浙江省2018浙教版七年级上数学期末试题及解析

合集下载

【七年级数学】2018学年七年级数学上期末试卷(带答案)

【七年级数学】2018学年七年级数学上期末试卷(带答案)

2018学年七年级数学上期末试卷(带答案)
2018学年浙江省杭州市西湖区七年级(上)期末数学试卷
参考答案与试题解析
一.仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法选取正确答案.
1.下列四个数中,结果为负数的是()
A.﹣(﹣) B. |﹣ | c.(﹣)2 D.﹣|﹣ |
考点正数和负数.
分析根据相反数,可判断A,根据负数的绝对值,可判断B,根据负数的偶次幂是正数,可判断c,根据绝对值的相反数,可判断D.解答解A、﹣(﹣)= >0,故A错误;
B、|﹣ |= >0,故B错误;
c、(﹣)2= >0,故c错误;
D、﹣|﹣ |=﹣<0,故D正确;
故选D.
点评本题考查了正数和负数,小于零的数是负数,先化简再判断负数.
2.下列计算正确的是()
A. B. =﹣2 c. D.(﹣2)3×(﹣3)2=72
考点实数的运算.
分析 A、根据算术平方根的定义即可判定;
B、根据立方根的定义即可判定;
c、根据立方根的定义即可判定;
D、根据乘方运算法则计算即可判定.。

