切向流过滤膜结构与功能
切向流超滤膜包原理

切向流超滤膜包原理
切向流超滤膜包是一种新型的膜分离技术,它采用了切向流技术和超滤膜包技术相结合的方式,能够有效地实现对水中微小颗粒和有机物的去除,是一种非常有效的水处理技术。
切向流超滤膜包的原理是利用超滤膜包的过滤作用,将水中的杂质和有机物分离出来,同时通过切向流技术,使水在膜包内部形成旋转流动,从而增加了水与膜的接触面积,提高了过滤效率。
此外,切向流技术还能够有效地防止膜的堵塞和污染,延长膜的使用寿命。
切向流超滤膜包的结构比较简单,通常由膜包、进水管、出水管和切向流装置组成。
进水管将水引入膜包内部,经过膜包的过滤作用后,清洁的水通过出水管排出。
切向流装置则通过旋转流动的方式,增加了水与膜的接触面积,提高了过滤效率。
切向流超滤膜包的应用范围非常广泛,可以用于饮用水、工业水、污水处理等领域。
在饮用水处理方面,切向流超滤膜包可以有效地去除水中的微生物、有机物和重金属等有害物质,提高水的质量。
在工业水处理方面,切向流超滤膜包可以用于电子、化工、制药等行业的水处理,有效地去除水中的微粒和有机物,保证生产过程的稳定性。
在污水处理方面,切向流超滤膜包可以用于城市污水处理厂和工业废水
处理厂,实现对污水的高效处理和回收利用。
总之,切向流超滤膜包是一种非常有效的水处理技术,具有过滤效率高、膜的使用寿命长、防止膜的堵塞和污染等优点,可以广泛应用于饮用水、工业水、污水处理等领域,为人们提供更加清洁、安全的用水环境。
切向流过滤装置介绍

切向流过滤装置介绍切向流过滤装置是一种常用的筛选和过滤固体颗粒的设备,广泛应用于化工、食品、制药、石油、冶金、纺织、环保等行业。
切向流过滤装置主要由筛管、支撑体、进料管、排渣管、出口管等组成,其工作原理是利用流体的强大冲击力和切向力,将固体颗粒分离出来。
切向流过滤装置的工作原理是利用液体流通过筛管时的高速旋转,使筛管周围的液体产生切向力,使固体颗粒沿着筛管壁面旋转与上升,当颗粒升至一定高度时,由于离心力的作用,颗粒会与液体分离,然后落入渣料滑槽,并通过排渣管排出。
而纯净的液体则通过筛管的中心穿过出口管排出。
1.高效过滤:切向流过滤装置利用强大的液体旋转和离心力,能够有效地分离固体颗粒,使过滤效果更加彻底,减少悬浮物的含量。
2.扩散性较低:切向流过滤装置的入口截面积较大,流速较低,能够减少颗粒在入口处的扩散,提高过滤效果。
3.不易堵塞:由于切向流过滤装置的进料口位于筛管下端,固体颗粒在下沉过程中不易聚集,减少了堵塞的可能性,提高了装置的稳定性和可靠性。
4.操作简便:切向流过滤装置结构简单,操作方便,可以根据需要随时调整流量和分离效果,满足不同工况的要求。
1.精细化工:切向流过滤装置能够有效地过滤微小颗粒,提高产品的质量和纯度,广泛应用于化工领域,例如提取、分离和浓缩等工艺过程。
2.食品加工:切向流过滤装置能够过滤掉食品中的杂质和固体颗粒,提高产品的品质和口感,常用于液体食品的生产过程,如果汁、酒类、调味品等。
3.制药行业:切向流过滤装置能够去除药物中的微小颗粒和杂质,提高药品的纯度和稳定性,适用于药物制剂、注射液、生物制品等领域。
4.石油化工:切向流过滤装置可用于石油和润滑油的分离和过滤,去除杂质和颗粒,保护设备的长期稳定运行。
5.环保行业:切向流过滤装置可用于处理废水和废气,将颗粒物分离出来,提高处理效果和设备的寿命。
总之,切向流过滤装置是一种高效、可靠、灵活的固液分离设备,应用广泛,并且在不同行业中具有重要的地位和作用。
切向超滤装置的原理及应用

切向超滤装置的原理及应用概述切向超滤装置是一种常用于液体分离和浓缩的技术,它可以通过筛选微小颗粒物和高分子物质来获得更纯净的溶液。
本文将介绍切向超滤装置的原理,以及它在各个领域的应用。
原理切向超滤装置通过使用高分子材料制成的多孔性膜,来筛选液体中的颗粒物和溶质。
其原理基于物质的大小和形状,利用半透膜对溶液进行筛选和分离。
切向超滤装置的膜孔径通常在0.01-0.1μm之间,具有较高的筛选效率。
当溶液通过膜时,较小的颗粒和溶质可以顺利通过膜孔,而较大的颗粒物则被阻隔在膜表面。
通过调整膜孔径的大小,可以实现对不同分子大小的筛选,从而获得不同纯度的溶液。
切向超滤装置的另一个特点是,溶液在膜孔内不产生明显的流动,而是呈现切向流动。
这种切向流动能够减少膜孔被堵塞的机会,提高装置的使用寿命。
应用切向超滤装置在多个领域中得到了广泛的应用,以下是一些常见的应用领域:食品和饮料工业•饮用水处理:切向超滤装置可以用于制备纯净的饮用水,去除水中的颗粒物、细菌和病毒等污染物。
•酿造和乳制品工艺:切向超滤装置可以用于获得高纯度的酿造原料和乳制品成品,同时保留其中的有益物质。
生物医药工业•药物生产:切向超滤装置可以用于提取药物中的有效成分,并去除其他杂质物质。
•生物制品处理:切向超滤装置可以用于分离和浓缩生物制品中的细胞、蛋白质等物质。
环境保护•污水处理:切向超滤装置可以用于污水处理,去除其中的悬浮物、重金属离子、细菌等有害物质。
•废水回收:切向超滤装置可以对废水进行处理和回收利用,减少水资源的消耗。
有机合成和化学工艺•反应物分离和纯化:切向超滤装置可以用于有机合成和化学反应中的反应物分离和纯化。
•溶剂回收:切向超滤装置可以用于溶剂的回收利用,减少化学工艺中的溶剂损耗。
总结切向超滤装置利用多孔膜的筛选原理,实现了对溶液的分离和浓缩。
它在食品和饮料工业、生物医药工业、环境保护以及有机合成和化学工艺等领域都有着重要的应用。
其优势在于高效、可靠且操作简单,能够为各行各业的生产提供更纯净的溶液,解决了许多传统分离方法无法解决的问题。
单向切向流超滤膜包原理

单向切向流超滤膜包原理1.引言1.1 概述概述单向切向流超滤膜包原理是一种用于处理各种液体和气体的过滤技术,其基本原理是通过超滤膜包实现对物质的分离和筛选。
该技术具有高效、低成本、易操作等特点,在水处理、食品加工、制药等领域得到广泛应用。
本文将对单向切向流超滤膜包原理进行详细介绍。
首先,会对该技术的基本原理和工作原理进行阐述,说明超滤膜包是如何筛选和分离物质的。
其次,会探讨单向切向流的运动方式以及其在超滤膜包中的应用。
最后,会总结目前该技术的优点和不足,并展望其未来发展的前景。
通过本文的阅读,读者将对单向切向流超滤膜包原理有更深入的了解,能够更好地应用于实际生产中。
