响应面试验设计与分析报告
DesignExpert响应面分析实验的设计案例分析

1.比较分析
表一响应面试验设计
因素
水平
-1
0
1ห้องสมุดไป่ตู้
超声波处理时间X1(min)
20
30
40
超声波功率X2(W)
132
176
220
超声波水浴温度X3(℃)
50
55
60
酶解时间X4(h)
1
2
3
2.Design-Expert响应面分析
分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。
190.08W
55.05℃
2.25h
87.50%
Design-Expert
28.42min
190.04W
55.05℃
2.24h
87.36%
根据两个软件处理结果的数据比较可知各因素最佳工艺条件差异小。
4.案例实验设计和统计分析过程评价
案例中通过Design-Expert软件操作和截下重要的步骤的数据处理的过程的图片,这样可以方便分析和描述,Design-Expert软件能够用清晰和直观的图表表示结果,利于分析,并能够很好的对照和检验文献的数据处理的结果存在的问题和差异。Design-Expert在响应面分析有很强大的功能,能够与文献中SAS软件计算的数据进行比较,SAS软件在计算最大响应面值优于Design-Expert软件,从“ACE抑制率”的比较可知,但差异不大。所以文献中数据没有问题,从分析的结果可知。
图12A及B对ACE抑制率影响的响应面
响应面优化实验

响应面优化实验实验步骤1.输入三因素及其水平,设计响应面实验。
2、应变量3.输入实验数据4.试验方案形成5.实验数据分析利用系统软件SAS8、0对表5实验数据进行二次多项回归拟合,通过RESEG(响应面回归)过程进行数据分析,建立二次响应面回归模型,并寻求最优相应因子水平,得到回归方程:Y=2、136667+0、44625X1+0、045X2-0、01375X3-0、44583X12-0、13833X22-0、09083X32-0、1175X1X2+0、015X1X3-0、0725X2X3模型得F检验值在α=0、05时远大于F(9,5)=4、77,说明方程有很高得显著性。
R2=0、9973,表明方程模型与实验数据有99、73%得符合度,调整后得R2adj=0、9925,表明方程模型有很高得可信度。
6.正态分布图7.Residuals vs Predicted图8.Predicted vs Actual 图9.实验实际值与方程预测值10.等高线图11.三维相应曲面图ABACBC在获得非线性回归模型与响应面之后,为了求得培养基最佳浓度,对所得得回归拟与方程分别对各自得变量求一阶偏导数,并令其为得到三元一次方程组,求解此方程组可以得到最大多糖量时得最佳条件: X1=0、5066(2、2533%) ,X2=-0、0488(0、9756%) , X3=0、0144(0、0993%),Y=2、2487g/L。
所以产多糖最高时得培养基组成为:葡萄糖2、2533%,鱼粉0、9756%,VB1 0、003%,NaCl0、8%,MgSO4·7H2O0、1%,FeSO4·7H 2O 0、04%,KH2PO4 0、0993%,初始pH值5、5。
12、用RSM预测最优值根据最优培养基配方对模型进行验证,香菇菌丝体产粗多糖为2、33g/L,实际值与预测值得误差为+3、61%。
初始培养基条件下总多糖产量为0、80g/L,优化后提高了1、91倍。
响应面分析方面

1.Scope of software(4part)
1.1 Response Surface Methods (RSM)
Central Composite 中心组合设计 Box-Behnken 设计 One Factor 单因子设计 Miscellaneous 混杂设计 Optimal 最优设计 User –Defined 用户自定义 Historical Data 历史数据
Optimal 最优设计 User –Defined 用户自定义
Hale Waihona Puke 2. Response Surface Design
响应曲面法( response surface methodology) 是 20 世纪90 年代初西方所兴起的一种试验统计方 法。响应曲面分析法是通过对响应面等值线的分 析寻求最优工艺参数,采用多元二次回归方程来 拟合因素与响应值之间函数关系的一种统计方法。 它囊括了试验设计、建模、检验模型的合适性、 寻求最佳组合条件等众多试验和统计技术。通过 对过程的回归拟合和响应曲面、等值线的绘制, 可方便地求出相应于各因素水平的响应值。 Central Composite Design (CCD)、BoxBehnken Design(BBD)是最常用的实验设计方法。
3.Box-Behnken (BBD)
3.1 进入界面 :File → New Design(or Open Design)
3.2 选择 Response Surface → Box-Behnken,并选择因素个数
3.3 上图界面完成后,点Continue 进 入下面界面,确定响应(指标)数量
1.2.Factorial Designs
CCD响应面实验案例分析