七年级数学试题-浙教版初中数学七年级上册期末测试题 最新

七年级数学试题-浙教版初中数学七年级上册期末测试题 最新

2018学年第一学期期末素质测试七年级数学试题卷考生须知:1.全卷共三大题,24小题,满分为120分. 考试时间为100分钟,本次考试采用闭卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答. 卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应的位置上.3.本次考试不得使用计算器.卷 Ⅰ一、选择题(本题有10小题,每小题3分,共30分) 1.2的绝对值是………………………………………………………………………………………………………( ▲ )A.2B.-2C.12D.-122.“汽车的雨刷把玻璃上的雨水刷干净”这一实际应用是属于 …………………………………………………( ▲ ) A. 点动成线B. 线动成面 C . 面动成体D. 以上答案都不对 3.下面合并同类项正确的是………………………………………………………………………………………( ▲ ) A .3x +3y =6xy B .7x 2-5x 2 =2C .4+5ab =9abD . 2 m 2n -m 2 n = m 2 n4. 中俄原油管道于2018年1月1日正式启用,首日输送4.2万吨,年输送1500万吨.年输油量1500万吨用科学记数法表示正确的是……………………………………………………………………………………………( ▲ ) A. 1.5×118万吨B.1.5×118 万吨C. 15×118万吨D. 0.15×10 4万吨5.锐角50°的余角是 ………………………………………………………………………………………………( ▲ ) A .40°B. 50°C. 130°D.150°6.下列各题正确的是………………………………………………………………………………………………( ▲ )A. 由7x =4x -3移项得7x -4x =3B. 由2x -13 =1+x -32 去分母得2(2x -1)=1+3(x -3)C .由2(2 x -1) -5(x -3)=1 去括号得 4 x -2 -5 x -15=1D .由2(x +1)= x +7去括号、 移项、合并同类项得x =5 7. 数轴上的点与下列各数中一 一对应的数是……………………………………( ▲ )A .整数B .有理数C .无理数D .实数8.下列说法正确的是………………………………………………………………………………………………( ▲ ) A. 0.920有两个有效数字 B. 3.6万精确到十分位C. 5.188×118精确到百位D. 5000有一个有效数字9. 晓明周末回家喜欢看21︰20播放的浙江卫视“我爱记歌词”节目,这时钟面上时针与分针较小的夹角的度数为…………………………………………………………………………………………………………………( ▲ )A .145°B .150°C .160°D . 200°10.随着经济的发展,人们的生活水平不断提高.下图分别是某景点2018—2018年游客总数和旅游收入年增长率统计图.已知该景点2018年旅游收入4500万元.下列说法中,其中正确的个数是…………………………………………………………………………………( ▲ ) ① 三年中该景点2018年旅游收入最高② 游客人数逐年增加,但旅游收入先增后减③ 与2018年相比,该景点2018年的旅游收入增加[4500×(1+29%)-4500×(1-33%)]万元④ 若按2018年游客人数的年增长率计算,2018年该景点游客总人数将达到280×(1+280-255255 )万人次A . 3B . 2C .1D . 0卷 Ⅱ二、填空题 (本题有6小题每小题4分,共24分) 11. - 12的倒数是 ▲ , 16 = ▲ ;12. 多项式-5+12xy -x 3y 是 ▲ 次 ▲ 项 式;13. 下列实数227,π,-3.14159,3-8 , 6 ,1.212212221……(两个1之间依次多一个2)中,无理数有 ▲ 个;14. 甲、乙两人从A 城去B 城,甲步行每小时走5千米,乙骑车每小时比甲多走7千米.甲出发1小时后乙出发,恰好两人同时到达B 城.则A ,B 两城之间的距离为 ▲ 千米;15.已知点C 是线段AB 的三等分点,D 是线段CB 的中点,且CD =2cm ,线段AB 的长度_ ▲ cm ;16.如图,按下面的程序计算,若输入的数为40,则输出的结果为122.要使输出结果为149,则输入的正数x 的所有值是___ ▲ ____ .三、解答题(本题有8小题,共66分. 其中第17~19每题6分、20~21每题8分、22~23每题10分, 第24题12分) 17. (本题6分)计算:(-20)+9×(-1)-14 18.(本题6分)解方程: 5278x x -=+.19. (本题6分)化简与求值:⑴ 若3m =-,则代数式2113m +的值为 ▲ ;⑵ 若3m n +=-,则代数式2()13m n ++的值为 ▲ ; ⑶ 若534m n -=-,则代数式2()4(2)2m n m n -+-+的值为 ▲ . 20. (本题8分)下图是用棋子摆成的“H”字.① ② ③输出结果是 第16题(1)摆成第一个“H”字需要 ▲ 个棋子;摆第x 个“H” 字需要的棋子数可用含x 的代数式表示为 ▲ ;(2)问第几个“H” 字棋子数量正好是2018个棋子? 21.(本题8分)(1)若学生A的得分是52分,则班级平均分为 ▲ 分;(2)学生A ~H 中,得分最高的学生,比得分最低的学生多得 ▲ 分; (3)求班级平均分比学生A ~H 的平均分高几分? 22.(本题10分)为丰富学生的课余生活,陶冶学生的情趣和爱好,某区各个学校开展了学生社团活动.为了解学生分类参加情况,对某校七年级学生社团活动进行了抽样调查,制作出如根据上述统计图,完成以下问题:(1)这次共调查了 ▲ 名学生;在扇形统计图中,表示“书法类”所在扇形的圆心角是 ▲ 度;(2)请把统计图1补充完整;(3)若七年级共有学生700名,请估算有多少名学生参加文学类社团? 23. (本题10分)艺术类书法类 文学类社团分类图1图2寒假在即,某校初一(2)班学生组织大扫除:去图书馆的有26人,去实验室的有19人,另在教室有15人.现在要求去图书馆人数恰为去实验室人数的2倍.(1)若在教室的学生全部调往图书馆与实验室,求调去图书馆的学生有几人?(2)若先从教室抽走4人去打扫老师的办公室,再将剩下的学生全部调往图书馆与实验室,这时调配能否满足题中条件?若能,求出调往图书馆的学生人数;若不能,请说明理由.24. (本题12分)七(1)班同学上数学活动课,他们对一个角的平分线作如下研究(如图).他们先用角尺做了平分这个角的方案设计:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,若移动角尺使角尺两边相同刻度的点与M、N重合,即PM=PN,则过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,若将角尺的直角顶点P 介于射线OA、OB之间,移动角尺使角尺两边相同刻度的点与M、N重合,即PM=PN,则过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)是否可行?答:(填“行”或“不行”);(2)方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(3)在活动过程中,小明说:“若设∠AOB=错误!未找到引用源。

