由空间问题应力平衡方程推导薄板弯曲平衡方程

合集下载

第九章弹性薄板弯曲问题

第九章弹性薄板弯曲问题
∂ 2 ∂ 2 FSx = − D ∇ w, FSy = − D ∇ w ∂x ∂y
§ 9-4
边界条件 扭矩的等效剪力
(u , v) z =0 = 0
§ 9-2
弹性曲面的微分方程
1、取w=w(x,y)为基本未知量。 为基本未知量。 2、用w来表示u,v。 来表示u
∂w u=− z ∂x
∂w v=− z ∂y
3、用w来表示主要应变:ε x , ε y , γ xy 来表示主要应变:
∂ w ∂ w ∂ w ε x = − 2 z, ε y = − 2 z, γ xy = −2 z ∂x ∂y ∂x∂y
§ 9-1
概念和假定
小挠度理论 薄板:1 8 ~ 1 5) > δ b ≥ (1 80 ~ 1 100) 薄板: ( 大挠度理论 薄膜: δ b < (1 80 ~ 1 100) 薄膜:
本章研究小挠度薄板的弯曲问题。 本章研究小挠度薄板的弯曲问题。
厚板: δ 厚板:பைடு நூலகம்
b ≥ (1 8 ~ 1 5)
由平衡方程 得
Eδ 3 D= 12(1 − µ 2 )
D∇ w = q
4
∂ w ∂ w ∂ w ∇ = 4 + 2 2+ 4 ∂x ∂x ∂y ∂y
4 4 4 4
§ 9-3
薄板横截面上的内力
梁的内力是指梁横截面上的内力合力和合力矩。 梁的内力是指梁横截面上的内力合力和合力矩。 板的内力是指单位宽度的横截面( x1)上的内力合力 板的内力是指单位宽度的横截面(δx1)上的内力合力 和合力矩。应力向中面简化合成的主矢量和主矩。 和合力矩。应力向中面简化合成的主矢量和主矩。 弯曲应力 σ x , σ y ,τ xy = τ yx 沿z方向线性分布,合成 方向线性分布,

薄板弯曲问题

薄板弯曲问题

物理方程
应变
位移函数
薄板在弯曲变形后,薄板的法线没有伸缩;
w z 0 z
w wx, y
位移函数
薄板的法线,在薄板弯扭以后,保持为薄 板弹性曲面的法线;
xz yz 0
w u 0 x z
w v 0 y z
位移函数
u w z x
利用12个结点位移条件,由广义坐标法可 建立形函数,显然十分麻烦。
位移函数
w( x, y ) 1 2 x 12 xy
3
f x, y
w f x, y x y y
w f x, y y x x
D Dz
薄板弯曲问题的有限元法
结点 位移函数 位移 用插值方法求 内部各点位移
几何方程
结点力
平衡方程
应力
物理方程
应变
内力与应力的关系
薄板内力微元体如图所示。

h/2
- h/2
yx zdxdz
h/2 - h/2
y
h/2
- h/2
x zdydz

h/2
- h/2
x xy zdydz
该转角的确定包含了单元全部结点位移参数,由于非公共 边上结点位移的协调关系不能保证,因此一般
综上所述,本节构造的位移场不能完全满足收敛的协调性 准则,具体为挠度及切向转角跨单元协调,法向转角跨单 元不协调,因此该单元不是完全协调元。
弹性薄板矩形(R12)单元
4) 非完全协调元的收敛性
4 i 1
w N i d i N d
已知支座位移问题时
薄板弯曲问题的有限元法

弹性力学:平板弯曲问题的有限元分析(1)

