2015全国建模大赛a题

合集下载

2015年数学建模国赛A题

2015年数学建模国赛A题

二、 问题分析
问题一要建立直杆影子长度变化的数学模型, 首先需知道太阳影子长度计算 公式,故引入太阳高度角[1]这个概念。即若已知某时刻太阳高度角的大小和直 杆高度,根据其满足的三角函数关系便可得到此时太阳影子长度。太阳高度角与 观测地地理纬度、地方时角和太阳的赤纬[2]相关。其中太阳赤纬是太阳直射点 所在纬度,与日期有关;时角由当地经度及其所用时区时间决定,故根据影长、 太阳赤纬、时角计算公式可求得直杆影子长度变化模型,并根据模型分析影子长 度关于各参数的变化规律。将附件一中直杆的有关数据直杆影长变化模型中,可 求出该直杆的具体影长变化公式。根据所建立的模型,运用 MATLAB 软件便可得 到影子长度随时间的变化曲线。 问题二需根据某固定直杆在水平地面上的太阳影子顶点坐标数据, 建立数学 模型确定直杆所处的地点。首先由问题一可推测影子长度与时间的关系,故可将 太阳影子长度与对应时间进行拟合,得到影长与时间关系模型。当某个时刻影长 得到极小值时,该时刻为太阳与直杆距离最近,即地方时正午 12 时,结合当地 所使用的标准时间便可得到当地经度。 最后利用太阳高度角与直杆长度以及影长 满足的三角关系式,便可得到影长关于直杆高度、直杆所在地点的纬度的函数关 系式,即得到了有关太阳影子顶点坐标与直杆地点经纬度的模型。将附件一中影 子顶点坐标数据应用于该直杆位置模型,可得到直杆所在位置。用相对误差分析 法分析误差[3](168-169 页),若所得的相对误差小于 2.5%,认为得到的模型合 理。 问题三可根据光照成影原理和太阳高度角计算公式建立影长与时间变 化模型,根据相关数据,运用 MATLAB 软件拟合可得到直杆所在位置的经纬 度。令年份均为 2015 年,根据太阳赤纬角计算公式,可求解具体的日期。 将附件 2 和附件 3 时间和对应直杆影长数据分别代入模型中,通过拟合计

太阳影子定位 2015 数学建模 国赛 A题

太阳影子定位 2015 数学建模 国赛 A题





st
2
n
H L
一年中的日期序号,如 1 月 2 日, n 2 ;10 月 22 日, n 295 ; 固定直杆的高度; 直杆被太阳光照射后的影子在地表的长度; 程序所求影长与问题二附件数据求得影长的方差; 程序所求影长与问题二附件数据求得影长的误差精度; 北京时间; Nhomakorabea
t
四 模型的建立与求解
图 9 影长与经度关系
图 10 影长与纬度关系
(4)影子长度 L 与当前地区纬度 的变化关系
在北半球,纬度的范围在 (0, ) 。直杆高度 H 、经度 固定的情况下,求解出影子 2
长度 L 与纬度 关系如图 10 所示。随着纬度 的增加,第 n 天的影长最大值先增大,在 北纬 80.21 度时突然骤减,影子长度 L 随着纬度 的增大,反而递减。在太阳赤纬角、 时角一定时,太阳的高度随着纬度变化,纬度高,太阳高度小,纬度低,太阳高度大, 因此纬度高的地方影子长,纬度低的地方影子短。
根据以上公式从而建立出影子长度变化的模型:
(7) 其中:
且: b 2 (n 1) / 365
图 5 太阳位置移动后影长的变化图
图 6 杆高、高度角和影长的关系图
5
3.分析影子长度关于各参数的变化规律 在上一节中,我们已得出影子长度 L 变化相关的四个参数:一年中的日期序号 n 、 北京时间 t 与当前地区经度 、纬度 。为了分析影子长度 L 关于某一个参数的变化规 律,我们固定其他三个参数值。 (1) 影子长度 L 与北京时间 t 的变化关系 以北京天安门广场 9:00~15:00 之间时刻为例,用 Matlab 运行 Test_4.m 程序拟合 出影子长度与时间的关系图,如下图 7 所示。 随着时间 t 的增长,影子长度 L 逐渐减小, 在到达最低点后再增大。其中最低点为 (11.9533,3.6633) ,即当北京时间 t 为 11 点 57 分 时,影子长度 L 最短,约为 3.66m 。由此可知,时间决定太阳的位置,位置决定影子的 长短,影子长度与最低点成左右对称关系。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

