弹性薄板小挠度弯曲
第九章弹性薄板弯曲问题

§ 9-4
边界条件 扭矩的等效剪力
(u , v) z =0 = 0
§ 9-2
弹性曲面的微分方程
1、取w=w(x,y)为基本未知量。 为基本未知量。 2、用w来表示u,v。 来表示u
∂w u=− z ∂x
∂w v=− z ∂y
3、用w来表示主要应变:ε x , ε y , γ xy 来表示主要应变:
∂ w ∂ w ∂ w ε x = − 2 z, ε y = − 2 z, γ xy = −2 z ∂x ∂y ∂x∂y
§ 9-1
概念和假定
小挠度理论 薄板:1 8 ~ 1 5) > δ b ≥ (1 80 ~ 1 100) 薄板: ( 大挠度理论 薄膜: δ b < (1 80 ~ 1 100) 薄膜:
本章研究小挠度薄板的弯曲问题。 本章研究小挠度薄板的弯曲问题。
厚板: δ 厚板:பைடு நூலகம்
b ≥ (1 8 ~ 1 5)
由平衡方程 得
Eδ 3 D= 12(1 − µ 2 )
D∇ w = q
4
∂ w ∂ w ∂ w ∇ = 4 + 2 2+ 4 ∂x ∂x ∂y ∂y
4 4 4 4
§ 9-3
薄板横截面上的内力
梁的内力是指梁横截面上的内力合力和合力矩。 梁的内力是指梁横截面上的内力合力和合力矩。 板的内力是指单位宽度的横截面( x1)上的内力合力 板的内力是指单位宽度的横截面(δx1)上的内力合力 和合力矩。应力向中面简化合成的主矢量和主矩。 和合力矩。应力向中面简化合成的主矢量和主矩。 弯曲应力 σ x , σ y ,τ xy = τ yx 沿z方向线性分布,合成 方向线性分布,
第12章-薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题知识点薄板的基本概念薄板的位移与应变分量薄板广义力薄板小挠度弯曲问题基本方程薄板自由边界条件的简化薄板的莱维解矩形简支薄板的挠度基尔霍夫假设薄板应力广义位移与薄板的平衡薄板的典型边界条件薄板自由边界角点边界条件挠度函数的分解一、内容介绍薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。
薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。
根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。
薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。
根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。
因此,首先将薄板的应力、应变和内力用挠度函数表达。
然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。
对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。
二、重点1、基尔霍夫假设;2、薄板的应力、广义力和广义位移;3、薄板小挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。
§12.1 薄板的基本概念和基本假设学习要点:本节讨论薄板的基本概念和基本假设。
薄板主要几何特征是板的中面和厚度。
首先,根据几何尺寸,定义薄板为0.5≤δ/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。
对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。
根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。
薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。
根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。
弹性力学:平板弯曲问题 (2) 薄板弯曲经典解法

16q0
6
Dmn
m2 a2
n2 b2
2
(m 1,3,5, ; n 1,3,5, )
代入式(10.22),即得挠度的表达式 (受均布载荷)
m x n y
w 16q0
sin sin
a
b
D 6 m1,3,5,n1,3,5,
mn
m2 a2
n2 b2
2
(10.24)
由此可以用公式(10.11)求得内力的表达式。
y
2
w
t2 4
z 2
(10.5)
其中,D称为板的抗弯刚度,其表达式为
