(完整版)高分子物理详细重点总结
高分子物理1-4资料整理

第一章高分子的链结构一、名词解释1、高分子链结构:单个高分子的结构和形态。
高分子的聚集态结构:高分子凝聚在一起形成的高分子材料本体的内部结构。
2、近程结构:是构成高分子的最基本微观结构,包括其组成和构型。
远程结构:大分子链的构象,即空间结构,以及链的柔顺性等。
3、链段:高分子链可看作是由多个包含i个键的段落自由连接组成,这种段落称为链段。
链节:重复单元4、静态链柔性:高分子链处于热力学稳定状态时的蜷曲程度。
动态链柔性:高分子链从一种平衡构象状态转变到另一种平衡构象状态的难易程度。
5、均方末端距:线形高分子链的一端到另一端的直线距离,以h表示,h2即为均方末端距。
均方回转半径:旋转半径的平方值的平均。
(旋转半径——支化大分子链的质量中心到各个链段的质量中心的距离,是向量。
)6、自由结合链:键长l固定,键角Φ固定,内旋转自由的理想化的模型。
(键角不固定,同时不考虑内旋转位垒障碍)自由旋转链:假定链中每一个键都可以在键角所允许的方向自由转动,不考虑空间位阻对转动的影响。
(键角固定,同时不考虑内旋转位垒障碍)等效自由结合链:将真实大分子链中的链段等同于自由结合链中的化学键,这种由ne个链段组成的高分子链就是一个自由结合链。
高斯链:等效自由结合链的链段分布符合高斯分布函数的高分子链。
7、刚性因子(又称空间位阻参数,刚性比值):为实测的无扰均方末端距与自由旋转链的均方末端距比值的平方根。
分子无扰尺寸:在θ条件下测得的高分子尺寸称为无扰尺寸。
(单位分子量均方末端距的平方根)等效链段长度:以等效自由结合链描述分子尺寸。
特征比:无扰链与自由链接链均方末端距的比值。
二、名词解释1、P12、P33、LDPE是低密度聚乙烯,又叫高压聚乙烯,是高压状态下自由基聚合得到的。
HDPE是高密度聚乙烯,又叫低压聚乙烯。
相比LDPE,密度大,强度高,硬度好。
LLDPE是线性低密度聚乙烯,线性低密度聚乙烯在结构上不同于一般的低密度聚乙烯,因为不存在长支链。
(完整版)高分子物理重要知识点

高分子物理重要知识点第一章高分子链的结构1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。
英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。
前者又可译作聚合物或高聚物;后者又可译作大分子。
这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。
与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。
(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。
高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。
此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。
1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价键相连:不易水解(2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性(4)梯形和螺旋形高分子:具有高热稳定性由单体通过聚合反应连接而成的链状分子,称为高分子链。
高分子物理重要知识点

高分子物理重要知识点(1人评价)|95人阅读|8次下载|举报文档高分子物理重要知识点(1人评价)|96人阅读|8次下载|举报文档1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。
英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。
前者又可译作聚合物或高聚物;后者又可译作大分子。
这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。
