【高中数学】综合法与分析法 、反证法
人教版高中数学《反证法》

证明:在一个三角形中至少 有一个角不小于60°.
已知:∠A, ∠ B, ∠ C是△ABC的内角. 求证: ∠ A, ∠ B, ∠ C中至少有一个 不小于60°
已知:∠A, ∠ B, ∠ C是△ABC的内角. 求证: ∠ A, ∠ B, ∠ C中至少有一个不小于60° 证明: 假设 的三个内角∠A, ∠ B, ∠ C都小于60°, 所以∠ A < 60°,∠B < 60°, ∠C < 60°
少有一个”只要证明它的反面“两个都”不成立即可.
1 x 1 y 与 所以 中至少有一个小于2。 y x 注:“至少”、“至多” 型命题常用反证法
将两式相加得:x+y≤2,与已知x+y>2矛盾,
常用的互为否定的表述方式: ≥1 <1
≥3 <3 至少有一个 —— 一个也没有 至少有三个 ≥—— n <n 至多有两个 至少有n个—— ≤1 至多有(n> 1个 -1) 至多有一个—— 至少有两个
用反证法证明否定性命题
解题反思:
1、证明时,怎么才想到反证法的? 2、反证法中归谬是核心步骤,上面题中得
到的逻辑矛盾是什么?
小结:
1、哪些命题适宜用反证法加以证明?
(1)直接证明有困难 (2)至多,至少型命题 (3)否定性命题 (4)唯一性命题
正难则反!
2、常见的逻辑性矛盾:
(1)与已知条件矛盾; (2)与假设矛盾; (3)与已有定义、公理、定理、事实矛盾。
与(x-a)(x-b)≠0矛盾,
所以假设不成立,
x ≠a且x ≠b 从而______________________.
直 接 证 难
练:在△ABC中,若∠C是直角,那么
∠B一定是锐角. 直角或______. 钝角 证明:假设结论不成立,则∠B是_____ 直角 ∠B+ ∠C= 180° 当∠B是_____时,则_____________
第十三章综合法与分析法、反证法

答案
2.分析法
(1)定义:从 求证的结论 出发,一步一步地探索保证前一个结论成
立的 充分条件 ,直到归结为这个命题的条件,或者归结为定义、公
理、定理等.我们把这样的思维方法称为分析法 .
cd=p.
1
2
3
4
5
解析答案
2.(2014· 山东)用反证法证明命题:“设a,b为实数,则方程x3 +ax+b =0至少有一个实根”时,要做的假设是( A ) A.方程x3+ax+b=0没有实根 B.方程x3+ax+b=0至多有一个实数 C.方程x3+ax+b=0至多有两个实根 D.方程x3+ax+b=0恰好有两个实根 解析 方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没 有实根,故应选A.
代入椭圆方程求得点A的坐标,后求AC的长;
思维点拨
规范解答
温馨提醒
返回
(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.
思维点拨
将直线方程代入椭圆方程求出 AC的中点坐标(即OB的中点
坐标),判断直线AC与OB是否垂直.
思维点拨
规范解答
温馨提醒
思想方法 感悟提高
方法与技巧
1.分析法的特点:从未知看需知,逐步靠拢已知. 2.综合法的特点:从已知看可知,逐步推出未知. 3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到 解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出 结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用, 先用分析法探索证明途径,然后再用综合法叙述出来.
高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
我就来总结一下不等式的证明方法。
01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
02分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。
04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
放缩法的目的性强,必须恰到好处,。
同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。
高三数学分析法、综合法与反证法

f(1) f(3) f(5) f(7) =2f(1)+2f(f1(3)f)(3)+2f(f1(5)f)(5)+2f(f1(7)f)(7) =8f(1)=24.
≤14[(117)n-1+(117)n+…+(117)2n-2]
=14·171n-11-1-117117n<614·171n-2(n≥2).
因
此
|b2n-
bn|<
11 64·17n-
2(n∈N*).