D Et3
12(1 2 )
(10.6)
最后,次要应力分量σZ,可根据z方向的平衡方程求得。
z xz yz
z
x y
将式(10.5)代入上式得
x
z
6D t3
4
w
t2 4
z 2
积分上式得
z
6D t3
4
w
t2 4
在边界上
w n 0
D 4 w q
将式(10.18)代入式(10.8)得
D
24 m a4
16 m a2b2
24m
b4
q
解得m并代入式(10.18)得
w
q
x a
2 2
y2 b2
2 1
8D
3 a4
2 a2b2
3 b4
这就是夹支边椭圆薄板在均布载荷作用下的挠度 表达式。
有了挠度表达式,就可以求的内力。
y2 b2
2
1
(10.18)
o
a
y 图10.6 椭圆板
薄板的小挠度弯曲问题

名称
圆形薄板的小挠度弯曲问题
轴对称弯曲问题
说明
固定边界
位移边界条件
简支边界
混合边界条件
自由边界
静力边界条件
圆形薄板的轴对称弯曲问题,其挠度函数的通解即内力表达式如表2所示。其中, 为特解,
由板面荷载来确定。
表3.圆形薄板的轴对称弯曲问题的解答
名称
表 达 式
挠 度
内 力
对于有孔板,则可由内外各两个边界条件确定挠度表达式的 ;对于无孔边,则可由板中心处的挠度和内力为有限值得条件,得出 ,再由边界条件确定 和 。但需指出的是,在某些特殊情况下(例如,板面上作用有集中力或者板面上有约束),为了求得问题的解答,可以对内力进行放松,即 。
所示。根据板的厚度,可以将板分为:
(1)厚板:板厚 与板面内的最小特征尺寸
之比大于 ,即 ,且厚板
三个方向的几何尺寸接近于同阶大小。这类
班一般须按弹性力学空间问题来处理。
(2)薄板:板厚 与板面内的最小特征尺
寸 之比在 和 之间,即
。这类板的抗弯刚度较大,
当受到一定大小的横向荷载作用时,薄板图1
将会产生弯曲变形,其挠度 比板厚 要小,最大挠度 ,可认为属于小挠度问题,否则属于大挠度问题。
或者有角点条件
式中: 为支座上端的沉陷。
如图4所示为以正方向标示于矩形薄板中面上的
总剪力、角点反力以及弯矩(以矩矢表示,右手
螺旋,双箭头为大拇指方向,其余四指的绕向即
为弯矩作用的方向),但表明其增量。
圆形薄板的小挠度弯曲问题
对于圆形、扇形、圆环形等形状的薄板,采用
极坐标求解往往比较方便。圆形薄板弯曲问题的基
正,如图2中所示。图2
(整理)第6章弹性薄板小挠度弯曲问题的基础变分原理(16K)

第6章 弹性薄板小挠度弯曲问题的基础变分原理平分板厚度的平面称为板的中面,一般地,当板的厚度t 不大于板中面最小尺寸的5/1时的板称为薄板,薄板的中面是一个平面。
薄板在垂直于中面的载荷作用下发生弯曲时,中面变形所形成的曲面称为弹性曲面或挠度面,中面内各点在未变形中面垂直方向的位移称为板的挠度。
薄板弯曲的精确理论应是满足弹性力学的全部基本方程,但这在数学上将会遇到很大的困难。
1850年,G.R.基尔霍夫(Kirchhoff Gustav Robert ,基尔霍夫 古斯塔夫·罗伯特,德国物理学家,1824-1887年)除采用弹性力学的基本假设外,还提出了一些补充的假设,从而建立起了薄板小挠度弯曲的近似理论。
这些假设是:第一,变形前垂直于板中面的直线,在板变形后仍为直线,并垂直于变形后的中面,而且不经受伸缩;第二,与中面平行的各面上的正应力z σ与应力x σ,y σ和xy τ相比属于小量;第三,在横向载荷作用下板发生弯曲时,板的中面并不伸长,这也就是说,薄板中面内各点都没有平行于中面的位移分量。
用变分法可以导出薄板弯曲问题的平衡微分方程和边界条件。
当板的形状和边界条件较复杂时,直接求解偏微分方程时比较困难的,以变分法为基础的各种近似解是求解这类问题的一个重要途径。
本章讨论了用于薄板小挠度弯曲问题的一些基础变分原理,这包括虚功原理、最小位能原理、最小余能原理、两类自变量广义变分原理并推广到三类自变量广义变分原理。
§6.1 基本方程与边界条件回顾取坐标平面oxy 与中面重合,z 轴垂直于中面,x ,y 和z 轴构成一个右手直角笛卡儿坐标系。
变形后的板内各点沿x ,y 和z 轴方向的位移分别用u ,v 和w 表示。
由Kirchhoff 假设,可以得到xwzz y x u ∂∂-=),,(,y w z z y x v ∂∂-=),,(,),(),,(y x w z y x w = (6-1)并利用弹性力学中位移与应变之间的关系式,可以得到薄板中任意点的应变分量为22x w z x ∂∂-=ε,22ywz y ∂∂-=ε,y x w z xy ∂∂∂-=γ22 (6-2)其余3个应变分量z ε,xz γ和yz γ根据假设都等于零,即0=εz ,0=γxz ,0=γyz (6-3)由薄板的平衡关系,可以确定板的横向分布载荷),(y x q 与剪力x Q ,y Q 以及弯矩x M ,y M 和扭矩xy M (x M ,y M ,xy M 统称为内力矩)与x Q ,y Q 之间的关系式。