与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。
(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。
高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。
高分子物理复习重点

高分子物理复习重点第一章高分子的链结构高分子物理的研究内容(结构—性能)高分子链的结构层次构型、构造、构象、链段定义、柔顺性及影响因素、链柔性的定量表示方法第二章高分子凝聚态结构单晶、球晶形成条件,在偏光显微镜及电镜照片中的特征;球晶对力学性能的影响及控制方法、结晶度对聚合物性能的影响;按液晶态的形成条件对液晶分类;液晶基元的结构;液晶晶型分类及特点、液晶构造、液晶织构形成的原因、种类及意义;聚合物的取向结构的定义、结构特征和性能,高分子合金及体系分类、高分子合金的相容性的判别第三章高分子溶液聚合物溶解需要考虑哪些因素(定性、定量)?或溶剂对聚合物溶解能力的判定;利用X1、A2、Δμ1E及θ温度判定高分子在溶剂中所处的状态(良溶剂、劣溶剂、析出);聚合物溶剂的选择方法;Θ溶液(溶剂、温度条件)第四章聚合物的分子量与分子量分布粘度的五种表表示方法(含单位);采用毛细管粘度计测定分子量的原理方法,采用凝胶渗透色谱法测定分子量分布的原理(体积排除理论)第五章高分子分子运动和转变掌握非晶态聚合物、交联聚合物、晶态聚合物的热机械曲线特征,并能绘制并标出黏弹行为的五个区域(指温度-形变曲线(即热机械曲线)的划分(含T g、T f标注),及分子量大小对曲线影响。
了解塑料、橡胶、纤维的使用上限、下限温度;掌握Tg转变温度的测定方法(膨胀计法、量热法与温度形变法);软化温度的定义及表示方法;玻璃化转变理论—等自由体积理论;影响玻璃化转变温度的因素;影响结晶能力的因素;影响熔点的因素;了解高分子熔点与小分子熔点的区别及测定熔点的方法;第六章橡胶弹性橡胶高弹性的本质、具有橡胶弹性的条件、应力、应变、模量、柔量、泊松比之间的关系,常见材料的泊松比(如橡胶)、热塑性弹性体定义。
第七章聚合物的粘弹性虎克定律、牛顿流动定律、高聚物粘弹性定义、粘弹性分类、应力松弛、蠕变(定义及形变包含几种类型)、滞后、力学损耗;交联聚合物与线型聚合物的应力松弛曲线和蠕变曲线;掌握Maxwell 运动方程和Kelvin运动方程的推导,掌握可模拟哪类聚合物,不模拟哪类聚合物,掌握粘弹性的时温等效原理及意义。
高分子物理复习总结

t1 / 2
ln 2 0.693 kd kd
❁用于引发聚合的引发剂占所消耗的引发剂总量的分率称 为引发剂效率,用 f 表示。 ❁当体系中引发剂浓度较低时,引发剂分子处于单体或溶 剂的包围中而不能发挥作用,称为笼蔽效应。 ❁当转化率达15 %~20%以后,聚合速率快速上升的现象 称为自动加速现象。 ❁由一种单体进行的聚合,称为均聚。产物称为均聚物。 由两种或两种以上单体共同参与的聚合反应,称为共聚合 。产物含有两种或两种以上单体单元,称为共聚物。 ❁竟聚率是单体自身增长(均聚)和交叉增长(共聚)的 速率常数的比值
指出高聚物的晶态和取向态的差别: (小分子晶体结晶完全,成为晶体)高聚物由于分子量大,体系粘度大,活 动迟缓,虽然某高聚物可次结晶,但结晶很不完善,总是晶区伴随着非晶区。这 种晶区和非晶区共存的宏观凝聚体叫晶态。高聚物在外力作用下大分子链或链段 沿外力方向有序排列,这样的聚集态为取向态,通常为单轴取向和双轴取向。 eg: fiber是单轴取向 薄膜为双轴取向。 说明:结晶和取向不同。结晶是分子链紧密堆积,体系能力最低的热力学 稳定体系,晶体中分子间排列为三维有序。取向是熵减少的非稳定体系,只有一 维或二维有序。
在橡胶下悬一砝码,保持外界不变,升温时会发生什么现象?
解:橡胶在张力(拉力)的作用下产生形变,主要是熵变化,即蜷曲的大分子链 在张力的作用下变得伸展,构象数减少。熵减少是不稳定的状态,当加热时,有
利于单键的内旋转,使之因构象数增加而卷曲,所以在保持外界不变时,升温会
发生回缩现象。
将熔融态的PE,PET和PS淬冷到室温,PE是半透明的而PET和PS是透明的为什么?
