图
特点
在因素相同时,比中心复合设计的 试验次数少; 没有将所有试验因素同时安排为高 水平的试验组合,对某些有安全要求 或特别需求的试验尤为适用; 具有近似旋转性,没有序贯性。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
适用范围
确信或怀疑因素对指标存在非线性影响; 因素个数2-7个,一般不超过4个; 所有因素均为计量值数据; 试验区域已接近最优区域; 基于2水平的全因子正交试验。
响应面方法分类
中心复合试验设计 (Central Composite Design,CCD); Box-Behnken试验设计。
响应面法在试验设计中应用
2007-12-25
科研过程中,为了提高目标产物产量 、 品质,或者 是减低成本,都需要做试验。 如何安排试验,有一个方法问题
不好的试验设计方法,即使做了大量的试 验,也未必能达到预期的目的;
一个好的试验设计方法,既可以减少实验次数,缩短试验时间和 避免盲目性,又能迅速得到有效的结果。
A -1 1 -1 1 -1 1 -1 1 -1.68 1.68 0 0 0 0 0 0 0 0 0 0
CCD B -1 -1 1 1 -1 -1 1 1 0 0 -1.68 1.68 0 0 0 0 0 0 0 0
三因子 4种响应面设计实验点计划表 CCI CCF C A B C A B C -1 -0.6 -0.6 -0.6 -1 -1 -1 -1 0.6 -0.6 -0.6 1 -1 -1 -1 -0.6 0.6 -0.6 -1 1 -1 -1 0.6 0.6 -0.6 1 1 -1 1 -0.6 -0.6 0.6 -1 -1 1 1 0.6 -0.6 0.6 1 -1 1 1 -0.6 0.6 0.6 -1 1 1 1 0.6 0.6 0.6 1 1 1 0 -1 0 0 -1 0 0 0 1 0 0 1 0 0 0 0 -1 0 0 -1 0 0 0 1 0 0 1 0 -1.68 0 0 -1 0 0 -1 1.68 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.084 0.99
什么是RSM?
响应面设计方法(Response Surface Methodology , RSM)是利用合理的试验设计方法并通过实验得到一定
数据,采用多元二次回归方程来拟合因素与响应值之
间的函数关系,通过对回归方程的分析来寻求最优工
艺参数,解决多变量问题的一种统计方法。
在响应分析中,观察值y可以表述为:
■ 1978年,七机部由于导弹设计的要求,提出了一个
五因素的试验,希望每个因素有多余10个水平,而 试验总数又不超过50,显然优选法和正交设计都不 能用,随后,方开泰教授(中国科学院应用数学研 究所)和王元院士提出 “均匀设计”法,这一方法
在导弹设计中取得了成效。
试验设计流程
建立试验目标。 明确试验指标。
SAS系统简介
• 概况
– SAS是美国SAS软件研究所研制的一套大型集成应用软件系 统,具有完备的数据存取、数据管理、数据分析和数据展 现功能。 – 尤其是创业产品—统计分析系统部分,由于其具有强大的 数据分析能力,一直为业界著名软件,在数据处理和统计 分析领域,被誉为国际上的标准软件和最权威的优秀统计 软件包。 – 经过多年的发展,SAS已被全世界120多个国家和地区的近 三万家机构所采用,直接用户则超过三百万人,遍及金融、 医药卫生、生产、运输、通讯、政府和教育科研等领域。
A -1 1 -1 1 -1 1 -1 1 0 0 0 0 0 0 0
BB B -1 -1 1 1 0 0 0 0 -1 1 -1 1 0 0 0
C 0 0 0 0 -1 -1 1 1 -1 -1 1 1 0 0 0
3.分析响应面设计的一般步骤
① 拟合选定模型; ② 分析模型的有效性:P值、R2及R2(adj)、s值、 失拟分析、残差图等; ③ 如果模型需要改进,重复1-3步; ④ 对选定模型分析解释:等高线图、曲面图; ⑤ 求解最佳点的因素水平及最佳值; ⑥ 进行验证试验。
按上述公式选定的α 值来安排中心复 合试验设计(CCD)是最典型的情形,它可 以实现试验的序贯性,这种CCD设计特称 中心复合序贯设计(central composite circumscribed design,CCC),它是CCD中 最常用的一种。
如果要求进行CCD设计,但又希望试验水 平安排不超过立方体边界,可以将轴向点 设置为+1及-1,则计算机会自动将原CCD 缩小到整个立方体内,这种设计也称为中 心复合有界设计(central composite inscribed design,CCI)。 这种设计失去了序贯性,前一次在立方点 上已经做过的试验结果,在后续的CCI设 计中不能继续使用。
影响因子
(2006年数据)
10.452 6.352 3.799 2.358 2.327 1.535 1.387 1.375
Journal of Food Engineering
European Food Research and Technology Journal of Food Science
1.209
寻找对试验指标的可能影响因素。
识别可控因素和噪声因素。
选择适用的试验设计方法安排和实施试验。
分析试验数据,寻找因素水平的最优组合。 验证和应用试验结果,评价试验绩效 。
响应面试验设计
Response surface methodology
缩写RSM
杂志名称 Proceedings of the National Academy of Sciences of the United States of America Journal of Biomedical Materials Research Biomaterials Applied Microbiology and Biotechnology Journal of Agricultural and Food Chemistry Food Chemistry Bioresource Technology Process Biochemistry
轴向点(axial point)
轴向点,又称始点、星号点,分布在轴向上。 除一个坐标为+α 或-α 外,其余坐标皆为0。 在k个因素的情况下,共有2k个轴向点。
中心点(center point)
中心点,亦即设计中心,表示在图上,坐标 皆为0。
区组(block)
也叫块。设计包含正交模块,正交模块 可以允许独立评估模型中的各项及模块 影响,并使误差最小化。 但由于把区组也作为一个因素来安排, 增加了分析的复杂程度。
中心点的个数选择
满足旋转性的前提下,如果适当选择Nc,则 可以使整个试验区域内的预测值都有一致均匀精 度(uniform precision)。见下表:
• 但有时认为,这样做的试验次数多,代价太 大, Nc其实取2以上也可以;如果中心点的 选取主要是为了估计试验误差, Nc取4以上 也够了。
• 总之,当时间和资源条件都允许时,应尽可 能按推荐的Nc个数去安排试验,设计结果和 推测出的最佳点都比较可信。实在需要减少 试验次数时,中心点至少也要2-5次。
• SAS 全球专业认证
–SAS专业认证是一项拥有极高国际声誉的专 业认证,在欧美等国的职场上流行的一句话 “If you have a SAS certification, You will never lose your job”。 –获取SAS全球专业认证,既是你自身技术能 力的体现,也将帮助您开创美好的未来,在激 烈的竞争中处于领先位置。
相关文档
最新文档