§ 3 模型的假设
1、所收集的数据资料都是真实可靠的;
2
2、文章所统计的出租车均正常运营; 3、出租车和乘客不会中途中断交易; 4、假设乘客使用打车软件均呼叫出租车; 5、匹配程度只与乘客对打车软件服务平台的需求量与司机对打车软件服务平台的供给 量有关。
§ 4 名词解释与符号说明
一、名词解释 出行强度:每人每天出行次数,它可以反映城市交通服务水平; 出租车使用率:在各种出行方式中,选择出租车出行所占比例; 二、符号说明 序号 符号 含义 1 2 3 4 5 6 7 8 9 10 11 12 13 qij xi λi ci tj pij bj Amn α β y1 y2 te 表示第 i 个城市第 j 个时段出租车的需求量 表示第 i 个城市的人口数 表示第 i 个城市出行强度 表示第 i 个城市出租车使用率 表示第 j 个时段出租车需求比 表示第 i 个城市第 j 时段的匹配程度 表示第 j 个城市出租车总量 表示准则层对方案层的判断矩阵 表示乘客使用打车软件打车意愿 表示司机使用打车软件接单意愿 表示打车软件公司对乘客的补贴金额 表示打车软件公司对司机的补贴金额 表示某一时段出租车需求比
§ 5 模型的建立与求解
问题一的分析与求解 1、匹配程度时间函数模型 日常生活中,当需求与供给越接近,既不会造成需求得不到满足,也不会造成资源
3
浪费,同时表示此时匹配程度较好。由此说明匹配程度由需求和供给共同决定。所以建 立出租车匹配程度时间函数,需要出租车在所有出行方式中的占用率和出租车的总量。 查阅相关文献[1-2]可得以下数据,如表格 1 所示。 表格 1 基本数据 人口数 (万人) 出行强度 (次/人.天) 出 租 车 占 用 率 出租车总量(万 (%) 辆) 北京(1) 1917 2.64 9.01 6.6646 广州(2) 625.33 1.86 6.25 2.0300 成都(3) 533.96 2.56 7.60 1.4898 济南(4) 360 1.88 15.04 0.8043 哈尔滨(5) 495 2.54 18.23 1.4300 人们每日日常生活,相对比较规律,所以在出行规律也存在一定的相似性。我们通 过查阅相关文献[3],做出每天从早上 6:30 至晚上 22:00 每隔半小时的出租车需求百分比 图,如图 1 所示。

2015年全国研究生数学建模竞赛A题

2015年全国研究生数学建模竞赛A题

2015年全国研究生数学建模竞赛A题水面舰艇编队防空和信息化战争评估模型我海军由1艘导弹驱逐舰和4艘导弹护卫舰组成水面舰艇编队在我南海某开阔海域巡逻,其中导弹驱逐舰为指挥舰,重要性最大。

某一时刻t我指挥舰位置位于北纬15度41分7秒,东经112度42分10秒,编队航向200度(以正北为0度,顺时针方向),航速16节(即每小时16海里)。

编队各舰上防空导弹型号相同,数量充足,水平最小射程为10千米,最大射程为80千米,高度影响不必考虑(因敌方导弹超低空来袭),平均速度2.4马赫(即音速340米/秒的2.4倍)。

编队仅依靠自身雷达对空中目标进行探测,但有数据链,所以编队中任意一艘舰发现目标,其余舰都可以共享信息,并由指挥舰统一指挥各舰进行防御。

以我指挥舰为原点的20度至220度扇面内,等可能的有导弹来袭。

来袭导弹的飞行速度0.9马赫,射程230千米,航程近似为直线,一般在离目标30千米时来袭导弹启动末制导雷达,其探测距离为30千米,搜索扇面为30度(即来袭导弹飞行方向向左和向右各15度的扇面内,若指挥舰在扇形内,则认为来袭导弹自动捕捉的目标就是指挥舰),且具有“二次捕捉”能力(即第一个目标丢失后可继续向前飞行,假设来袭导弹接近舰艇时受到电子干扰丢失目标的概率为85%,并搜索和攻击下一个目标,“二次捕捉”的范围是从第一个目标估计位置算起,向前飞行10千米,若仍然没有找到目标,则自动坠海)。