远程结构包括分子的大小与形态、链的柔顺性及分子在各种环境中所采取的构象。
远程结构又称二级结构。
高分子物理知识点

高分子物理知识点高分子物理是研究聚合物分子在物理场中的行为和性质的学科。
聚合物是由一些单体分子通过化学键结合而成的巨大分子,其分子量多数达到百万或以上。
高分子物理的研究范围主要包括聚合物的物理结构、热力学性质、电学性质、机械性质、输运性质、光学性质等方面。
一、聚合物的物理结构聚合物的物理结构是指聚合物高分子链的构象状态。
聚合物高分子链的构象状态受到其化学结构、聚合反应的条件、处理温度等多种因素的影响。
根据高分子链形态的不同,可将聚合物的物理结构分为直线型、支化型和交联型。
1. 直线型聚合物物理结构直线型聚合物是高分子链结构较为简单、规则的聚合物。
它通常由一根直线型链构成,其中的结构单元重复出现,链端没有分支或交联结构。
高分子的线密度、分子量和分子结构对其物理性质有很大的影响。
2. 支化型聚合物物理结构支化型聚合物指非直线型、分子链有分支结构的聚合物。
分支结构对于聚合物的物理性质有很大的影响,由于支化结构的存在,使得聚合物高分子链的平均距离更大,聚合物的分子间距离变大,导致其性能发生变化。
支化型聚合物化学结构和分支类型的不同,会对聚合物的物理性质产生巨大的影响。
3. 交联型聚合物物理结构交联型聚合物是由互相交联的高分子链构成的聚合物。
它们通常具有三维结构,分子间有交联点连接。
交联型聚合物的物理性质比支化型聚合物更为复杂。
不同交联密度、交联桥、交联方式等会对其物理性质产生很大的影响。
二、热力学性质聚合物的热力学性质主要包括相变、热力学函数、相平衡、玻璃化转变等方面。
1. 相变相变是指物质从一个物理状态到另一个物理状态的变化。
聚合物相变通常指聚合物高分子间和高分子和外界环境间的相变。
聚合物的相变通常与聚合物的物理结构、温度和压强等相关。
2. 热力学函数热力学函数是描述物质宏观性质的基本物理量,它包括熵、焓、自由能等,具体热力学函数的选择取决于所研究的问题和体系。
3. 相平衡聚合物在不同温度和压强下处于不同的相态平衡中,可以通过研究相平衡来揭示聚合物的热力学性质。
高分子物理重点

高分子物理重点1、结晶度、晶粒尺寸、片晶厚度⑴结晶度:试样中结晶部分所占的质量分数或者体积分数。
⑵测定方法:(测试方法不同,结晶度也不同)①密度法:依据是分子链在晶区规整堆砌,故晶区密度大于非晶区密度ρc>ρa。
试样密度可用密度梯度管进行实测,晶区和非晶区的密度分别认为是聚合物完全结晶和完全非结晶时的密度。
完全结晶的密度即晶胞密度。
完全非结晶的密度可以从熔体的比体积-温度曲线外推到被测温度求得,也可以把熔体淬火,以获得完全非结晶的试样后进行实测。
②X-射线分析法:测定晶态聚合物结晶度的依据是总的相干散射强度等于晶区和非晶区相干散射强度之和。
③量热法:根据聚合物熔融过程中的热效应来测定结晶度的方法。
(=聚合物试样的熔融热/100%结晶试样的熔融热)当温度在聚合物的熔点和玻璃化温度之间,结晶聚合物的非晶区处于橡胶弹性平台区。
此时,结晶度高,材料拉伸强度、模量、硬度高,断裂伸长率减小,冲击强度稍有下降。
而温度在Tg以下时,结晶聚合物的非晶区处于玻璃态区,结晶度增加,材料脆性增大。
两相并存的晶态聚合物通常呈乳白色、不透明。
当结晶度减小时,透明度增加。
此外,结晶度达40%以上的晶态聚合物,其最高使用温度是结晶熔点Tm,热性能优于非晶聚合物或轻度结晶的聚合物。
结晶度高低还影响材料的耐溶剂性,气体、蒸气或液体的渗透性,化学反应活性等。
⑶晶粒尺寸:(利用X射线衍射曲线测定)⑷片晶厚度l:定义为长周期内结晶部分的厚度,l=l’ X c。
长周期l’是晶态聚合物中,相邻片晶中心的间距,包括结晶部分和非晶部分。
Xc是试样的结晶度。
2、聚合物的取向结构⑴概念:高分子的取向是指在外力(拉伸、牵引、挤出)作用下,其大分子链、链段或结晶高分子中的晶体结构沿外力作用方向择优排列的结构。
⑵取向机理:①非晶态聚合物:取向条件(温度、拉伸速度等)不同其取向单元也不同。
在适当温度时,拉伸可以链段取向,即链段沿外场方向平行排列,但整个分子链的排列仍然是杂乱的。
高分子物理考试重点