希望本文能够为相关领域的从业者提供参考和借鉴,促进该技术的进一步发展和应用。
1.2文章结构在这个部分,你可以详细说明文章的结构和内容安排。
以下是一个示例:文章结构本文将按照以下结构进行叙述:引言、正文和结论。
引言引言部分将概述单向切向流超滤膜包原理,并介绍本文的目的。
首先,我们将简要介绍超滤膜包技术的背景和意义。
接着,我们将概述单向切向流超滤膜包原理的基本概念和工作原理。
最后,我们将明确本文的目的,即通过对单向切向流超滤膜包原理的深入探讨,提高读者对该技术的理解和运用。
正文正文将分为两个要点来介绍单向切向流超滤膜包原理。
第一个要点将探究单向切向流超滤膜包原理的基本原理和构成要素。
我们将详细讨论超滤膜包的结构以及关键组件的作用,例如滤袋、规流板等。
此外,我们还将介绍单向切向流超滤膜包在不同工况下的应用实例,并对其工作原理进行深入解析。
第二个要点将重点探讨单向切向流超滤膜包原理的工作过程和性能优势。
我们将详细介绍超滤膜包对液体中杂质的过滤和分离原理,并分析其与传统过滤技术的比较。
同时,我们将阐述单向切向流超滤膜包在能耗、处理效率和废液排放等方面的优势,以及其在水处理、食品加工和生物医药等领域的应用前景。
结论结论部分将对本文进行总结,简要回顾单向切向流超滤膜包原理的重要要点和优势。
pellicon切向流超滤系统-使用手册

目录I. 概述.........................................................................................................................................- 2 -A. 切向流过滤....................................................................................................................- 2 -B. PELLICON系统的应用................................................................................................- 3 - II. PELLICON系统如何工作....................................................................................................- 4 - III. PELLICON系统的组装.......................................................................................................- 6 - A.拆箱................................................................................................................................- 6 - B.系统的装配..................................................................................................................- 6 -C. 泵和管子的装配............................................................................................................- 7 -D. 对泵的检查....................................................................................................................- 9 -F 膜包的安装.................................................................................................................- 12 -G 压紧步骤.......................................................................................................................- 12 -H.泵的操作......................................................................................................................- 14 -I. 泵和连接件的更换.......................................................................................................- 15 -J.标准有机玻璃的夹具到低残留夹具的转换............................................................- 15 - IV. Pellicon系统使用前的准备.............................................................................................- 16 -A. 预清洗和膜润湿..........................................................................................................- 16 -B. 标准水透过率(NWP)的测定......................................................................................