2018-2019学年最新浙教版数学七年级上学期期末模拟达标检测卷及答案解析-精编试题

2018-2019学年最新浙教版数学七年级上学期期末模拟达标检测卷及答案解析-精编试题

第一学期期末模拟考试七年级数学卷亲爱的同学:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分. 2.答题前,请在答题卷的左上角填写学校、班级、姓名和考试编号. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应.试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.杭州滨江区总人口是190000人,保留两个有效数字,用科学计数法表示为( ) A.2×105 人 B.2.0×106人 C. 1.9×105 人 D.1.90×10 5 人 2.在实数5,0.∙∙31,π3,71,0.211211121111……(每两个“2”之间依次多一个“1”),数的个数为( )A. 1个B. 2C. 3个D. 4个3.已知x =4是关于x 的方程3x+2a=0的一个解,则a 的值是( )A. – 6B. –3C. – 4D. –5 4.下列各组数中互为相反数的是( )A. –2与21-B. –5与-25C.- 3 与 327-D.|-6| 与-6 5.下列运算正确的是( )A.2222=-x xB. 2222555d c d c =+C.xy xy xy =-45D.532532m m m =+6. (1)延长射线OM ; (2)平角是一条射线;(3)线段、射线都是直线的一部分;(4)锐角一定小于它的余角;(5)大于直角的角是钝角;(6)一个锐角的补角与这个锐角的余角的差是90°; (7)相等的两个角是对顶角; (8)若∠A+∠B+∠C=180°,则这三个角互补;(9)互为邻补角的两个角的平分线互相垂直.以上说法正确的有( ) A .2个 B.3个 C.4个 D.5个)(中,是单项式的有下列代数式 ,3,1,,22,22,2,2.7πa yx a y x xy a a ++--A .2个 B.3个 C.4个 D.5个8. 全国使用“限塑令”于今年6月1日满一年,某报三名记者当日分别在杭州商业集团门口,同时采用问卷调查的方式,随机调查了一定数量的顾客,在“限塑令”实施前使用购物袋的情况.下面是三位记者根据汇总的数据绘制的统计图。

浙教版-学年度上学期七年级期末数学试题二(含解析)

浙教版-学年度上学期七年级期末数学试题二(含解析)