高分子物理考试重点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高分子物理考试重点一、名词解释:等效自由连接链:若干个键组成的一链段算作一个独立的单元,称之为“链段”,链段间自由结合,无规取向,这种链的均方末端距与自由连接链的计算方式等效。
高分子θ溶液:Avrami 方程: 用数学方程描述聚合物等温结晶过程。
测定结晶度随时间的变化,这种方法测定的是结晶总速率(包括成核速率和生长速率)。
通常用膨胀计法,由于结晶时有序排列而体积收缩,若比容在时间为0,t 和∞时分别为V 0,V t 和V ∞,则结晶过程可用Avrami 方程描述:(V t -V ∞)/(V 0-V ∞)=()t n k W o W L -=exp 通过双对数作图,从斜率求n ,从截距求k ,n 称Avrami 指数,n=生长的空间维数+时间维数,异相成核的时间为0,均相成核为1,。
k 用来表征结晶速率,k 越大,结晶速率越快。
平衡熔点:熵弹性: 理想高弹性等温形变过程,只引起熵变,对内部保持不变,即只有熵的变化对理想高弹性的弹性有贡献,这种弹性称为熵弹性。
粘弹性:是材料对外界作用力的不同响应情况。
对于聚合物,其力学性质可同时兼有不可回复的永久形变和可回复的弹性形变,介于理想弹性体和理想粘性体之间,形变与时间有关,但不是线性关系。
此性质就是粘弹性。
力学损耗: 聚合物在应力作用下,形变的变化落后于应力的变化,发生滞后现象,每一个循环变化中就要消耗功,这个功就是力学损耗。
滞后现象: 一定温度与循环(交变)应力作用下,试样应变滞后于应力变化的现象。
Boltzmann叠加原理:对于聚合物材料的蠕变过程,形变是整个负荷历史的函数,每一次阶跃式加负荷对以后应变的贡献是独立的,最终形变等于各个所加负荷所贡献的形变的加和。
时温等效原理:升高温度和延长观察时间对分子运动是等效的,对于聚合物的粘弹性行为也是等效的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释:1.时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间2.松弛时间τ:橡皮由ΔX(t)恢复到ΔX(0)的1/e时所需的时间3.松弛时间谱:松弛过程与高聚物的相对分子质量有关,而高聚物存在一定的分子量分布,因此其松弛时间不是一个定值,而呈现一定的分布。
4.时温等效原理:升高温度或者延长观察时间(外力作用时间)对于聚合物的分子运动是等效的,对于观察同一个松弛过程也是等效的。
5.模量:材料受力时,应力与应变的比值6.玻璃化温度:为模量下降最大处的温度。
7.自由体积:任何分子的转变都需要有一个自由活动的空间,高分子链活动的空间8.自由体积分数(f):自由体积与总体积之比。
9.自由体积理论:当自由体积分数为2.5%时,它不能够再容纳链段的运动,链段运动的冻结导致玻璃化转变发生。
10.物理老化:聚合物的某些性质随时间而变化的现象11.化学老化:聚合物由于光、热等作用下发生的老化12.外增塑:添加某些低分子组分使聚合物T g下降的现象13.次级转变或多重转变:Tg以下,链段运动被冻结,存在需要能量小的小尺寸运动单元的运动14.结晶速率:物品结晶过程进行到一半所需要时间的倒数15.结晶成核剂:能促进结晶的杂质在结晶过程中起到晶核的作用16.熔融:物质从结晶态转变为液态的过程17.熔限:结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围18.熔融熵 S m:熔融前后分子混乱程度的变化19.橡胶: 施加外力时发生大的形变,外力除去后可以恢复的弹性材料20.应变: 材料受到外力作用而所处的条件使其不能产生惯性移动时,它的几何形状和尺寸将发生变化21.附加应力:可以抵抗外力的力22.泊松比:拉伸实验中材料横向应变与纵向应变比值的负数23.热塑性弹性体:兼有橡胶和塑料两者的特性,在常温下显示高弹,高温下又能塑化成型24.力学松弛:聚合物的各种性能表现出对时间的依赖性25.蠕变:在一定的温度下和较小恒应力的持续作用下,材料应变随时间的增加而增大的现象26.应力松驰:在恒定温度和形变保持不变条件下,聚合物内部应力随时间的增加而逐渐衰减的现象27.