- 16 -C. 完整性测试..................................................................................................................- 16 -D. 膜包的预先处理..........................................................................................................- 16 - V. Pellicon系统的操作..........................................................................................................- 17 -A. 操作模式......................................................................................................................- 17 -B. 主要操作参数..............................................................................................................- 23 -C. 测定参数......................................................................................................................- 23 - VI 用双泵操作Pellicon系统用于悬浮液的分离..................................................................- 27 -A.为什么增加一个泵.........................................................................................................- 27 -B. 双泵系统的应用...........................................................................................................- 27 -C.增加透过液泵/双泵系统的操作................................................................................- 27 - VII PELLICON系统维护........................................................................................................- 30 -A.泵.....................................................................................................................................- 30 -B. 夹具和膜包....................................................................................................................- 30 - 附录I 系统优化.........................................................................................................................- 32 - A.流量曲线(流通量与切向流速)....................................................................................- 32 - B.流通量随压力变化曲线..............................................................................................- 33 - C.流通量的衰减..............................................................................................................- 34 - D.优化运行条件..............................................................................................................- 35 - 附录II 问题与解决....................................................................................................................- 37 - 附录Ⅲ膜维护手册...............................................................................................................- 39 -A.选择清洗方法:..........................................................................................................- 40 -B.冲洗步骤.......................................................................................................................- 42 -C.清洗步骤.......................................................................................................................- 43 -D.清洗条件.......................................................................................................................- 46 -E.消毒步骤.......................................................................................................................- 47 -F.除热原步骤...................................................................................................................- 48 -G.水通量(NWP) 测量................................................................................................- 49 -H.膜堆的完整性检测.....................................................................................................- 51 -I.保存步骤........................................................................................................................- 54 -密理博中国有限公司I. 概述A. 切向流过滤在分离中通常有两种类型的过滤:垂直过滤和切向流过滤。
切向流超滤膜包原理

切向流超滤膜包原理切向流超滤膜包(TFF)是一种用于分离混合物的膜技术,广泛应用于水处理、生物医药和食品工业等领域。
它通过膜孔的大小和形状来实现溶质和溶剂的分离,具有高效、经济、环保等优点。
切向流超滤膜包的原理是基于超滤膜的特性,超滤膜是一种具有特定孔径的薄膜,能够阻隔大分子物质的通过,而允许小分子物质和溶剂通过。
超滤膜包括多层膜,每一层膜都有不同的孔径大小,以实现不同分子大小的分离。
在切向流超滤膜包中,混合物通过膜包的入口进入,经过多层膜的过滤作用后,在膜包的出口处分离出溶质和溶剂。
具体过程如下:1. 进料:混合物通过膜包的入口进入,进料流量和压力可以根据需要进行调节。
2. 切向流:混合物在进料管道中形成切向流,即沿着膜包的表面流动,并与膜表面接触。
3. 过滤:在切向流的作用下,溶剂和小分子物质通过超滤膜的孔隙进入膜包内部,而大分子物质被截留在膜表面。
4. 分离:溶剂和小分子物质通过膜包内的通道流出,形成产物流,而截留在膜表面的大分子物质则被排除出系统。
切向流超滤膜包的分离效果主要取决于膜的孔径和形状,膜的孔径越小,其分离效果越好。
此外,进料流量和压力也会影响分离效果,过高的流量和压力可能导致膜的堵塞和破损。
切向流超滤膜包具有许多优点。
首先,它能够高效地分离混合物,去除悬浮物、杂质、有机物等,使溶剂更加纯净。
其次,切向流超滤膜包具有较高的通量和较低的能耗,能够满足工业生产的需求。
此外,切向流超滤膜包的结构紧凑,占用空间小,可以方便地进行组合和安装。
在水处理领域,切向流超滤膜包被广泛应用于海水淡化、污水处理、工业废水处理等领域。
在海水淡化中,切向流超滤膜包可以去除海水中的盐分和杂质,生产出符合饮用水标准的淡水。
在污水处理中,切向流超滤膜包可以去除污水中的有机物和微生物,使其达到排放标准。
在工业废水处理中,切向流超滤膜包可以回收废水中的溶剂和有用物质,实现资源的循环利用。
在生物医药领域,切向流超滤膜包被广泛应用于药物分离和纯化。
1切向流过滤原理

1切向流过滤原理切向流过滤原理是一种在流动系统中用于精细过滤微粒的技术。
它利用流体的流动和微粒的分散性质,将微粒排除在流体流过特定的过滤介质时。
本文将详细介绍切向流过滤原理的机制和应用。
切向流过滤原理基于流体流动时的牛顿第一定律,即物体在不受外力作用时,保持匀速直线运动或保持静止的状态。
当流体经过精细过滤介质时,流经微孔的速度会减小,从而减小了流体的惯性。
由于微粒的质量比流体大,所以微粒会保持它们的原始速度,以及取向和位置,继续前进,穿过过滤介质。
在切向流过滤中,流体通过一个慢速旋转的细长管道,过滤介质位于管道内部的壁面上。
根据微粒的运动原理和过滤介质的作用,可以将流体微粒的过滤过程分为三个阶段:捕获、传递和排出。
首先是捕获阶段。
在管道中的过滤介质上,微粒受到细长管道壁的惯性作用,沿着壁面的切向运动形成一个薄层。
随着流体的通过,微粒在薄层中的位置被固定,靠近管道壁面。
然后是传递阶段。
微粒沿着管道壁面的切向运动,逐渐向下游传递。
由于过滤介质的细小孔隙,微粒不能穿过这些孔隙,只能继续沿着壁面运动。
最后是排出阶段。
当微粒到达管道末端时,它们因为惯性的作用而冲出流体,并落入管道底部的收集器中。
通过定期清洗收集器,可以将积聚的微粒排出系统。
切向流过滤技术具有几个重要的优势。
首先,与传统的一般过滤器相比,切向流过滤器具有更高的过滤效率。
其次,切向流过滤器能够过滤比一般过滤器更小的微粒,达到更高的分离效果。
此外,切向流过滤器的排污时间可控,允许方便的维护和周期性清洗,从而实现连续过滤。
切向流过滤器的应用广泛。
在工业生产中,它常用于精细过滤液体,如溶剂、纯化溶液和废水。
它还可以用于液态材料的分离、分级和纯化过程。
例如,在制药工业中,切向流过滤器常用于对药物精制过程中的杂质去除,从而提高产品质量和纯度。