实验数据分析——方差分析
11
此模型中 因子的主 效应和交 互作用的 显著性 失拟不显著
实验数据分析
12
实验数据分析——响应面分析
13
(a)显示AB25染料浓度和盐度对 P. indicus shell生物质的染料去除 效率的同时影响。随着AB25染料浓度 从90增加到120mg/L,盐度从10增加 到30g/L,AB25染料去除效率增加, 然后保持大致恒定。
实验数据分析——响应面分析
15
AB25染料的去除效率随着虾壳生物量的增加而略有增加,染料去除 达到最佳吸附点后,染料吸附缓慢下降。
实验数据分析——响应面分析
16
显示接触时间对生物吸附剂在染料溶液中对AB25染料去除效率的影 响。随着反应时间的增加,去除效率降低。这些结果表明AB25染料的生 物吸附对时间是有依赖性的。经短时间反应后,大量染料被吸附到生物 质表面上,其中在实验的前25分钟内为吸附速率较快,此后,吸附速率 下降,吸附约在40分钟内达到平衡。
利用虾壳生物质优化酸性蓝25染料的
中心复合设计
Central composite design optimization of Acid Blue 25 dye biosorption using shrimp shell biomass
实验背景
5
除了水生环境中的其他有毒无 机物和有机溶解固体外,合成 染料被认为是最具危害性的水 污染物之一,含有合成染料分 子的废水很难处理。
当pH降低时,生物吸 附效率增加,并且在 pH=2时获得66.67% 的最大染料去除效率。
中心复合试验
使用P.indicus shell生物量的实际值的中心复合基
响应面试验设计及design-expert实现

响应面试验设计与分析及Design-Expert软件实现
第一部分
响应面试验设计与分析
在响应分析中,观察值y可以表述为:
y f(x1,x2,,xl )
其中 f(x1,x2,,xl )是自变量x1,x2,,xl的函数,是误差项。
在响应面分析中,首先要得到回归方程,然后通过对自变 量 x1,x2,,xl 的合理取值,求得使 yˆ f(x1,x2,,xl )最优 的值,这就是响应面设计试验的目的。
响应面试验设计与分析
立方体
立方点,也称立方体点、角点,即2水平对 应的“-1”和“+1”点。各点坐标皆为+1或-1 。在k个因素的情况下,共有2k个立方点
响应面试验设计与分析及Design-Expert软件实现
第一部分
响应面试验设计与分析
轴向点(axial point)
轴向点,又称始点、星号点,分布在轴向
第一部分
响应面试验设计与分析
响应面方法分类方 法分类
➢中心复合试验设计
(Central Composite Design,CCD);
➢Box-Behnken试验设计。
响应面试验设计与分析及Design-Expert软件实现
第一部分
响应面试验设计与分析
一般步骤
1. 确定因素及水平,注意水平数为2,因素数一般 不超过4个,因素均为计量值数据;
响应面试验设计与分析及Design-Expert软件实现
第一部分
响应面试验设计与分析
适用范围
➢确信或怀疑因素对指标存在非线性影响; ➢因素个数2-7个,一般不超过4个; ➢所有因素均为计量值数据; ➢试验区域已接近最优区域; ➢基于2水平的全因子正交试验。
DesignExpert响应面法实验设计与案例分析