滞后:聚合物在交变应力作用下形变落后于应力变化的现象28.力学损耗或者内耗:单位体积橡胶经过一个拉伸~回缩循环后所消耗的功29.储存模量E’:同相位的应力与应变的比值30.损耗模量E”:相差90度相位的应力振幅与应变振幅的比值31.Boltzmann叠加原理:聚合物的力学松弛行为是其整个历史上各松弛过程的线性加和32.应变软化:随应变增大,应力不再增加反而有所下降33.银纹屈服:聚合物受到张应力作用后,由于应力集中产生分子链局部取向和塑性变形,在材料表面或内部垂直于应力方向上形成的长100、宽10、厚为1微米左右的微细凹槽或裂纹的现象34. 裂纹:由于分子链断裂而在材料内部形成的空隙,不具有强度,也不能恢复。
35. 应力银纹——当应力达到临界应力值后在聚合物材料内部引发形成的银纹36. 环境银纹——在环境和应力的共同作用下,在远低于临界应力值时在聚合物材料内部引发形成的银纹37. 剪切屈服:拉伸韧性聚合物材料到达屈服点时,试样在与拉伸方向成450角的方向上出现剪切滑移变形38. 脆性断裂:在屈服之前发生,断面平滑,断裂能很小。
39. 韧性断裂:在屈服之后发生,断面粗糙,断裂能很大。
40. 牛顿流体:凡流动行为符合牛顿流动定律的流体41. 非牛顿流体:凡流动行为不符合牛顿流动定律的流体 42. 表观黏度:随切变速率或切应力变化而变化的某一点的切应力与切应变比值 43. 熔融指数 MI :指在一定的温度下和规定负荷下(2160g ),10min 内从规定直径和长度的标准毛细管内流出的聚合物的熔体的质量44. 巴拉斯效应:熔体挤出模孔后,挤出物的截面积比模孔的截面积大的现象填空题:1. 结构是决定分子运动的内在条件,性能是分子运动的宏观表现2. 玻璃化转变实质是:链段运动的松弛过程,熔融转变的实质是整链运动的热力学相变3. 高分子运动特点:分子运动的多样性,多重性,温度,时间依赖性4. 高分子的热运动:高分子链的整体运动,链段运动,链节、支链、侧基的运动,晶区的分子运动5. 整个大分子链称作大尺寸运动单元,链段及链段以下的运动单元称作小尺寸运动单元6. 时间依赖性原因:整个分子链,链段,链节等运动单元需要克服内摩擦阻力,是不可能瞬时完成的7. 温度越高,松弛时间越短8. WLF 半经验方程:9. 模量越大,刚性越大10. 粘弹行为的五个区域:1) 玻璃态区:特点: 聚合物类似玻璃,脆性。
分子运动主要限于振动和短程的旋转运动。
2) 玻璃-橡胶转变区:模量下降与皮革相似。
此区域为远程、协同分子运动的开始3) 橡胶-弹性平台区:特点: 模量在此区域几乎恒定,分子间物理缠结,呈现远程橡胶弹性。
分子量越高,平台越长。
4) 橡胶流动区:聚合物既呈现橡胶弹性,又呈现流动性。
试验时间短,物理缠结来不及松弛,材料仍表现橡胶行为;试验时间增加,温度升高,产生解缠作用,导致整个高分子产生流动。
5) 液体流动区:聚合物容易流动,类似糖浆,热运动能量足以使分子链解缠蠕动,这种流动是作为链段运动结果的整链运动。
11. Tg 测量方法:(1)膨胀计法 (2)量热法 (3)温度一形变法和热机械法(4) 动态力学热分析 (DMTA) (5) 核磁共振法-NMR (6)介电松弛法12. 液体或固体物质,其体积由两部分组成:一部分占有体积另一部分是自由体积13. 影响Tg 的因素:内因:分子链的柔顺性,几何立构,分子间的作用力aηγτ=•/外因:作用力的方式、大小以及实验速率(1)主链柔性:柔性越好,Tg越低(2)侧基体积越大,Tg 升高(特例:聚甲基丙烯酸酯类)(3)对称性取代基使极性部分相互抵消,柔性增加,Tg 下降(4)全同Tg < 间同Tg,顺式Tg < 反式Tg(5)T g随分子量增加而升高(6)链间相互作用越高,Tg越高(7)作用力越高,Tg越高(8)冷却速度愈快,Tg愈高14.改变Tg 的各种手段:增塑,共聚,改变分子量,交联和支化,结晶15.增塑剂要求:具有相容性好,挥发性低,无毒16.共聚作用在降低熔点更有效,而增塑作用在降低玻璃化温度更有效17.结晶性聚合物在Tm冷却到Tg的任何温度都可以结晶18.聚合物结晶过程能否进行,必须具备两个条件:1.聚合物的分子结构与分子链对称性和规整性2、适宜的温度和充分的时间19.