弹性力学:平板弯曲问题的有限元分析(1)
其中为薄板的弯曲刚度9899薄板的弹性曲面微分方程薄板横截面上的内力称为薄板横截面上的内力称为薄板内力薄板内力是指薄板横截面的单是指薄板横截面的单位宽度上由应力合成的位宽度上由应力合成的主矢量主矢量和和主矩主矩
平板弯曲问题的有限元分析(1) Kirchhoff弹性薄板理论
参考文献: “弹性力学(下册)”第13章。徐芝纶
x
2w
2 (z2
2
2
)dz 4
E 3 12(1 2 )
x
2w
(c)
同样,在y为常量的截面上,每单位宽度内的 y , yx , yz
也分别合成如下的弯矩,扭矩,和横向剪力:
M y
2 2
z
y dz
E
12(1
3
2
)
(
2w y2
2w x2
)
(d)
M yx
2
2
z yxdz
E 3 12(1 2 )
(9-6)
( z )z q
(f)
2
将(9-6)式代入薄板上板面的边界条件:
得:
E
12(1
3
2
)
4
w
q
(9-7)
或 D4w q, (9-8)
其中
D
E
12(1
3
2
)
(9-9)
薄板的弹性曲面微分方程
为薄板的弯曲刚度
§9-3 薄板横截面上的内力
► 薄板横截面上的内力,称为薄板内力,是指薄板横截面的单 位宽度上,由应力合成的主矢量和主矩。
对z积分,得到: z
2(1 2 )
2
( 4
z
z2 )4w 3
F3 (x,

弹性力学:平板弯曲问题 (2) 薄板弯曲经典解法

弹性力学:平板弯曲问题 (2) 薄板弯曲经典解法

如图10.4所示,边界上的
扭矩可以变换为等效的横向剪
力,与原来的横向剪力归并为
一个条件,即
z
Vy
FQy
M yx x
这样,自由边的边界条件为
My
yb
0, Vy
yb
FQy
M yx x
yb
0
z
注意到式(10.11),上式成为
2w y2
2w x2
yb
0,
3w
y
3
(2
)
3w x2y
yb
0
z
dx
FQx
xy
Mx
y
yx xy xz x yz
dy
dx
图10-2 薄板的内力
在x为常数的横截面上,
t2
t2
t2
Mx
t
2
x zdz
,
Mxy
t
2
xyzdz
,
FQx
t
2
xz zdz
在y为常数的横截面上,
(10.9)
t2
t2
t2
My
t
2
y zdz
,
M yx
t
2
yxzdz
,
FQy
a m x ix 0, i m
0 sin a sin a dx a 2, i m
a 0
q sin
i x
a
dx
a 2
n1
Cin
sin
n
b
y
再将上式中的两边都乘以sin jy 然后对y从0到b积分,并注意到
b a m y jy 0, j m
0 sin b sin b dy b 2, j m

由空间问题应力平衡方程推导薄板弯曲平衡方程

由空间问题应力平衡方程推导薄板弯曲平衡方程

由空间问题应力平衡方程推导薄板弯曲平衡方程薄板弯曲是指在薄板材上施加外力或载荷时,薄板产生的弯曲变形现象。

在薄板弯曲平衡的分析中,我们可以利用应力平衡方程来推导出薄板的弯曲平衡方程。

首先,我们先来了解一下薄板上的应力分布情况。

当薄板弯曲时,沿板的厚度方向,各点的应力不再均匀,而是变化的。

典型的薄板弯曲示意图如下:________=======+y-y=======_______________________(-z)/\(+z)在这个示意图中,x、y、z分别表示三个坐标轴方向,板材由原始平面发生了位移,形成了一个弯曲的曲面。

我们可以假设,板材上各点的应力沿曲面垂直方向,并且沿板材厚度方向的应力相对于板面来说可以忽略不计。

根据这个假设,我们可以得到以下应力方程:σx=σ0+zE(κ-η)σy=0σz=0其中,σx、σy、σz分别表示薄板上各点的应力;σ0表示沿曲面方向的平均应力,称为弯曲应力;E表示薄板材料的弹性模量;κ表示曲率;η表示薄板法线的倾角。

下面我们来推导薄板的弯曲平衡方程。

根据力的平衡原理,薄板的弯矩M必须满足以下条件:dM/dy + q = 0其中,M表示弯矩,q为单位面积上的荷载。

表示单位面积上的荷载,我们可以用物理量p来表示,即:q = p*dz将上述等式代入弯矩方程中,可以得到:dM/dy + p*dz = 0将p替换为σx,则有:dM/dy + σx*dz = 0根据应力平衡方程,我们可以得到:σx=σ0+zE(κ-η)将其代入上式,得到:dM/dy + (σ0 + zE(κ-η))*dz = 0对上式两边同时积分,得到:∫dM + ∫(σ0 + zE(κ-η))*dz = 0即:M+σ0z+E(κ-η)z^2/2=C其中,C是常数。