1.综合法的特点是:从已知看可知,逐步推出未知. 2.分析法的特点是:从未知看需知,逐步靠拢已知. 3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到 解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论, 较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法 探索证明途径,然后再用综合法叙述出来. 4.反证法在高考中的要求不太高,但是这种“正难则反”的思维方式要 引起足够的重视,要与命题的否定,否命题的概念结合起来学习.在解决问 题时要从多方面,多渠道考虑,提高解决问题的灵活性.
否定自然数abc中恰有一个偶数时正确的反设为aabc都是奇数babc都是偶数cabc中至少有两个偶数dabc中至少有两个偶数或都是奇数解析abc恰有一个是偶数即abc中只有一个偶数其反面是两个或两个以上偶数或没有一个偶数即全都是奇数故只有d正确
节 分析法、综合法与反证法
考 1.了解直接证明的两种基本方法——分析法和综合法;
∴以上三式相加得
x2 y
+y+yz2+z+
zx2+x>
2x+2y+
数学选修22教案221综合法和分析法222反证法

综合法和分析法教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教学过程:一、复习准备:1. 已知 “若12,a a R +∈,且121a a +=,则12114a a +≥”,试请此结论推广猜想. (答案:若12,.......n a a a R +∈,且12....1n a a a +++=,则12111....n a a a +++≥ 2n ) 2. 已知,,a b c R +∈,1a b c ++=,求证:1119a b c++≥. 先完成证明 → 讨论:证明过程有什么特点?二、讲授新课:1. 教学例题:① 出示例1:已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) > 6abc . 分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理) → 讨论:证明形式的特点② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示: 要点:顺推证法;由因导果.③ 练习:已知a ,b ,c 是全不相等的正实数,求证3b c a a c b a b c a b c+-+-+-++>. ④ 出示例2:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系? → 板演证明过程 → 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2. 练习:① ,A B 为锐角,且tan tan 3tan 3A B A B ++求证:60A B +=o .(提示:算tan()A B +) ② 已知,a b c >> 求证:114.a b b c a c+≥--- 3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:1. 求证:对于任意角θ,44cos sin cos2θθθ-=. (教材P 52 练习 1题)(两人板演 → 订正 → 小结:运用三角公式进行三角变换、思维过程)2. ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c+=++++. 3. 作业:教材P 54 A 组 1题.第二课时 2.2.1 综合法和分析法(二)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用分析法证明问题;了解分析法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 提问:基本不等式的形式?2. 讨论:如何证明基本不等式(0,0)2a b ab a b +≥>>. (讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件)二、讲授新课:1. 教学例题:① 出示例1:求证3526+>+.讨论:能用综合法证明吗? → 如何从结论出发,寻找结论成立的充分条件?→ 板演证明过程 (注意格式)→ 再讨论:能用综合法证明吗? → 比较:两种证法② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止. 框图表示:要点:逆推证法;执果索因. ③ 练习:设x > 0,y > 0,证明不等式:11223332()()x y x y +>+.先讨论方法 → 分别运用分析法、综合法证明.④ 出示例4:见教材P 48. 讨论:如何寻找证明思路?(从结论出发,逐步反推) ⑤ 出示例5:见教材P 49. 讨论:如何寻找证明思路?