第9章 薄板的小挠度弯曲问题及经典解法培训资料

(9-1)
由物理方程(7-12),有:
x y
xy
1 E 1 E
(
( 2 (1
x
y
E
)
y x xy
) )
(9-2)
即薄板小挠度弯曲问题的物理方程和薄板平面应力问题的物理方程相同。
, (3)薄板中面内各点都没有平行于中面的位移
(u)z0 0 (v)z0 0
(9-3)
x
u x
、y
v y
将(a)x 2
2
y
w
2
)
y
Ez
1 2
2w (
y 2
2w x2
)
xy
Ez 1
2w () xy
(9-4)
(3)用w表示应力分量zx、zy 由空间问题的平衡方程(7-1)式的第一式有(令fx=fy=0): zx x yx ,将(9-4)式代入,有:
z
2(1E2)[d42
(zd)1(z3
23
d3)]4w
8
6(1Ed3 2)(12dz)2(1dz)4w
(9-6)
3. 弹性曲面微分方程
(1)在薄板上边界,(z)zd q,q薄板单位面积内的横向荷载, 2
包括横向面力及体力。
(2)将(9-6)式代入上式,有:
Ed3 4wq 12(12)
(9-7)
其中:
D4w q
D Ed 3 12(1 2 )
(9-8) (9-9)
称为薄板的弯曲刚度,它的量纲是:L2MT-2
方程(9-8)称为薄板的弹性曲面微分方程。是薄板弯曲问题的基本 微分方程。具体求解时要考虑(板边上)薄板侧面的边界条件。
§9-3 薄板横截面上的内力及应力
第十四讲 薄板小挠度弯曲(一)汇总

第十四讲 薄板小挠度弯曲理论(一)概念和假定薄板:板的厚度远小于中面最小尺寸的板。
荷载纵向荷载:作用在板中面以内的荷载,可以认为沿板的厚度均布,按平面应力计算。
横向荷载:使薄板弯曲,按薄板弯曲问题计算。
中面弯曲所形成的曲面称为薄板的 弹性曲面,中面内各点的横向位移 称为挠度。
薄板弯曲的基本假设(基尔霍夫假设)(1)垂直于中面方向的正应变εz 可以不计,由∂w /∂z = 0得到 w = w (x , y )板厚度内各点具有相同的挠度。
放弃物理方程:)]([1y x z z Eσσμσε+-= 目地:允许σz -μ(σx +σy ) ≠ 0(2)应力分量τxz 、τyz 、σz 远小于其余三个应力分量,它们所引起的应变可以不计(它们本身是平衡所需,不能不计),即认为γxz = γyz = 0(一般,薄板弯曲问题中,τxz 、τyz 是次要应力,σz 则为更次要应力) 0=∂∂+∂∂x w z u ,xwz u ∂∂-=∂∂0=∂∂+∂∂y w z v ,yw z v ∂∂-=∂∂x放弃物理方程:xz xz E τμγ)1(2+=,yz yz Eτμγ)1(2+= 即:允许γxz 和γyz 等于零,但τxz 和τyz 不为零。
只有三个物理方程)(1y x x E μσσε-=)(1x y y Eμσσε-=xy xy Eτμγ)1(2+=与平面应力问题相同。
(3)薄板中各点都没有平行于中面的位移,(u )z = 0 = 0,(v )z = 0 = 0,因此,(εx )z = 0 = 0,(εy )z = 0 = 0,(γxy )z = 0 = 0 薄板弯曲后,在xy 平面的投影形状不变。
弹性曲面微分方程按位移求解,基本未知量为挠度w ,需将其它物理量用w 表示,由x w z u ∂∂-=∂∂,yw z v ∂∂-=∂∂ 积分得到:),(1y x f z x w u +∂∂-=,),(2y x f z ywv +∂∂-= 由:(u )z = 0 = 0,(v )z = 0 = 0得到:f 1(x , y ) = f 2(x , y ) = 0,因此 z x w u ∂∂-=,z yw v ∂∂-= 则: z x w x u x 22∂∂-=∂∂=ε,z y w y v y 22∂∂-=∂∂=ε,z yx wx v y u xy ∂∂∂-=∂∂+∂∂=22γ将应力分量σx 、σy 、τxy 用w 表示⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1y w x w Ez E y x x μμμεεμσ⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1x w y w Ez E x y y μμμεεμσ yx wEz E xy xy ∂∂∂+-=+=21)1(2μγμτ w 仅为x 、y 的函数,因此应力分量与z 成正比。