这就是薄板的弯曲平衡方程。

通过这个方程,我们可以分析薄板弯曲时各点的位移和应力分布情况,从而在设计过程中进行合理的选择和优化。

总结起来,由空间问题应力平衡方程推导薄板弯曲平衡方程,涉及到薄板的应力分布、弯矩方程和力的平衡等内容。

第五章 薄板的弯曲

第五章  薄板的弯曲

第五章 薄板的弯曲薄板的概念:厚度t<<Min(B,L)()L B Min t 81~51<中厚板 ()L B Min t 81~51> 厚板()()L B Min t L B Min 81~511001~801<< 薄板()L B Min t 1001~801< 薄膜作用在其上的载荷分解为平行于板面和垂直于板面,当仅有平行于板面的力时,就是我们前面讲到的平面应力问题。

现在我们要解决的就是当有垂直于板面的载荷时(板受弯曲作用时),应该如何计算。

两者都有时,又应该如何考虑。

§5.1 薄板弯曲的基本方程一,基本概念1,中面:变形前平分板厚的平面。

2,挠度:中面上各点在垂直于中面上的位移w 。

3小挠度:通常w/t<1/5。

二,基本假定1,变形前垂直于中面上的直线,变形后仍为直线,且仍垂直于弯曲的中面。

该假定类似与材料力学中梁的平面假定。

它确保与中面平行的的各面之间不存在剪应变。

0==zy zx γγ 2,变形前后,板的厚度不变,即0=z ε。

板内各点的挠度值仅为x 、y 的函数,而与z 轴无关。

()y x w w ,=。

3,薄板中面内的各点没有平行于板面的位移()00==z u 、()00==z v ,只有z 方向的位移。

4,平行于中面的各层之间互不挤压。

0=z σ三,基本方程利用空间的三大方程和以上4个假定,我们可以推求出适用薄板的基本方程。

1,几何方程由假定○1,0=∂∂+∂∂=x w z u zx γ,0=∂∂+∂∂=ywz v zy γ,就有: x w z u ∂∂-=∂∂,ywz v ∂∂-=∂∂,积分可得: ()y x f xwzu ,1+∂∂-= ()y x f ywzv ,2+∂∂-=再由假定○3,()00==z u 、()00==z v ,就是中面上各点没有板面的位移,代入上式,可得()()0,,21==y x f y x f 所以x w zu ∂∂-=,ywz v ∂∂-=。

第十四讲 薄板小挠度弯曲(一)汇总

第十四讲 薄板小挠度弯曲(一)汇总

第十四讲 薄板小挠度弯曲理论(一)概念和假定薄板:板的厚度远小于中面最小尺寸的板。

荷载纵向荷载:作用在板中面以内的荷载,可以认为沿板的厚度均布,按平面应力计算。

横向荷载:使薄板弯曲,按薄板弯曲问题计算。

中面弯曲所形成的曲面称为薄板的 弹性曲面,中面内各点的横向位移 称为挠度。

薄板弯曲的基本假设(基尔霍夫假设)(1)垂直于中面方向的正应变εz 可以不计,由∂w /∂z = 0得到 w = w (x , y )板厚度内各点具有相同的挠度。

放弃物理方程:)]([1y x z z Eσσμσε+-= 目地:允许σz -μ(σx +σy ) ≠ 0(2)应力分量τxz 、τyz 、σz 远小于其余三个应力分量,它们所引起的应变可以不计(它们本身是平衡所需,不能不计),即认为γxz = γyz = 0(一般,薄板弯曲问题中,τxz 、τyz 是次要应力,σz 则为更次要应力) 0=∂∂+∂∂x w z u ,xwz u ∂∂-=∂∂0=∂∂+∂∂y w z v ,yw z v ∂∂-=∂∂x放弃物理方程:xz xz E τμγ)1(2+=,yz yz Eτμγ)1(2+= 即:允许γxz 和γyz 等于零,但τxz 和τyz 不为零。

只有三个物理方程)(1y x x E μσσε-=)(1x y y Eμσσε-=xy xy Eτμγ)1(2+=与平面应力问题相同。

(3)薄板中各点都没有平行于中面的位移,(u )z = 0 = 0,(v )z = 0 = 0,因此,(εx )z = 0 = 0,(εy )z = 0 = 0,(γxy )z = 0 = 0 薄板弯曲后,在xy 平面的投影形状不变。