浙教版2018-2019学年七年级上期末数学试题二一.选择题(共12小题,2*12=24)1.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A.100g B.150g C.300g D.400g2.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×10123.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.两点的所有连线中,直线最短B.连接两点之间的线段,叫做这两点之间的距离C.锐角的补角一定是钝角D.一个角的补角一定大于这个角5.一个人从A点出发向北偏东60°的方向走到B点,再从B出发向南偏西15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.135°6.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.67.根据“x的3倍与5的和比x的多2”可列方程()A.3x+5=﹣2B.3x+5=+2C.3(x+5)=﹣2D.3(x+5)=+28.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm9.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF等于()A.130°B.120°C.110°D.100°10.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣11.a,b,c三个数在数轴上的位置如图所示,则这三个数中绝对值最大的是()A.a B.b C.c D.无法确定12.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0B.|b|<|c|C.|a|>|b|D.abc<0二.填空题(共6小题,3*6=18)13.﹣2和它的相反数之间的整数有个.14.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a=.15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.16.如果一个角的补角是150°,那么这个角的余角的度数是度.17.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是.18.若关于x的整式(8x2﹣6ax+14)﹣(8x2﹣6x+6)的值与x无关,则a的值是.三.解答题(共8小题,58分)19.(4分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.20.(6分)解方程:(1)x﹣7=10﹣4(x+0.5)(2)﹣=1.21.(6分)根据下列语句,画出图形.如图,已知四点A,B,C,D.①画直线AB;②连接线段AC、BD,相交于点O;③画射线AD,BC,交于点P.22.(7分)如图,已知直线AB与CD交于点O,OM⊥CD,OA平分∠MOE,且∠BOD=28°,求∠AOM,∠COE的度数.23.(7分)先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.24.(8分)列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?25.(10分)某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?26.(10分)如图,已知A、B、C是数轴上的三点,点C表示的数为7,BC=4,AB=16,动点P、Q分别从A、C同时出发,点P以每秒5个单位的速度沿数轴向右匀速运动,点Q以每秒2个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)点A表示的数为,点B表示的数为(2)当t<6时,求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.参考答案与试题解析一.选择题(共12小题)1.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A.100g B.150g C.300g D.400g【分析】根据“正”和“负”所表示的意义得出每袋大米的最多含量和最小含量,再两者相减即可得出答案.【解答】解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选:D.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,本题要注意单位不一致.2.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2098.7亿元用科学记数法表示是2.0987×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可判定选择项.【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.【点评】此题主要考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.本题中是有理数中的整数.4.下列说法正确的是()A.两点的所有连线中,直线最短B.连接两点之间的线段,叫做这两点之间的距离C.锐角的补角一定是钝角D.一个角的补角一定大于这个角【分析】根据两点之间,线段最短,连接两点的线段的长度叫做两点的距离,补角的定义,即可解答.【解答】解:A、两点之间的连线中,线段最短,错误;B.连接两点的线段的长度叫做两点的距离,错误;C.锐角的补角一定是钝角,正确;D.一个角的补角不一定大于这个角,例∠A=105°,它的补角为30°,故错误;故选:C.【点评】本题考查了余角和补角,解决本题的关键用举例法对D作出判断.5.一个人从A点出发向北偏东60°的方向走到B点,再从B出发向南偏西15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.135°【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:从图中发现∠ABC等于60°﹣15°=45°.