每批来袭导弹的数量小于等于4枚(即由同一架或在一起的一批飞机几乎同时发射,攻击目标和导弹航向都相同的导弹称为一批)。

由于来袭导弹一般采用超低空飞行和地球曲率的原因,各舰发现来袭导弹的随机变量都服从均匀分布,均匀分布的范围是导弹与该舰之间距离在20-30千米。

可以根据发现来袭导弹时的航向航速推算其不同时刻的位置,故不考虑雷达发现目标后可能的目标“丢失”。

编队发现来袭导弹时由指挥舰统一指挥编队内任一舰发射防空导弹进行拦截,进行拦截的准备时间(含发射)均为7秒,拦截的路径为最快相遇。

2015全国大学生数学建模竞赛A题解析

2015全国大学生数学建模竞赛A题解析

V
是' 无变位时的显示储油量。
i
以下为附加内容
不需要的朋友下载后 可以编辑删除,谢谢
让更多的农民成为新型职业农民 中央农业广播电视学校 刘天金
2013˙05˙07 陕西
农业部部长韩长赋: 这是一项基础性工程、创新性工作,
要大抓特抓、坚持不懈。
——让更多的农民成为新型职业农民(目标) ——生产更多更好更安全的农产品供给社会(方向)
由于本问较复杂,需要分情况建立模型,可以先考 虑只发生纵向变位的情况。
三、解题思路(续)
球冠Ⅰ的体积表达式为:
其中
三、解题思路(续)
球冠III的体积表达式为:
其中
三、解题思路(续)
圆柱体II的体积表达式为:
其中
三、解题思路(续)
在不考虑罐体横向变位的情况下(即 ) ,0 储油罐 的体积与辅助变量 的H 关1 系表达式为:
2r,
r(1cos)h纵2r
由于罐体只产生纵向变位时油位高度 与h 纵储油量 V (, h纵) 的对应关系已得到,再根据上面推导出的 h 与纵 同 时发生纵向和横向变位时油位高h,就可以求出一般情 况下,即罐体同时产生纵向和横向变位的油位高h与储
油量V之间的关系模型 VF(。,,h)
三、解题思路(续)
二、问题分析(续)
(3)对于(2)得到的实验罐在纵向倾斜变位情形 下油位高度与储油量的模型,将变位参数 4.1 代入 计算,得出修正后的油位高度间隔为1cm的罐容表标定 值。并与原标定值比较,分析罐体变位的影响。
第二部分:根据实际检测数据,识别实际储油罐罐 体是如何变位的,估计出变位参数,给出实际罐罐容表 的修正标定方法和结果。并分析检验模型的正确性和方 法的可靠性。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

太阳影子定位技术问题的数学模型摘要本文涉及的是太阳影子定位技术问题。

在已知视频中物体的太阳影子变化的情况下,要确定视频的拍摄地点和拍摄日期。

首先,分析了文中四个问题的关系,发现前三个问题的已知条件逐步减少,问题难度依次递进。

第四问则给出一个实际问题,该问题需要转化成数学模型利用前三问的方法求解;随后,建立了L-G模型、MinZ-模型等,并应用非线性最小二乘法、遗传算法等算法对模型求解。

得到基于模型的合理结果。

最后,将第四问的实际问题转化数学模型并求解,进而解决问题。

对于问题一,要解决的问题是杆长与影子长度的关系,根据天文、几何知识,我们建立了模型来刻画问题给出的参数之间联系,如赤纬角模型、时角模型、太阳高度角模型、影子长度模型(L-G模型)等;分析了各参数对影子长度的影响;最后运用MATLAB绘制出具体给定参数下的3米高直杆的影子变化曲线;从曲线可以看出在9:00到15:00这段时间里,影子长度先变短后变长,最短为3.627米,最长为7.182米。

问题二提供了一个关于时间、影子坐标的附件1,杆长未知,为了确定直杆所处的地点,本问建立了MinZ-模型,首先将经度、纬度、杆长离散化,搜索出大概的可行解,然后运用非线性最小二乘算法,选取matlab中的lsqcurvefit命令,以可行解为初值,再运用非线性最小二乘算法,选取MATLAB中的lsqcurvefit命令,在控制残差在10−8之内范围的情况下得到了三个可能地点皆在海南省昌江县内,最小误差的地点为海南省江黎族自治县,北纬19.3025°,东经108.6988°,此时对应直杆高度为2.0219m。