(从结论与已知出发,逐步探求)2. 练习:证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.提示:设截面周长为l ,则周长为l 的圆的半径为2l π,截面积为2()2l ππ,周长为l 的正方形边长为4l ,截面积为2()4l ,问题只需证:2()2l ππ> 2()4l . 3. 小结:分析法由要证明的结论Q 思考,一步步探求得到Q 所需要的已知12,,P P ⋅⋅⋅,直到所有的已知P 都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. (框图示意)三、巩固练习:1. 设a , b , c 是的△ABC 三边,S 是三角形的面积,求证:222443c a b ab S --+≥. 略证:正弦、余弦定理代入得:2cos 423sin ab C ab ab C -+≥,即证:2cos 23sin C C -≥3sin cos 2C C +≤,即证:sin()16C π+≤(成立).2. 作业:教材P 52 练习 2、3题.第三课时 2.2.2 反证法教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)2. 提出问题: 平面几何中,我们知道这样一个命题:“过在同一直线上的三点A 、B 、C 不能作圆”. 讨论如何证明这个命题?3. 给出证法:先假设可以作一个⊙O 过A 、B 、C 三点,则O 在AB 的中垂线l 上,O 又在B C 的中垂线m 上,即O 是l 与m 的交点。
(复习指导)7.4 综合法、分析法、反证法含解析

7.4综合法、分析法、反证法必备知识预案自诊知识梳理1.综合法与分析法2.反证法(1)反证法的定义:在假定命题结论的前提下,经过推理,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题结论成立的方法叫反证法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.考点自诊1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)反证法是指将结论和条件同时否定,推出矛盾.()(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()(5)证明不等式√2+√7<√3+√6最合适的方法是分析法.()2.命题:“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明过程“cos4θ-sin4θ=(cos2θ-sin2θ)·(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”应用了()A.分析法B.综合法C.综合法与分析法结合使用D.反证法3.用反证法证明“凸四边形的四个内角中至少有一个不小于90°”时,首先要作出的假设是( )A.四个内角都大于90°B.四个内角中有一个大于90°C.四个内角都小于90°D.四个内角中有一个小于90°4.(2020四川树德中学期中)欲证√2−√3<√5−√6成立,只需证( ) A.(√2-√3)2<(√5-√6)2B.(√2-√5)2<(√3-√6)2C.(√2+√6)2<(√3+√5)2D.(√2-√3-√5)2<(-√6)25.(2020吉林油田十一中月考)比较大小:3-2√2 √10−√7(填“>”“<”或“=”).关键能力学案突破考点综合法的应用【例1】若x ,y ,z 是互不相等的实数,且x+1y=y+1z=z+1x,求证:x 2y 2z 2=1.?综合法证明问题是怎样实现的?解题心得1.综合法的适用范围:(1)定义明确的问题,如证明函数的单调性、奇偶性等,求证没有限制条件的等式或不等式.(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.2.综合法是一种由因索果的证明方法,其逻辑依据也是三段论式的演绎推理方法,因此要保证前提条件正确,推理合乎规律,这样才能保证结论的正确性.其过程一般是从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.对点训练1已知a,b,c>0,a+b+c=1.求证:(1)√a+√b+√c≤√3;(2)13a+1+13b+1+13c+1≥32.考点分析法的应用【例2】已知非零向量a,b,且a⊥b,用分析法证明:|a|+|b||a+b|≤√2.,适用于何种题型?解题心得1.逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.2.证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个结论等价(或充分)的中间结论,然后通过综合法由条件证明这个中间结论,从而使原命题得证.3.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,从正面不易推导时,常考虑用分析法.