弹性曲面微分方程按位移求解,基本未知量为挠度w ,需将其它物理量用w 表示,由x w z u ∂∂-=∂∂,yw z v ∂∂-=∂∂ 积分得到:),(1y x f z x w u +∂∂-=,),(2y x f z ywv +∂∂-= 由:(u )z = 0 = 0,(v )z = 0 = 0得到:f 1(x , y ) = f 2(x , y ) = 0,因此 z x w u ∂∂-=,z yw v ∂∂-= 则: z x w x u x 22∂∂-=∂∂=ε,z y w y v y 22∂∂-=∂∂=ε,z yx wx v y u xy ∂∂∂-=∂∂+∂∂=22γ将应力分量σx 、σy 、τxy 用w 表示⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1y w x w Ez E y x x μμμεεμσ⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1x w y w Ez E x y y μμμεεμσ yx wEz E xy xy ∂∂∂+-=+=21)1(2μγμτ w 仅为x 、y 的函数,因此应力分量与z 成正比。

薄板弯曲问题有限元法

薄板弯曲问题有限元法

T
wl xl yl
Fzl M zl M yl T
j
xj
yj
wj
7
第8页/共24页
薄板弯曲时,只有w(x,y)是薄板变形的未知基本函数,而其它量,如u,v 等都是w(x,y)的函数,故薄板矩形单元的位移函数的选择实际就是w(x,y) 的选取。注意单元有12个自由度,则
w(x, y) 1 2x 3 y 4x2 5xy 6 y2
1 2
(w,
Ljj
w, Ljm
),
a5
1 2
(w,Lii
w, Lim
),
6
1 2
(w,Lii
w, Lij
w, Lji
w,Ljj
),
7
wj
wm
1 2 (w,Ljj
w, Ljm
)
8
wi
wm
1 2
(w,Lii
w, Lim
)
w,Lij 表示w对Li的 偏导数在j点的值。
9
wi
wj
1 2
(w,Lii
角形和矩形。为了使相邻单元间同时可传递力和力矩,节点当作刚性节点
,即节点处同时有节点力和节点力矩作用。每个节点有三个自由度,即一
个扰度和分别绕x,y轴的转角。 1.设位移函数
l
xl
yl wl
m
xm ym wm
节点位移分量和节点力分量
i
xi
yi
wi
q e wi xi yi F e Fzi M xi M yi
w(x, y) c1 c2 x c3x2 c4 x3
四个系数刚好通过i,j两个端点的扰度值和绕y轴的两个转角值唯一确定 ;同时,相邻单元在此边界上也能通过i,j的值唯一确定,故连续。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由空间问题应力平衡方程推导薄板
弯曲平衡方程
由空间问题应力平衡方程推导薄板弯曲平衡方程是一个十分重要的在力学中有关薄板弯曲的理论问题。

通过对薄板弯曲的基本物理现象,把薄板的弯曲说明为均匀受力的情况,以及应用几何原理和力学原理,可以推导出薄板弯曲的平衡方程。

首先,我们来看空间问题应力平衡方程,它是一个比较宽泛的方程,可以用来描述任何三维空间应力分布的情况。

它定义了一个物体所受外力总和等于零的物理原理。

空间问题应力平衡方程如下:
∑F=0
其中F表示外力,可以是拉力、压力或者其他外力,而∑表示外力在各个方向上的总和,即外力的合力。

接下来,我们来看看薄板弯曲平衡方程的推导,由于薄板弯曲本质上是均匀受力的情况,因此,应用空间问题应力平衡方程,只需要讨论外力的合力是否为零,即可得到薄板弯曲的平衡方程。

根据薄板的几何原理和力学原理,外力的合力可以用下面的公式表示:
∑F=-Mg
其中M表示薄板受力情况下的弯矩,g表示重力。

将空间问题应力平衡方程和薄板受力情况下的弯矩公式代入,得到薄板弯曲平衡方程:
∑F=-Mg=0
由此可以看出,当薄板受力情况下弯矩为零时,外力的合力也会为零,此时薄板就处于弯曲平衡状态。

以上为由空间问题应力平衡方程推导薄板弯曲平衡方程的详细说明。

由此可见,对薄板弯曲的理论分析和推导大大提高了对薄板的理解,也使我们能够更好地利用薄板来实现我们想要的目标。

相关文档
最新文档