同时,将结果代入问题一的模型进行检验,验证了模型的稳定性和算法的合理性。

问题三沿用问题一的模型和问题二的算法,由于一个已知量变成一个变量,根据算法特点,在增加一个变量的情况下,算法搜索影长差时只需要增加一重循环。

关于附件2数据,残差最小对应的位置为北纬39.8926°,东经79.7438°,具体地点在新疆维吾尔自治区喀什地区巴楚县。

2015年数学建模竞赛题目

2015年数学建模竞赛题目

2015年数学建模竞赛题目(原创实用版)目录1.2015 年数学建模竞赛概述2.竞赛题目分类及解析3.竞赛题目解答思路及方法4.竞赛对学生的意义和影响正文【2015 年数学建模竞赛概述】2015 年数学建模竞赛,即全国大学生数学建模竞赛,是我国面向全国大学生的一项重要的学科竞赛活动。

该竞赛旨在激发大学生学习数学的积极性,提高他们的创新意识和运用数学知识解决实际问题的综合能力,推动大学数学教学体系、教学内容和方法的改革。

【竞赛题目分类及解析】2015 年数学建模竞赛共有 A、B、C 三个题目,分别涉及不同的领域。

A 题:飞行器设计优化题目要求:根据给定的飞行器参数,建立数学模型,并求解最优设计方案。

解析:此题属于优化问题,需要运用线性规划、非线性规划等相关知识。

B 题:水质监测与评价题目要求:分析给定的水质监测数据,建立评价模型,对水质进行评价。

解析:此题涉及数据处理、统计分析、模糊评价等知识。

C 题:智能家居系统题目要求:设计一个智能家居系统,满足给定的功能需求。

解析:此题需要了解图论、动态规划等知识,以解决网络拓扑结构、任务调度等问题。

【竞赛题目解答思路及方法】1.对题目进行仔细阅读,理解题意,明确题目要求。

2.分析题目涉及的领域和知识点,确定解题思路。

3.利用相关数学方法和工具,建立数学模型。

4.求解模型,得到结果。

5.对结果进行分析和检验,撰写论文。

【竞赛对学生的意义和影响】参加数学建模竞赛,对学生具有重要的意义和影响。

首先,它可以激发学生学习数学的兴趣,提高他们的数学素养。

其次,通过解决实际问题,学生可以锻炼自己的创新能力和团队协作能力。

最后,竞赛成绩优秀的学生,还有机会获得奖学金、保研等优惠政策。

总之,2015 年数学建模竞赛题目涉及多个领域,对参赛学生的知识储备和解题能力提出了较高的要求。

2015高教社杯全国大学生数学建模竞赛A题特等奖论文

2015高教社杯全国大学生数学建模竞赛A题特等奖论文

EE (S F/ 60 (116 23/60 - 120) * 4/60 Eq / 60)
(7) (8)
t (EE - 12) *15 * pi/180
式中,EE 为真太阳时, t 为太阳时角
再通过查阅参考文献,直杆影长的计算和太阳高度角存在着余切函数关系 式,通过下图可以直观的了解太阳影子倍率变化:
A D t
Eq
N N
Y
B
A
S
length
L

k h
3
五、模型的建立与求解
5.1.问题一的解答
5.1.1 问题一的分析
首先查找资料分析影子长度与太阳高度角、观测的地理经纬度、季节(年、 月、日)和时间等各个因素的关系,观察附件中的视频中杆子影子在一天实际当 中的某个时间段的变化(有长变短再变长)过程如图(一),并建立函数表达式 模型,然后利用 MATLAB 软件作出 3 米高的直杆的太阳影子长度的变化曲线。
3)拍摄时间的参数影响 计算时差时( Eq )指真太阳时与地方时平均太阳时之差,计算公式为:
Eq (0.0028 - 1.9857 * sin ( Q) 9.9059 * sin (2 * Q) - 7.0924 * cos(Q) - 0.6882 * cos(2 * Q))/(60 * 24) (1)
Q 2 * pi * N dn - n0 / 365.2422
5
(2)
dn (W - L) n0 79.6764 0.2422 * (Y - 1985) - floor * (0.25 * (Y - 1985)) L (D M/ 60)/(15 * 24)
W (S F/ 60)/ 24
问题二要求直杆所处的地点,实际是转化求直杆所处的经纬度问题。本文根 据附件(一)给出的杆子影子顶点坐标数据、拍摄瞬时时间和日期,并结合上文 问题(一)所建立数学函数表达式[(1)-(9)]模型,用 MATLAB 软件,对
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号(从A/B/C/D中选择一项填写):我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期:年月日(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。