对点训练2(2020陕西临潼期末)证明:(1)√6+√10>√2+√14;(2)如果a,b>0,则lg a+b2≥lga+lgb2.考点反证法的应用【例3】设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;q≠1,证明:数列{a n+1}不是等比数列.?解题心得对于含有否定概念的命题,直接证明不好证,但问题的反面比较具体易证,一般利用补集法或反证法解答证明.先假设肯定结论成立,然后根据有关的概念、定理、定义、推出与已知、公理、定理等有矛盾,从而说明原命题成立.对点训练3(2020河南新安一高月考)(1)已知x>0,y>0,且x+y>2,求证:1+2yx 与1+2xy中至少有一个小于3.(2)当a+b>0时,求证:√a2+b2≥√22(a+b).1.分析法是从结论出发,逆向思维,寻找使结论成立的充分条件.应用分析法要严格按分析法的语言表达,下一步是上一步的充分条件.2.证明问题的常用思路:在解题时,常常把分析法和综合法结合起来运用,先以分析法寻求解题思路,再用综合法表述解答或证明过程.3.用反证法证明问题要把握三点:(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推理;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但推导出的矛盾必须是明显的.7.4综合法、分析法、反证法必备知识·预案自诊知识梳理1.条件定义、公理、定理及运算法则结论求证的结论充分条件2.(1)反面成立考点自诊1.(1)×(2)×(3)×(4)√(5)√2.B在证明的过程中使用了平方差公式,以及同角的三角函数的关系式,符合综合法的定义,故证明过程使用了综合法.故选B.3.C首先要作出的假设是“凸四边形的四个内角中没有一个不小于90°”,即为“凸四边形的四个内角都小于90°”.故选C.4.C 根据题意,欲证√2−√3<√5−√6,则需证√2+√6<√3+√5,即只需证(√2+√6)2<(√3+√5)2.故选C.5.< 平方后再比较.然后用综合法写出过程即可.∵72>70,∴2√72>2√70,即12√2>2√70,∴17-12√2<17-2√70,即(3-2√2)2<(√10-√7)2,∴3-2√2<√10−√7.关键能力·学案突破例1证明∵x+1y =y+1z ,∴x-y=1z −1y ,∴x-y=y -zyz ,即yz=y -zx -y .∵x+1y =z+1x ,∴x-z=1x −1y , ∴x-z=y -x xy ,即xy=y -xx -z.同理可得xz=z -x y -z .∴x 2y 2z 2=(xy )(xz )(yz )=y -x x -z ×z -x y -z ×y -z x -y=1. 对点训练1证明(1)∵√13a≤13+a 2,√13b ≤13+b 2,√13c ≤13+c2,∴√3√a +√b +√c )≤3×13+a+b+c2=1,∴√a +√b +√c ≤√3,当且仅当a=b=c=13时取等号.(2)∵3b+13a+1+3a+13b+1≥2,3c+13a+1+3a+13c+1≥2,3c+13b+1+3b+13c+1≥2, ∴3b+3c+23a+1+3a+3c+23b+1+3a+3b+23c+1≥6, ∴3(a+b+c )+33a+1+3(a+b+c )+33b+1+3(a+b+c )+33c+1≥9, 即63a+1+63b+1+63c+1≥9, ∴13a+1+13b+1+13c+1≥96=32. 当且仅当a=b=c=13时等号成立. 例2证明若证原不等式|a |+|b ||a+b |≤√2.只需证|a |+|b |≤√2|a +b |, 只需证(|a|+|b|)2≤(√2|a+b|)2,即证a 2+b 2+2|a ||b |≤2a 2+2b 2+4a ·b . 因为非零向量a ,b ,且a ⊥b ,所以a ·b =0,即证2|a ||b |≤a 2+b 2, 即证(|a |-|b |)2≥0,显然成立. 所以原不等式成立.对点训练2证明(1)要证√6+√10>√2+√14,只要证(√6+√10)2>(√2+√14)2,即2√60>2√28,显然成立的,所以,原不等式成立. (2)当a>0,b>0时,要证lg a+b 2≥lga+lgb2,只要证lga+b2≥lg √ab ,因为函数y=lg x 在(0,+∞)上递增,即证a+b 2≥√ab >0,此不等式显然成立,当且仅当a=b 时等号成立.所以lg a+b2≥lga+lgb2. 