在食品加工中,切向流过滤器可以用于果汁、酒精和糖浆等液态食品的细菌、颗粒物和杂质的分离。
总之,切向流过滤是一种基于微粒惯性作用的高效、精细过滤技术。
切向流过滤原理

默克密理博 生物制药工艺部主要内容过滤的分类 过滤的操作方式 切向流(TFF)过滤的基本概念过滤的分类 膜分离过程微滤超滤 反渗透/纳滤滤膜孔径分布反渗透 纳滤 超滤 微滤0.001 kD - 0.5 kD 0.00005 - 0.001 um0.1 kD - 2.0 kD 1 kD – 1 000 kD 0.001 - 0.10 um 0.1 - 0.65 µm区分谱图过滤方式普通过滤 (NFF) 滤芯形式或“死过滤”流向是垂直于过滤介质的 所有的液体全部透过过滤介质 颗粒被截留在过滤膜内部或表面切向流过滤 (TFF) 交叉流动过滤 流向是切向(平行)于过滤膜表面的一小部分液体透过过滤介质截留的颗粒从膜的表面被”扫除””普通过滤(死端过滤)液体流向膜表面过滤方式普通过滤 (NFF) 滤芯形式或“死过滤”切向流过滤 (TFF) 交叉流动过滤流向是垂直于过滤介质的流向是切向(平行)于过滤膜表面的所有的液体全部透过过滤介质一小部分液体透过过滤介质颗粒被截留在过滤膜内部或表面截留的颗粒从膜的表面被”扫除””切向流过滤(错流过滤) 透过流速溶液浓度 Cb切向流速膜表面浓度 Cw膜表面切向流过滤(TFF)料液浓度 Cb 料液切向流膜表面浓度 Cw透过液膜表面透过液膜表面[ ] permeate = [ ] retentate= 100 -VdfVdf(P R)) Permeate。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切向流(TFF)过滤高级培训课程
Regenerated Cellulose Composite 30 kD Membrane at 2014x
摘要
z 膜的结构和材质 − 微孔过滤 (MF) − 超滤 (UF) − 反渗透/纳滤 (RO/NF)
z 膜的关键特性 z 分离工艺膜的选择
1
膜的材质
Product Loss to the Filtrate [%]
孔径选择与产物损失 产物在回流液
Product Loss [%] = 100 * {1 - e^[(R - 1)*(ln VCF + N)]}
50
R = 0.8
40
R = 0.9
30
20
R = 0.99
10
R = 0.999
0
0
4
8
12
Feed
Membrane is
selected to pass
unwanted solute
Permeate
while retaining
Filtrate
wanted solute(s)膜被选择透过不要的溶液而截留想要
的溶液
–Also known as "Constant Volume Washing" /
微孔过滤膜
聚醚砜Polyethersulfone 再生纤维素Regenerated Cellulose 聚偏二氟乙烯PVDF-polyvinylidene fluoride 聚碳酸酯Polycarbonate 尼龙Nylon
超滤膜
聚醚砜Polyethersulfone 再生纤维素Regenerated Cellulose 聚偏二氟乙烯PVDF -polyvinylidene fluoride
膜被选择透过想要的溶质
Feed
Retentate
Permeate Filtrate
9
Membrane Capabilities 膜的功能
Diafiltration透析
–Removal of low MW solute 除去小分子溶质
–Retentate is kept 截留不变
Wash +
Type of marker Number of markers Permits membrane QC within a retention band Computerized analysis Retention can vary due to adsorption Retention can vary due to marker shape Retention can vary due to marker charge Control of polarization variability by tangential flow Common set of solutes for different membranes
and the solute 液体和溶质的性质 z Concentrations - initial
and final浓度-初始和最后 z Stability / solubility 稳定性/可溶性 z Effective pore size有效孔径 z Processing sensitivity 过程的敏感性 z Potential hazards 潜在的风险
紧密的膜孔结构可在高压下也可获得膜的截留率
Pore Rating 孔径
Based on retention of Globular protein markers for nominal
pore size ratings
相对孔径基于球状蛋白截留率的标定
Single solute testing most common
THICKNESS CONTROL
Asymmetric不对称 Finger voids or void-free 手指状或无缺陷 Non-composite or composite非复合或复合
MEMBRANE CASTING HYDROPHILISATION
Integrity Testing完整性测试
Ultracel™ PLC membranes
复合再生纤维素
5kD to 1000 kD 1-3kD 非复合
中等
推荐使用30-50% 推荐使用30-50%
分子量截留
分子量截留
低吸附
极低
1 - 14
2 - 13
Microfiltration Membranes 微孔膜参数
Operating Pressure 操作压力
"Buffer Exchange“ – 比如”等体积冲洗””缓冲溶液的置换”
Retentate
Selecting a Membrane for a Separation 如何为分离工艺选择合适的膜?