以上内容请仔细核对,特别是参赛队号,如填写错误,论文可能被取消评奖资格。

)赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛编号专用页送全国评奖统一编号(由赛区组委会填写):全国评阅统一编号(由全国组委会填写):此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。

注意电子版论文中不得出现此页,即电子版论文的第一页为标题和摘要页。

基于matlab与太阳方位角的经纬度计算方法摘要根据影子的变化挖掘出测量地点的信息是一项有挑战性的数学工作,这一工作可能会应用到安全领域的工作之中,本文利用影子的数据挖掘出太阳高度方位信息进而求解出所测量地点的经度纬度实现了成功定位。

针对问题一:我们已知该地点位于北京,并且以北京时间计时,通过分析时角,太阳高度角,以及当天太阳直射位点的关系,我们得到了影子长度与时间的复杂关系模型,为了精确绘制函数图像,我们在这里采用了根据曲率的变化自适应采样绘图的技术,得到了较为精确的函数图像,通过分析,基本符合实际情况。

针对问题二:我们利用已知数据,挖掘出了更多有效信息,通过对影子长度以及时间累积量进行二次多项式拟合,我们找到了包括正午时间。

利用正午时间与北京正午时间的差距,我们找到了当地所在的纬度。

接下来我们针对x,y坐标进行散点绘图,发现它们分别呈现线性增长的特性,在这里我们利用最小二乘法找到了其中的线性关系。

利用上一步求解出的正午时间,我们求解出了正午影子朝向,即正北方向。

在问题一建立的数学关系模型上,我们又利用matlab求解出了相对精确的纬度信息,信息显示,这一地点大致位于我国乌鲁木齐附近。

针对问题三:大致沿用了问题二的数学模型,我们确定了几个可能的日期,求解出了三个可能的坐标:东经107.5°,北纬44.7°,拍摄日期9月30日;东经107.5°,北纬14.79°,拍摄日期11月1日;东经107.5°,北纬20.59°,拍摄日期12月1日。

针对问题四:由于需要从摄像机视频中先测量相关信息,这存在一定的误差。

我们在这里一方面利用像素个数进行较为精确的计数测量,另一方面利用透视原理,对机位测量数据进行了一定的矫正,得到了较为精确的数据。

继续沿用第二个,第三个模型得到了较为精确地解。

其解为:拍摄时间6月23日,北纬50.5521°,东经101°,大致位于蒙古境内;拍摄时间为7月23日,北纬41.8135°,东经:101°,大致位于内蒙古阿拉善盟;拍摄时间为8月23日,北纬33.1815°,东经:101°,大致位于青海省果洛藏族自治州班玛县。

关键字:最小二乘法自适应绘图 matlab 机位矫正数值求解问题重述:如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。

2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。

将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。

将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。

请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。

如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期?模型的假设:1.太阳直射点在南北纬回归线的运动大致视为匀速运动2.影子长度仅受太阳高度角的影响,切周围没有人工光源,玻璃幕墙的影响。

3.题中给出的数据是经过精确测量的。

4.影子投影地面是光滑的,没有倾斜。

符号的说明:A 太阳方位角h 太阳的高度角φ某地的纬度δ太阳直射地点的纬度t 当地在某时刻的时角b 影子长度前期准备:1.某地的正午太阳高度角:H(当地)=90°-纬度差(*同一纬度相减,异纬相加);2.太阳高度角随着地方时和太阳的赤纬的变化而变化。

太阳赤纬(与太阳直射点纬度相等)以δ表示,观测地地理纬度用φ表示(太阳赤纬与地理纬度都是北纬为正,南纬为负),地方时(时角)以t表示,有太阳高度角的计算公式:sin h=sin φsin δ+cos φcos δcos t3.经过查资料,九月23日为秋分日,太阳直射赤道。

太阳直射点从赤道南移的过程可大致简略为匀速运动。

这一天是十月22日,这一天太阳直射纬度是某日(R)太阳直射点的地理纬度位置=0°+(R—9月23日)*(2 3°26′*4/365),即为0°+30*(23°26′*4/365),即为462.2460′,换算成度,即δ= 7.7041°。