例3(1)解设{a n }的前n 项和为S n ,则当q=1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q+a 1q 2+…+a 1q n-1, ① qS n =a 1q+a 1q 2+…+a 1q n , ②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n )1-q,∴S n ={na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明假设{a n +1}是等比数列,则对任意的k ∈N *,(a k+1+1)2=(a k +1)(a k+2+1), a k+12+2a k+1+1=a k a k+2+a k +a k+2+1, a 12q 2k +2a 1q k =a 1q k-1·a 1q k+1+a 1q k-1+a 1q k+1, ∵a 1≠0,∴2q k =q k-1+q k+1.∵q ≠0,∴q 2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 对点训练3证明(1)(反证法)假设结论不成立,即有1+2y x ≥3,且1+2xy≥3,由已知x>0,y>0,所以有1+2y ≥3x ,且1+2x ≥3y ,故2+2x+2y ≥3x+3y ,化简得2≥x+y ,与已知x+y>2矛盾,假设不成立.所以1+2y x 与1+2xy中至少有一个小于3成立.(2)(分析法)要证√a 2+b 2≥√22(a+b ),只需证(√a 2+b 2)2≥[√22(a +b )]2,即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab.因为a 2+b 2≥2ab 对一切实数恒成立,所以√a 2+b 2≥√22(a+b )成立.。
数学:不等式证明四法比较法综合法分析法反证法与放缩法

不等式证明一(比较法)比较法是证明不等式的一种最重要最基本的方法。
比较法分为:作差法和作商法 一、 作差法若a ,b ∈R ,则: a —b >0⇔a >b ;a —b =0⇔a =b ;a —b <0⇔a <b 它的三个步骤:作差——变形——判断符号(与零的大小)——结论. 作差法是当要证的不等式两边为代数和形式时,通过作差把定量比较左右的大小转化为定性判定左—右的符号,从而降低了问题的难度。
作差是化归,变形是手段,变形的过程是因式分解(和差化积)或配方,把差式变形为若干因子的乘积或若干个完全平方的和,进而判定其符号,得出结论.例1、求证:x 2 + 3 > 3x 证:∵(x 2 + 3) 3x = 043)23(3)23()23(32222>+-=+-+-x x x ∴x 2 + 3 > 3x例2、 (课本P 22例2)已知a, b, m 都是正数,并且a < b ,求证:bam b m a >++ 证:)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a,b,m 都是正数,并且a<b ,∴b + m > 0 , b a > 0 ∴0)()(>+-m b b a b m 即:bam b m a >++变式:若a > b ,结果会怎样?若没有“a < b ”这个条件,应如何判断?例3、 已知a, b 都是正数,并且a b ,求证:a 5 + b 5 > a 2b 3 + a 3b 2 证:(a 5 + b 5 )(a 2b 3 + a 3b 2) = ( a 5 a 3b 2) + (b 5 a2b 3)= a 3 (a 2b 2 )b 3 (a 2b 2) = (a 2b 2 )(a 3 b 3)= (a + b )(a b )2(a 2 + ab + b 2)∵a, b 都是正数,∴a + b, a 2 + ab + b 2 > 0又∵a b ,∴(a b )2 > 0 ∴(a + b )(a b )2(a 2 + ab + b2) > 0即:a 5 + b 5 > a 2b 3 + a 3b 2例4、 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果m n ,问:甲乙两人谁先到达指定地点?解:设从出发地到指定地点的路程为S ,甲乙两人走完全程所需时间分别是t 1, t 2,则:21122,22t n S m S S n t m t=+=+可得:mnn m S t n m S t 2)(,221+=+= ∴)(2)()(2])(4[2)(22221n m mn n m S mn n m n m mn S mn n m S n m S t t +--=++-=+-+=- ∵S, m, n 都是正数,且m n ,∴t 1 t 2 < 0 即:t 1 < t 2从而:甲先到到达指定地点。
综合法、分析法、反证法

合情推理
演绎推理
归纳
类比
三段论
(特殊到一般) (特殊到特殊)(一般到特殊)
演绎推理是证明数学结论、建立数学体系的 重要思维过程.
数学结论、证明思路的发现,主要靠合情推理.
直接证明
2.2.1 综合法
例1.已知a>0,b>0,求证a(b2+c2)+b(c2+a2)≥4abc 证明:因为b2+c2 ≥2bc,a>0 所以a(b2+c2)≥2abc. 又因为c2+b2 ≥2bc,b>0 所以b(c2+a2)≥ 2abc. 因此a(b2+c2)+b(c2+a2)≥4abc.
b ac 由a,b,c成等比数列可得什么?
2
怎样把边,角联系起来?