故选C.【点评】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.6.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.6【分析】将a2+2a=3代入2a2+4a﹣3即可求出答案.【解答】解:当a2+2a=3时原式=2(a2+2a)﹣3=6﹣3=3故选:C.【点评】本题考查代数式求值,解题的关键是将原式进行适当的变形,本题属于基础题型.7.根据“x的3倍与5的和比x的多2”可列方程()A.3x+5=﹣2B.3x+5=+2C.3(x+5)=﹣2D.3(x+5)=+2【分析】根据题意可以列出相应的方程,本题得以解决.【解答】解:由题意可得,3x+5=,故选:B.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意列出相应的方程.8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm【分析】本题应考虑到A、B、C三点之间的位置关系的多种可能,即当点C在线段AB 上时和当点C在线段AB的延长线上时.【解答】解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5cm;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5cm.综合上述情况,线段MN的长度是5cm.故选:D.【点评】首先要根据题意,考虑所有可能情况,画出正确图形.再根据中点的概念,进行线段的计算.9.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF等于()A.130°B.120°C.110°D.100°【分析】先设出∠BOE=α,再表示出∠DOE=α∠AOD=4α,建立方程求出α,最用利用对顶角,角之间的和差即可.【解答】解:设∠BOE=α,∵∠AOD:∠BOE=4:1,∴∠AOD=4α,∵OE平分∠BOD,∴∠DOE=∠BOE=α∴∠AOD+∠DOE+∠BOE=180°,∴4α+α+α=180°,∴α=30°,∴∠AOD=4α=120°,∴∠BOC=∠AOD=120°,∵OF平分∠COB,∴∠COF=∠BOC=60°,∵∠AOC=∠BOD=2α=60°,∴∠AOF=∠AOC+∠COF=120°,故选:B.【点评】此题是对顶角,邻补角题,还考查了角平分线的意义,解本题的关键是找到角与角之间的关系,用方程的思想解决几何问题是初中阶段常用的方法.10.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【解答】解:设点C表示的数是x,∵数轴上表示1、的对应点分别为点A、点B,点A是BC的中点,∴=1,解得x=2﹣.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.11.a,b,c三个数在数轴上的位置如图所示,则这三个数中绝对值最大的是()A.a B.b C.c D.无法确定【分析】根据数轴上点的坐标特征解答即可:原点左边的数为负数、右边的数为正数,原点坐标为0,不分正负.【解答】解:因为c离原点最远,所以这三个数中,绝对值最大的是c,故选:C.【点评】此题考查了数轴上的点的坐标特征,熟悉数轴的结构是解题的关键.12.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0B.|b|<|c|C.|a|>|b|D.abc<0【分析】根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0.9,则b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选:C.【点评】本题考查数轴,解题的关键是明确数轴的特点,能举出错误选项的反例.二.填空题(共6小题)13.﹣2和它的相反数之间的整数有5个.【分析】根据相反数的意义,可得答案.【解答】解:﹣2和它的相反数2之间的整数有﹣2,﹣1,0,1,2,故答案为:5.【点评】本题考查了相反数,利用相反数的意义是解题关键.14.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a=2,4.【分析】表示出方程的解,由方程解为正整数及a为正整数确定出a的值即可.【解答】解:方程整理得:(a﹣1)x=3,解得:x=,由a为正整数,得到a=2,4,故答案为:2,4【点评】此题考查了一元一次方程的解,方程的解即为能使方程两边相等的未知数的值.15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距504千米.【分析】轮船航行问题中的基本关系为:(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度.若设A港和B港相距x千米,则从A 港顺流行驶到B港所用时间为小时,从B港返回A港用小时,根据题意列方程求解.【解答】解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.【点评】本题的相等关系,逆流航行时间﹣顺流航行时间=3.注意:船的顺水速度、逆水速度、静水速度、水流速度之间的关系.16.如果一个角的补角是150°,那么这个角的余角的度数是60度.【分析】首先求得这个角的度数,然后再求这个角的余角.【解答】解:180°﹣150°=30°,90°﹣30°=60°.故答案为:60°.【点评】本题主要考查的是补角和余角的定义,掌握补角和余角的定义是解题的关键.17.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是55.【分析】通过对题目中给出的数据进行分析可以发现:从第三个数起,每一个数都等于它前面两个数的和.如13=8+5.按照这个规律即可求出答案.【解答】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=55.故答案为55.