4.昼夜长度的确定,某地的日出日落时间,需要根据当日太阳直射点纬度来确定。

如图,晨昏线与所求解纬度的交点即为日出时间点和日落时间点,两者相隔的度数φ2*24/360即为此日的昼长。

经过资料查询,日出时间T=1 2*arcCos(tgA*tgB)/π,B为当地纬度,A为太阳直射纬度。

日出时间和日落时间是以当地的中午12点为对称的。

如果是用其他时区时间计时,则需要计算半个白昼时间再在正午时间的基础上加减来计算日出日落时间。

5.时角的确定。

某地时角在当地正午为0,由于地球每小时大致自转15°,所以上午为(正午时间-当下时刻)*15°,下午为(-正午时间+当下时刻)*15°。

6通过资料查询,我们得到,一天之中的太阳方位角是一个变化的,其具体的变化方程为cosA = (sinhsinφ - sinδ) / (cosh cosφ)。

模型一:1.1建立模型:根据资料 sin h=sin φ sin δ+cos φ cos δ cost,h为太阳高度角,φ为该地纬度,δ为这一天的太阳直射点纬度,t为时角;又因为影子长度仅仅与物体有效高度以及此地太阳高度角有关,所以影子长度l,l=x*tan(h);其中,h为太阳高度角,x为物体有效高度,l为影子长度。

这一天是十月22日,这一天太阳直射纬度是某日(R)太阳直射点的地理纬度位置=0°+(R—9月23日)*(23°26′*4/365),即为0°+30*(23°26′*4/365),即为462.2460′,换算成度,即δ= 7.7041°。

对于此地太阳时角t,地球自转一周为一天,即为24小时,不同的时间有不同的时角,以t表示。

由于北京市以北京时间为参考计时,故北京的正午时间为北京时间12点整。

地球自转一周为360°,因此每小时的时角为15°,即太阳时角表示为:t=15*(t2-12),t2表示日照时数。

所以,建立如下模型(1)。

sin h=sinφsinδ+cosφcosδcos t δ= 7.7041° =0.0214pi φ=39°54′2′′(2)。

l=x*tan(h),x=3(3)。

t=15*(t2-12),9=<t2<=151.2 模型的求解利用mailab我们做图,matlab在绘制函数的时候往往以固定步长采样,再将这些点用光滑的曲线连接,这个过程中,由于采样步长过大,一些曲率较大的函数部分往往在绘图的时候会丢失细节信息,而在这里,目标函数是十分复杂的,因此,我们采取一种新的采样方式,在区率较小,函数变化平缓的地方以固定步长采样,而在曲率较大,函数变化十分剧烈的地方,我们以曲率的线性函数关系调整步长,这样在曲率大的地方往往会得到更多的采样点,我们绘制得到的函数图像如下图。

在图中,我们可以清楚地看到,一天中,影子长度是以中午为中心对称变化的,而影子长度在当地正午达到最短,这是与实际相符合的。

而影子长度与时间也大致呈二次函数关系。

模型二:2.1.模型分析:由于原题中并没有指出如何建立的x-y 坐标系,所以具体的南北正方向需要根据数据来进一步求解。

通过分析我们可以知道,一天中正午时间太阳高度角达到最大,此时对于北半球的此地,太阳位于其正南方,影长达到最短,影子方向指向正北方方向。

而影子方向始终背离太阳方向,也就是说我们可以根据影子方向确定每时每刻的太阳方位角。

对于影子长度与时间的我们运用最小二乘法计算出它们的二次关系,进而推求出正午影长以及正午时间。

对于短时间内之中x,y数据与时间的变化关系,我们通过对数据相关性的分析,可以知道x,y坐标在短时间内与累计时间呈现高度线性关系,我们在此应用最小二乘法进行线性拟合,求解出其线性函数,经过检验。

而对于这一问题,这一天在春分日前后,昼长大致12小时,太阳直射赤道处。

1)。

对于经度的求解,我们可以根据已经计算出来的当地正午北京时间,以北京所在的东八区为参照,求解出所在经度。

2)。

对于所求的纬度,我们建立方位角与时角,太阳直射地点的关系模型,利用处理好的数据,运用二分法进行精确求解。

相关文档
最新文档