第十四讲 薄板小挠度弯曲(一)汇总

第十四讲 薄板小挠度弯曲理论(一)概念和假定薄板:板的厚度远小于中面最小尺寸的板。
荷载纵向荷载:作用在板中面以内的荷载,可以认为沿板的厚度均布,按平面应力计算。
横向荷载:使薄板弯曲,按薄板弯曲问题计算。
中面弯曲所形成的曲面称为薄板的 弹性曲面,中面内各点的横向位移 称为挠度。
薄板弯曲的基本假设(基尔霍夫假设)(1)垂直于中面方向的正应变εz 可以不计,由∂w /∂z = 0得到 w = w (x , y )板厚度内各点具有相同的挠度。
放弃物理方程:)]([1y x z z Eσσμσε+-= 目地:允许σz -μ(σx +σy ) ≠ 0(2)应力分量τxz 、τyz 、σz 远小于其余三个应力分量,它们所引起的应变可以不计(它们本身是平衡所需,不能不计),即认为γxz = γyz = 0(一般,薄板弯曲问题中,τxz 、τyz 是次要应力,σz 则为更次要应力) 0=∂∂+∂∂x w z u ,xwz u ∂∂-=∂∂0=∂∂+∂∂y w z v ,yw z v ∂∂-=∂∂x放弃物理方程:xz xz E τμγ)1(2+=,yz yz Eτμγ)1(2+= 即:允许γxz 和γyz 等于零,但τxz 和τyz 不为零。
只有三个物理方程)(1y x x E μσσε-=)(1x y y Eμσσε-=xy xy Eτμγ)1(2+=与平面应力问题相同。
(3)薄板中各点都没有平行于中面的位移,(u )z = 0 = 0,(v )z = 0 = 0,因此,(εx )z = 0 = 0,(εy )z = 0 = 0,(γxy )z = 0 = 0 薄板弯曲后,在xy 平面的投影形状不变。
弹性曲面微分方程按位移求解,基本未知量为挠度w ,需将其它物理量用w 表示,由x w z u ∂∂-=∂∂,yw z v ∂∂-=∂∂ 积分得到:),(1y x f z x w u +∂∂-=,),(2y x f z ywv +∂∂-= 由:(u )z = 0 = 0,(v )z = 0 = 0得到:f 1(x , y ) = f 2(x , y ) = 0,因此 z x w u ∂∂-=,z yw v ∂∂-= 则: z x w x u x 22∂∂-=∂∂=ε,z y w y v y 22∂∂-=∂∂=ε,z yx wx v y u xy ∂∂∂-=∂∂+∂∂=22γ将应力分量σx 、σy 、τxy 用w 表示⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1y w x w Ez E y x x μμμεεμσ⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1x w y w Ez E x y y μμμεεμσ yx wEz E xy xy ∂∂∂+-=+=21)1(2μγμτ w 仅为x 、y 的函数,因此应力分量与z 成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
板是工程中常用的构件,当外荷载作用方
向平行于板面且沿板厚均匀分布且不发生失稳
现象时,可以处理为平面应力问题;当外荷载
作用方向垂直于板面时,则属于弹性力学的空
间问题。由于数学上处理空间问题的复杂性,
要求得满足全部基本方程和边界条件的精确解
非常困难,这就需要引入简化计算的近似假设。
• 在上述假设基础上建立起来的弹性薄板的小挠度理论, 属于薄板弯曲的经典理论,它在许多工程问题的分析 计算中,已得到广泛的应用。
§5-2 薄板内力
• 根据§5-1中的三个基本假设,利用弹性力学的 平衡微分方程、几何方程和物理方程,可以将 薄板内任一点的位移分量、应变分量、应力分 量和板横截面上的内力,都用挠度w来表示。 下面就来建立这些基本关系式。
w z
0
再由式(a)的第五、第六式,有
uw vw
xy
v x
u y
(a)
z x z y
u-z w xf1x,y -v z w yf2x,y
由第三个假设:(u)z=0=0和(v)z=0=0可 知,f1(x,y)=f2(x,y)=0,于是有
yz
w y
v z
0
xz
u z
w x
z z h 0
2
z
z h 2
q
(d)
将式(5-3)代入方程(c),经积分后,利用边 界条件(d)的前三式,不难得到以下结果:
zx
E
21 2
z2
h2 4
x
2
w
zy
E
21 2
z2
h2 4
y
2w
(5-4)
z61 E-h32 1 2h z21h z22w(5-5)
0
xz