影响结晶能力的因素:柔性越差,支化越多,交联越多,分子作用力越大,氢键越少,分子结晶能力越差20.聚合物的结晶过程包含成核(均相和异相)和增长两个阶段21.结晶速度的测定方法:1. 直接观察,2.DSC 3. 膨胀计法22.阿费拉米方程Avrami Equation:23.结晶速度的影响因素:1.温度–最大结晶温度低温有利晶核的形成,高温有利晶体的生长2.压力、溶剂、杂质压力可以加速结晶,小分子溶剂可以加速结晶,加入杂质可使聚合物熔点降低3.分子量分子量分子量小,结晶速度快24.影响Tm的因素:1.分子间作用力大,∆H m高→T m越高2.分子链越刚性,∆S m越小→T m越高。
3.侧基体积增加,熔点升高4. 分子链对称性和规整性,有较高的熔点5.加入稀释剂,如增塑剂或溶剂,也能使熔点降低6. 结晶温度Tc低,熔限宽,熔点低7. 应力和压力高,熔点升高8.片晶厚度增加,熔点升高25.高分子材料力学性能的最大特点:高弹性和粘弹性26.高弹性是一种熵弹性,熵越小,回弹越慢27.具有橡胶弹性的条件:长链,交联,足够柔性28.橡胶高弹性特点:●形变量大●形变可恢复●弹性模量小且随温度升高而增大●形变有热效应.橡胶拉伸温度升高29.橡胶状态方程:●●●30.橡胶弹性影响因素:1.交联效应(防止永久变形,熵增加)2.溶胀效应(模量下降)31.32.蠕变发展与温度的关系:1.玻璃化温度以下——链段运动松弛时间很长,ε2很小;材料本体粘度很大,ε3很小;因此蠕变主要由普弹形变构成,蠕变量很小。
2.玻璃化温度以上——链段运动的松弛时间变短,导致ε2 较大;材料的本体粘度η3仍很大,ε3 较小;蠕变主要由ε2构成,夹杂着少量ε3。
3.聚合物流动温度——松弛时间和本体粘度都很小,但由于ε3 随时间的发展而发展,导致总形变不断发展——粘性流动。
33.观察蠕变最适宜的温度范围是在聚合物的Tg温度以上不远处34.只有在Tg温度附近几十度的范围内,应力松弛现象才比较明显35.在链段能够运动的前提下,链段运动的阻力越大,应变落后于应力就越严重,δ越大36.影响滞后的因素:1.聚合物的链结构(柔性链聚合物的滞后现象比较严重)2.外力作用频率(若外力作用频率ν太高滞后现象比较轻微)3.温度(温度太高无滞后现象)37.内耗对橡胶使用性能的影响1)内耗大的材料有利于吸收能量,并将能量转变为热能释放。
可以用做减震阻尼材料,用来消声减震。
2)内耗大的材料回弹性很差,不适宜用做车辆轮胎。
38.Maxwell 模型:弹簧和粘壶串联,可以表征线型聚合物的应力松弛行为Kelvin模型:弹簧和粘壶并联,可以描述交联聚合物的蠕变行为三参数模型:弹簧和一个Kelvin模型串联,可以完整地表征交联聚合物的各种粘弹性行为四参数模型:弹簧、粘壶和一个Kelvin模型串联而成,可以比较好地表征线型聚合物的粘弹性行为39.应力—应变曲线分析:1)弹性形变:该阶段从开始拉伸到接近屈服点Y,应力与应变成正比,符合胡克定律2)强迫高弹形变:当应力到达Y点后材料发生了屈服,试样截面出现细颈如果此时停止拉伸、去除外力,试样的大形变不能回复3)应变硬化:大量的链段开始运动并沿外力方向取向,当应力达到了材料的强度极限时,试样发生断裂,是不可逆形变40.影响强迫高弹性的因素:1)温度:随温度升高,聚合物弹性模量减小,塑料变软变韧,屈服应力随温度的降低而增大,断裂应力也随温度的降低而增大,屈服应力增加较快2)拉伸速度:随拉伸速率提高,聚合物材料的模量增加,屈服应力增大,而断裂伸长率减小3)分子结构:分子链柔性好的聚合物不容易在玻璃态下发生强迫高弹形变,而刚性链聚合物却相对容易发生强迫高弹形变41.晶态聚合物拉伸与玻璃态聚合物拉伸的比较1)相似性——都是先经过“弹性变形”,然后出现“强迫高弹”,发展大形变,最后再发生“应变硬化”。
2)不一致性——玻璃态高聚物的强迫高弹形变发生在Tb~Tg温度范围,只发生了链段的运动和取向;晶态高聚物的强迫高弹发生在Tg~Tm之间,拉伸过程中除了链段的运动和分子链的取向外,还包含了结晶结构的破坏、晶片的滑移、取向、以及再结晶过程。
42.43.聚合物可以产生两种形式屈服:银纹屈服和剪切屈服44.银纹的特点:1.具有可逆性——当温度升高(T>Tg)时,取向分子发生解取向,银纹消失。