DesignExpert响应⾯法实验设计与案例分析⾷品科学研究中实验设计的案例分析—响应⾯法优化超声波辅助酶法制备燕麦ACE抑制肽的⼯艺研究摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波⽔浴温度(X3)和酶解时间(X4),进⾏四因素三⽔平的响应⾯分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波⽔浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。
与参考⽂献SAS软件处理的结果中⽐较差异很⼩。
关键字: Design-Expert 响应⾯分析1.⽐较分析表⼀响应⾯试验设计⽔平因素-1 0 1 超声波处理时间X1(min) 20 30 40超声波功率X2(W) 132 176 220超声波⽔浴温度X3(℃) 50 55 60 酶解时间X4(h) 1 2 3 2.Design-Expert响应⾯分析分析试验设计包括:⽅差分析、拟合⼆次回归⽅程、残差图等数据点分布图、⼆次项的等⾼线和响应⾯图。
优化四个因素(超声波处理时间、超声波功率、超声波⽔浴温度、酶解时间)使响应值最⼤,最终得到最⼤响应值和相应四个因素的值。
利⽤Design-Expert软件可以与⽂献SAS软件⽐较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。
2.1 数据的输⼊图 1 2.2 Box-Behnken响应⾯试验设计与结果图 2 2.3 选择模型图 32.4 ⽅差分析图 4在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。
由图4知其⾃变量⼀次项A,B,D,⼆次项AC,A2,B2,C2,D2显著(p<0.05)。
失拟项⽤来表⽰所⽤模型与实验拟合的程度,即⼆者差异的程度。
本例P值为0.0861>0.05,对模型是有利的,⽆失拟因素存在,因此可⽤该回归⽅程代替试验真实点对实验结果进⾏分析。
响应面设计

响应面分析在多因素数量处理试验的分析中,可以分析试验指标(依变量)与多个试验因素(自变量)间的回归关系,这种回归可能是曲线或曲面的关系,因而称为响应面分析。
例如农作物产量与N 、P 、K 的施肥量有关,可以通过回归分析建立产量与施肥要素间的回归关系,从而求得最佳施肥配方。
在回归分析中,观察值y 可以表述为:ε+=),,,(l x x x f y 21其中),,,(l x x x f 21是自变量l x x x ,,, 21的函数,ε是误差项。
在响应面分析中,首先要得到回归方程),,,(l x x x f y 21ˆ=,然后通过对自变量l x x x ,,, 21的合理取值,求得使),,,(l x x x f y 21ˆ=最优的值,这就是响应面分析的目的。
[例13.15] 有一个大麦氮磷肥配比试验,施氮肥量为每亩尿素0,3,6,9,12,15,18kg 7个水平,施磷肥量为每亩过磷酸钙0,7,14,21,28,35,42kg 7个水平,共49个处理组合,试验结果列于表13.66,试作产量对于氮、磷施肥量的响应面分析。
18 0 270.3 9 0274.79 42 278 0 42 88.7 9 21 336.3 921 336.318 42 281.2 18 21 382.2 0 086.90 21 162.5表13.66 大麦氮磷肥配比试验结果 磷 肥 氮 肥 0 3 6 9 12 15 18 0 86.9 162.5 216.4 274.7 274.3 301.4 270.3 7 110.4 204.4 276.7 342.8 343.4 368.4 335.1 14 134.3 238.9 295.9 363.3 361.7 345.4 351.5 21 162.5 275.1 325.3 336.3 381.0 362.4 382.2 28 158.2 237.9 320.5 353.7 369.5 388.2 355.3 35 144.3 204.5 286.9 322.5 345.9 344.6 353.5 4288.7192.5219.9278.0319.1290.5281.2对于表13.66的数据可以采用二元二次多项式拟合,那么产量可表示为:ijj i j i j i ij P b N b P N b P b N b b y ε++++++=25243210其中N i 、P j 、εij 分别表示N 、P 施用量和误差,按此模型的方差分析见表13.67。
DesignExpert响应面分析实验的设计案例分析

学校食品科学研究中实验设计的案例分析—响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。
与参考文献SAS软件处理的结果中比较差异很小。
关键字:Design-Expert 响应面分析1.比较分析表一响应面试验设计因素水平-1 0 1超声波处理时间X1(min) 20 30 40超声波功率X2(W) 132 176 220超声波水浴温度X3(℃) 50 55 60酶解时间X4(h) 1 2 32.Design-Expert响应面分析分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。
优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。
利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。
2.1 数据的输入图 1 2.2 Box-Behnken响应面试验设计与结果图 22.3 选择模型图 3 2.4 方差分析图 4在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。
由图4知其自变量一次项A,B,D,二次项AC,A2,B2,C2,D2显著(p<0.05)。
失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。
本例P值为0.0861>0.05,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。
图 5由图5可知:校正决定系数R2(adj)(0.9788>0.80)和变异系数(CV)为0.51%,说明该模型只有2.12%的变异,能由该模型解释。