yz
z
0
x y z
(c)
这里q为薄板单位面积 内的横向荷载。:
如体力分量FZ及下表面上的 面力不等于零,对簿板来说, 可以归入板上表面的面力, 这样处理只会影响次要应力 σz,于是板上、下表面的 静力边界条件为:
z x z h 0
2
z y z h 0 2
y y 2w 2z
xy 2 x 2 w yz
(5-2)
x
u x
v y y
z
w z
0
xy
v x
u y
yz
w y
v z
0
xz
u z
w x
0
由此可见,应变分量εx,εy,γxy也是沿板厚呈线性分布, 在中面为零,在上、下板面处达极值。
二、薄板中的应力分量表示式
• 根据上述的第一个和第二个假设,物理
h
Mx
2 h
z
xdz
2
h
My
2 h
z
ydz
2
h
Mxy
2 h
z
xydz
2
阴影微分面单位宽度上的正应力和 切应力的主矢量分别为σxdz,σydz 和τxy=τyxdz。由于σx,σy,τxy=τyx沿 板厚按线性规律分布,以及分布的 反对特性,所以,它们在板的全厚 度上的主矢量为零。
基尔霍夫假设
• (1)直法线假设 • (2)σz引起的变形略去不计 • (3)中面内各点只有垂直位移w
基尔霍夫假设
• (1)变形前垂直于薄板中面的直线段(法 线)在变形后仍保持为直线,并垂直于变 形后的中面,且其长度不变,称为直法线 假设,它与材料力学中梁弯曲问题的平面 假设相似。若将板中面作为xOy坐标面,z 轴垂直向下,则根据此假设,有εz=0和 γxz=γyz=0。
式(5-4)就是切应力τxz和τyz与挠度w的关系 式,它们表明,剪应力τxz和τyz沿板厚方向呈抛物 线分布,在中面处达最大值,这也与梁弯曲时剪应 力沿梁高方向的变化规律相同。
σz沿板厚呈三次抛物线规律分布(图5-2)。
三、薄板横截面上的内力表示式
• 下面要建 立这些合 成内力与 挠度之间 的关系。
基尔霍夫假设
• (以2略)去与不σ计x,。σy , τxy等相比,σz很小,在计算变形时可 • (3)薄板中面内各点只有垂直位移w而无x方向和y方
向的位移,即 • (u)z=0=0,(v)z=0=0,(w)z=0=w(x,y)
• 根即据在这中个面假内设无,应中变面发内生的。应中变面分内量的εx位,移εy和函γ数xy均w(等x于,y零), 称为挠度函数。
0
u-zw x
-zvw (5-1)
y
u-zw x
-vzw (5-1) y
式(5-1)表示,薄板内坐标为(x,y,z) 的任一点,分别在x和y方向的位移沿板厚 方向呈线性分布,中面处位移为零,在上、 下表面处位移最大。
利用式(a)的第一、第二和第四式, 得应变分量的表示式
x x 2w 2z
• 一、薄板中的位移分量和应变分量的表示式 • 二、薄板中的应力分量表示式 • 三、薄板横截面上的内力表示式
一、薄板中的位移分量和应变分量的表示式
根据上述第一假设,由几何方程知(a)式
x
u x
成立.
由式(a)的第三式可知,在板内所有的点,
y
v y
位板内移各分点量的w只位是移x分和量y的w沿函厚数度而方与向z无是关相,同的故。 z
方程简化为
x
E
1 2
x
y
y
E 1 2
y
x
xy
E
2 1
xy
x
Ez 1
2
2w x2
2w y 2
y
Ez 1
2
2w y2
2w x 2
xy
Ez 1
2w xy
(5-3)
这是薄板小挠度弯曲时,主要应力σx,σy和τxy与挠度w的关 系式。可见它们沿板的厚度也是呈线性分布,其在中面上为零, 在上、下板面处达到极值。
下面将通过引入这样的近似假设,建立薄板弯
曲问题的基本方程和基本关系式以及各种支承
情况下的边界条件,并讨论几种常用的薄板弯
曲问题。
第五章 薄板的小挠度弯曲
• §5-1 基本概念与计算假定 • §5-2 薄板内力 • §5-3 薄板弯曲的基本方程 • §5-4 边界条件 • §5-5 四 边 简 支 矩 形 薄 板 的 重 三 角 级 数 解
(Navier解) • §5-6 矩形薄板的三角级数解(Levy解) • §5-7 圆形薄板的弯曲
§5-1 基本概念与计算假定
• 板 、板面、板边 、板厚 • 薄膜 • 薄板:当板厚与板面内
最小特征尺寸之比在 1/80~1/5之间时 • 厚板 • 挠度 • 小挠度问题:挠度与板 厚之比小于或等于1/5 • 大挠度问题
次要应力分量
• 按假设,σz,τxz和τyz应为零,实际上, 它们只是远小于σx,σy和τxy的次要的 应力分量,对于它们所引起的变形可略 去不计,但对于维持平衡,它们不能不 计。为了求得它们,现考虑不计体力的 平衡微分方程:
x x
yx y
zx z
0
xy x
y y
zy z