【点评】此题考查了数字的有规律变化,解答此类题目的关键是要求学生的通对题目中给出的图表,数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.18.若关于x的整式(8x2﹣6ax+14)﹣(8x2﹣6x+6)的值与x无关,则a的值是1.【分析】先根据多项式(8x2﹣6ax+14)﹣(8x2﹣6x+6)的值与x无关,可得关于x的方程,解方程即可求出a的值.【解答】解:原式=8x2﹣6ax+14﹣8x2+6x﹣6=(6﹣6a)x+8,∵整式(8x2﹣6ax+14)﹣(8x2﹣6x+6)的值与x无关,∴6﹣6a=0,解得:a=1,故答案为:1.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.三.解答题(共8小题)19.计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)x﹣7=10﹣4(x+0.5)(2)﹣=1.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:10x+2﹣2x+1=6,移项合并得:8x=3,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.根据下列语句,画出图形.如图,已知四点A,B,C,D.①画直线AB;②连接线段AC、BD,相交于点O;③画射线AD,BC,交于点P.【分析】根据直线、射线、线段的性质画图即可.【解答】解:如图,【点评】此题主要考查了简单作图,解答此题需要熟练掌握直线、射线、线段的性质,认真作图解答即可.22.如图,已知直线AB与CD交于点O,OM⊥CD,OA平分∠MOE,且∠BOD=28°,求∠AOM,∠COE的度数.【分析】利用角平分线的性质以及垂直定义,得出各角度数即可.【解答】解:∵OM⊥CD,∴∠COM=90°,∵∠AOC=∠BOD=28°,(对顶角相等)∴∠AOM=90°﹣28°=62°,∵OA平分∠MOE,∴∠AOE=∠AOM=62°,∴∠COE=∠AOE﹣∠AOC=62°﹣28°=34°.【点评】此题主要考查了角平分线的性质以及垂直定义,得出∠COE=∠AOE﹣∠AOC 是解题关键.23.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?【分析】可设乙的速度为x千米/小时,则甲的速度为3x千米/小时,根据关于路程的等量关系:甲、乙两人行驶的路程和是两个25千米,列出方程求解即可.【解答】解:设乙的速度为x千米/小时,则甲的速度为3x千米/小时,依题意有3x(3﹣)+3x=25×2,9x﹣2x+3x=50,10x=50,x=5,3x=15答:甲的速度为15千米/小时,乙的速度为5千米/小时.【点评】本题主要考查了一元一次方程的应用的知识,解答本题的关键是设出甲和乙的速度,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,此题难度不大.25.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?【分析】(1)设该班购买乒乓球x盒,根据乒乓球拍每副定价100元,乒乓球每盒定价25元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.可列方程求解.(2)根据各商店优惠条件计算出所需款数确定去哪家商店购买合算.【解答】解:(1)设该班购买乒乓球x盒,则甲:100×5+(x﹣5)×25=25x+375,乙:0.9×100×5+0.9x×25=22.5x+450,当甲=乙,25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样;(2)买20盒时:甲25×20+375=875元,乙22.5×20+450=900元,选甲;买40盒时:甲25×40+375=1375元,乙22.5×40+450=1350元,选乙.【点评】此题考查的知识点是一元一次方程的应用,解决本题的关键是理解两家商店的优惠条件,能用代数式表示甲店的费用即乙店的费用.26.如图,已知A、B、C是数轴上的三点,点C表示的数为7,BC=4,AB=16,动点P、Q分别从A、C同时出发,点P以每秒5个单位的速度沿数轴向右匀速运动,点Q以每秒2个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)点A表示的数为﹣13,点B表示的数为3(2)当t<6时,求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.【分析】(1)根据点C所表示的数,以及BC、AB的长度,即可写出点A、B表示的数;(2)根据题意画出图形,表示出AP=5t,CQ=2t,再根据线段的中点定义可得AM,根据线段之间的和差关系进而可得到点M表示的数;根据CQ=3CN可得CN,根据线段的和差关系可得到点N表示的数,进一步求得MN;(3)此题有两种情况:当点P在点O的左侧,点Q在点O的右侧时;当P在点O的右侧,点Q在点O的左侧时,分别画出图形进行计算即可.【解答】解:(1)∵C表示的数为7,BC=4,∴OB=7﹣4=3,∴B点表示3.∵AB=16,∴AO=16﹣3=13,∴A点表示﹣13;(2)由题意得:AP=5t,CQ=2t,如图1所示:∵M为AP中点,∴AM=AP=t,∴在数轴上点M表示的数是﹣13+t,∵点N在CQ上,CQ=3CN,∴CN=t,∴在数轴上点N表示的数是7﹣t,∴MN=7﹣t﹣(﹣13+t)=20﹣t;(3)如图2所示:由题意得,AP=6t,CQ=3t,分两种情况:①当点P在点O的左侧,点Q在点O的右侧时,OP=13﹣5t,OQ=7﹣2t,∵O为PQ的中点,∴OP=OQ,∴13﹣5t=7﹣2t,解得:t=2,当t=2秒时,O为PQ的中点;②如图3,当P在点O的右侧,点Q在点O的左侧时,OP=5t﹣13,OQ=2t﹣7,∵O为PQ的中点,∴OP=OQ,∴5t﹣13=2t﹣7,解得:t=2,此时AP=10<13,∴t=2不合题意舍去,综上所述:当t=2秒时,O为PQ的中点.【点评】此题考查一元一次方程的实际运用,数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,利用中点的意义建立方程解决问题.。