z Objective of the separation分离的目的 z Characteristics of the fluid
GVWP PVDF 0.22um B.diminuta
Bpt.
HVLP PVDF 0.45um S. marcesens
Bpt.
7
膜孔径选择与产物损失
• 截流率导致的产物损失受以下操作参数影响 – 体积浓缩因子 – 透析体积
• 对于在回流液中的产物损失计算 – % Product Loss to filtrate = 100 * {1 - e[(R - 1)*(ln VCF + N)]} – 3~5倍的余量
Filter Code PTGC
PLGC PTTK
PTHK PLMK PKMK
Material NMWL Retention
Passage
Markers
Markers
PS 10,000 Cytochrome C >90% Vitamin B12 > 70%
Albumin >98% RC 10,000 Cytochrome C >95% Vitamin B12 > 70%
– Adsorption吸附 –Particles are adsorbed into the membrane structure –颗粒被吸附在膜上
Porosity开孔率
– Defined by % of membrane made up by the pores定义膜上开孔的比率 –The higher the porosity the higher the permeability –高开孔率高通透率
Membrane Structure: UF Cross-sectional SEM's 膜结构
PES Membranes 聚砜膜
Conventional PES membranes with finger voids
手指状的传统聚砜膜
Void Free Biomax PES membranes 无缺陷的聚砜膜Biomax
Protein Mixed Marker Dextran
Test Test
Proteins Dextrans
2 - 3 15 - 20
NO
YES
NO
YES
YES
NO
YES
NO
YES
NO
NO
YES
NO
YES
Typical Membrane Retention Characteristics 典型的膜截留特征
复合再生纤维素 Ultracel
降低成本---产物是最重要的因素!
4
Characteristics of UF Membranes 超滤膜的材料特性
Property 膜材质 分子量截留 相对流速 相对截留
蛋白吸附
pH 范围
Biomax™ membranes
聚醚砜 5 kD to 1000 kD
快速
3
Membrane Structure: UF Cross-sectional SEM's 膜结构
Regenerated Cellulose 再生纤维素
Conventional Regenerated Cellulose传统再生纤维素
Composite Regenerated Cellulose Ultracel
膜的材质
– 物理性质
–可压性 –弹性 –韧性
– 化学性质
–pH –溶剂 –化学兼容性
– 热敏性质
–温度
2
Membrane Functionality 膜的功能
Capture mechanisms 捕获机理
– Size Exclusion大小排除 –Surface capture / Entrapment –表面捕获/内部捕获
Structure 结构
Open Cell Structure开放的结构 Track Etched or Cast Membrane蚀刻或铸造膜 Symmetric or asymmetric 相对或绝对
Integrity Testing完整性测试
Bubble point and or Diffusion tests泡点或气体扩散 Correlated to destructive tests关联到破坏性测试
0 - 45 psi High Flux rates because of open pore structure and permeability of the membrane 开孔结构和膜的通透性决定了高流速
Pore Rating 开孔率
Based on retention of non-deformable particles 决定于不可变形颗粒的截留率