点评:解决数学问题时,
文字语言
学会语言转换;还要细
致,找出隐含条件。
图形语言
符号语言
例3.在锐角三角形ABC中, 求证sinA+sinB+sinC>cosA+cosB+cosC
课堂练习:
1.已知a,b,c > 0,且不全等,求证: a(b2 + c2)+ b(c2 + a2)+ c(a2 + b2)> 6abc
只需证:AE⊥BC 只需证:BC⊥平面SAB 只需证:BC⊥SA 只需证:SA⊥平面ABC
F E
A
C
B
因为:SA⊥平面ABC成立 所以. AF⊥SC成立
思考:请对综合法与分析法进行比
较,说出它们各自的特点。回顾以往 的数学学习,说说你对这两种证明方 法的新认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型 用反证法证明“至多”,“至少”等存在性问题
π
π
若 a,b,c 均为实数,且 a=x2-2y+ 2 ,b=y2-2z+ 3 ,c=z2
π -2x+ 6 ,求证:a,b,c 中至少有一个大于 0.
证明:假设 a,b,c 都不大于 0,即 a≤0,b≤0,c≤0,则 a+b+c
≤0.
而 a+b+c=x2-2y+π2 +y2-2z+π3 +z2-2x+π6 =(x-1)2+(y -1)2+(z-1)2+π-3.
a(a-1) ,
所以 a+1- a< a-1- aC 成等差数列,且角 A,B,C 的对 边分别为 a,b,c,求证:(a+b)-1+(b+c)-1=3(a+b+c)-1.
证明:方法一 (分析综合法) 要证(a+b)-1+(b+c)-1=3(a+b+c)-1 成立, 即证a+1 b+b+1 c=a+3b+c成立,
反证法证明时反设不全面致误.
【典例】 已知a,b,c是互不相等的非零实 数.求证:三个方程ax2+2bx+c=0,bx2+ 2cx+a=0,cx2+2ax+b=0至少有一个方程有 两个相异实根.
解析:假设三个方程都没有两个相异实根, 则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0. 相加有 a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0, 即(a-b)2+(b-c)2+(c-a)2≤0,(*) 由题意 a,b,c 互不相等,所以(*)式不能成立. 所以假设不成立,即三个方程中至少有一个方程有两个相异实 根.
即a+a+b+b c+a+b+b+c c=3,化简得a+c b+b+a c=1, 又需证 c(b+c)+(a+b)a=(a+b)(b+c), 即 c2+a2=b2+ac. 又△ABC 的三个内角 A,B,C 成等数列,所以 B=60°. 由余弦定理,得 cos B=a2+2ca2c-b2=21. 所以 a2+c2-b2=ac,所以原命题成立.
►变式训练 1.已知 f(x)=ax+xx-+21(a>1),证明方程 f(x)=0 没有负数根. 证明:假设 x0 是 f(x)=0 的负数根, 则 x0<0 且 x0≠-1 且 ax0=-xx00+-12. 由 0<ax0<1⇒0<-xx00+-12<1, 解得21<x0<2,这与 x0<0 矛盾,所以假设不成立, 故方程 f(x)=0 没有负数根.
综合法与分析法
规律方法: 综合法是中学数学证明中最常用的方法.综合法是从已知到未 知、从题设条件到结论的逻辑推理方法. 综合法是一种由因导果的证明方法. 用 P 表示已知条件、已有的定义、公理、定理等,Q 表示所要 证明的结论,则综合法用框图表示为:
P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →…→ Qn⇒Q
规律方法:分析综合法的特点及证明思路 (1)根据条件的结构特点去转化结论,得到中间结论Q;根据 结论的结构特点去转化条件,得到中间结论P.若由P可以推 出Q成立,就可以证明结论成立,这种边分析边综合的证明 方法,称之为分析综合法,或称“两头凑法”. (2)分析综合法充分表明分析与综合之间互为前提、互相渗透、 互相转化的的辩证统一关系,分析的终点是综合的起点,综 合的终点又成为进一步分析的起点
证明:要证 a+1- a< a-1- a-2 ,
只需证 a+1+ a-2< a+ a-1 ,
只需证( a+1+ a-2)2<( a+ a-1)2,
只 需 证 a + 1 + a - 2 + 2 (a+1)(a-2) < a + a - 1 +
2 a(a-1),只需证 (a+1)(a-2)< 只需证(a+1)(a-2)<a(a-1), 只需证 a2-a-2<a2-a, 只需证-2<0,显然成立,
(3)综合法和分析法常常交叉使用.其证明模式可用框图表示如 下:
Pn⇒P′
P⇒P1 ―→ P1⇒P2 ―→…―→ ⇓
… Q2⇒Q1 Q1⇒Q
Q′⇒Qm
其中 P 表示已知条件、定义、定理、公理等,Q 表示要证明的
结论.
►变式训练
3.若 tan(α+β)=2tan α,求证:3sin β=sin(2α+β).
规律方法: 分析法是从未知到已知、从结论到条件的逻辑推理方法. 分析法是一种执果索因的证明方法. 用 P 表示已知条件、已有的定义、公理、定理等,Q 表示所要 证明的结论,则分析法用框图表示为:
得到一个 Q⇐P1 → P1⇐P2 → P2⇐P3 →…→ 明显成立
的结论
►变式训练
2.当 a≥2 时,求证: a+1- a< a-1- a-2. 分析:条件和结论的联系不明确,考虑用分析法证明.
代入①并整理得: 2anbn=an+1bn-1+an-1bn+1=anbnqp+qp,即 2=pq+qp.② 当 p,q 异号时,pq+qp<0,与②相矛盾; 当 p,q 同号时,由于 p≠q,所以pq+pq>2,与②相矛盾. 故数列{cn}不是等比数列.
规律方法:(1)反证法的一般步骤. ①反设:假设命题结论不成立(即假设结论的反面成立); ②归缪:从假设出发,经过推理论证,得出矛盾; ③ 下结论:由矛盾判定假设不成立,从而肯定命题成立. (2)当结论中含有“不”、“不是、“不可能”、“不 存在”等否定形式的命题时,由于此类问题的反面比较 具体,适于应用反证法.
∵π-3>0,且(x-1)2+(y-1)2+(z-1)2≥0, ∴a+b+c>0, 这与 a+b+c≤0 矛盾. 因此,a,b,c 中至少有一个大于 0.
规律方法:应用反证法的情形. ①直接证明困难; ②需分成很多类进行讨论; ③结论为“至少”、“至多”、“有无穷多个” 的一类 命题; ④结论为 “唯一”的一类命题. 反证法的思维方法:正难则反. 特别提示:反证法引出矛盾没有固定的模式,需要认真观 察、分析,洞察矛盾.
方法二 (综合法) 因为△ABC 三个内角 A,B,C 成等差数列,所以 B=60°. 由余弦定理,得 b2=c2+a2-2accos 60°, 即 c2+a2=ac+b2, 两边同时加(ab+bc),得 c(b+c)+a(a+b)=(a+b)(b+c), 两边同时除以(a+b)(b+c),a+c b+b+a c=1, 所以a+c b+1+b+a c+1=3, 即a+1 b+b+1 c=a+3b+c, 所以(a+b)-1+(b+c)-1=3(a+b+c)-1.
证明:由 tan(α+β)=2tan
α,得csoins((αα++ββ))=2csoisn
α α,
即 sin(α+β)cos α=2cos(α+β)sin α.
反证法
题型 用反证法证明否定命题
设{an},{bn}是公比不相等的两个等比数列,cn=an+bn,证明数 列{cn}不是等比数列.
证明:假设数列{cn}是等比数列,则 (an+bn)2=(an-1+bn-1)(an+1+bn+1),① ∵{an},{bn}是公比不相等的两个等比数列,设公比分别为 p,q, ∴an2=an-1an+1,b2n=bn-1bn+1.