2017-2018学年浙教版初一年级上册数学期末测试题及答案

2017-2018学年浙教版初一年级上册数学期末测试题及答案

2017-2018学年度第一学期期末测试七年级数学说明:1.考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效;考试结束时,只交回答题卷.一、选择题(本大题共10小题,每小题3分,共30分)每小题给出的4个选项中,只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上.1、6-的相反数是()A、6B、6-C、61D、61-2、下面几个有理数中,最小的数是()A、1B、2-C、0 D、5.2-3、计算3)3(-的结果是()A、6B、9C、27D、-274、下列各组代数式中,不是同类项的是()A、yx2-和yx25B、32和2 C、xy2和23xyD、2ax和2a x5、下列等式中正确的是()A、abba-=--)(B、baba+-=+-)(C、12)1(2+=+aa D、xx+=--3)3(6、如图是由6个大小相同的正方形组成的几何体,它的左视图是()7、若ba=,则下列式子不正确的是()A、11+=+ba B、55-=+ba C、ba-=-D、0=-ba8、下列等式中,不是整式的是()A、yx21-B、x73C、11-xD、0A B C D9、若0<a ,下列式子正确的是( )A 、0<-aB 、02>a C 、22a a -= D 、33a a -=10、把弯曲的道路改直,就能缩短两点之间的距离,其中蕴含的数学原理是( )A 、两点确定一条直线B 、两点之间线段最短C 、过一点有无数条直线D 、线段是直线的一部分二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷相应的位置上.11、=- 5 . 12、︒20的补角是 . 13、方程0121=+x 的解为 . 14、地球与太阳之间的距离为150 000 000km ,用记数法表示为 km .15、某种商品原价为每件b 元,第一次降价打八折,第二次降价每件又减10元,两次降价后,该商品每件的售价是 元.16、点A ,B ,C 在同一条直线上,6= AB cm ,2=BC cm ,则=AC . 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、计算:(1)15)7()18(12--+--; (2))3(9)216()3()2(3-÷-+⨯-+-. 18、计算:(1)222243234b a ab b a --++; (2))43()42(b a b a +--.19、已知平面内有A ,B ,C 三个点,按要求完成下列问题. (1)作直线AB ,连结BC 和AC ;(2)用适当的语句表述点C 与直线AB 的关系.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、解方程:42321xx -+=+. 21、x 为何值时,式子65+-x x 的值比31-x 的值大3?BAA22、(1)已知()2210x y +++=,求x ,y 的值; (2)化简:)]921(3121[4322xy y x xy y x -+-.五、解答题(三)(本大题共3小题,每小题9分,共27分)23、某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价和售价如下表:(1)求甲,乙两种节能灯各进货多少时,使进货款恰好为46 000元;(2)应如何进货,使销售完节能灯时,商场获得的利润恰好是进货价的30%,此时利润为多少?24、如图,点O 在直线AB 上,OD 是AOC ∠的平分线,射线OE 在BOC ∠内. (1)图中有多少个小于︒180的角?(2)若OE 平分BOC ∠,求DOE ∠的度数;(3)若BOE COE ∠=∠2,︒=∠108 DOE ,求COE ∠的度数.25、如图,点O 是数轴的原点,点A 是数轴上的一个定点,点A 表示的数为-15,点B 在数轴上,且OA OB 3=,数轴上的两个动点M ,N 分别从点A 和点O 同时出发,向右移动,点M 的运动速度为每秒3个单位,点N 的运动速度为每秒2个单位.(1)求点B 和线段AB 的中点P 对应的有理数;(2)若点B 对应的数为正数,点M 移动到线段AB 的中点P 时,求点N 对应的有理数; (3)求点M ,N 运动多少秒时,点M ,N 与原点的距离相等.N M OAC BE AD2017-2018学年度第一学期期末测试七年级数学答案及评分标准一、选择题:A D D D A A B C B B 二、填空题:11、5 12、︒160 13、2-=x 14、8105.1⨯ 15、108.0-b 16、4cm . 三、解答题:17、解:(1)2222015)7()18(12-=-=--+--; (2)593548)3(9)216()3()2(3-=+--=-÷-+⨯-+-.评分说明:每小题3分.(1)答案正确就给3分;(2)计算3)2(-,)216()3(+⨯-,)3(9-÷-各占1分,答案错误扣1分.18、解:(1)222b ab a -+;(2)b a 8--.评分说明:每小题3分.第(1)小题中,合并同类项每项占1分;第(2)小题中,去括号,每个括号占1分,计算答案占1分.19、(1)作直线AB ,线段BC ,线段AC 各占1分,共3分;(2)点C 在直线AB 外,3分. 20、解:去分母,得)2(12)1(2x x -+=+, 2分 去括号,得x x -+=+21222, 4分 移项,合并,得123=x , 6分 系数化1,得4=x 7分21去分母,得)1(218)5(6->++-x x x , 2分 去括号,得221856->+--x x x , 4分 移项,合并得153->x , 5分 系数化1,得5->x , 6分21、 去分母,得18)1(2)5(6=--+-x x x 2分去括号,得182256=+---x x x 4分 移项,合并得213=x 5分 系数化1,得7=x , 6分 ∴当7=x 时,式子65+-x x 的值比31-x 的值大3. 7分22、(1)∵()2210x y +++=,∴02=+x ,01=+y 2分 ∴2=x ,1-=y ; 3分(2))]921(2121[4322xy y x xy y x -+- ]294121[4322xy y x xy y x -+-= 4分 )441(4322xy y x y x --= 5分 xy y x y x 4414322+-= 6分 xy y x 4212+= 7分 评分说明:(1)中x ,y 答对1个给1分,答对2个给满分,共3分,没写出过程不扣分;(2)去小括号占1分,中括号内合并占1分,去中括号占1分,计算答案占1分,共4分.23、(1)设甲种节能灯购进x 只,乙种节能灯购进)1200(x -只, 1分 依题意得,46000)1200(4525=-+x x , 3分 解得400=x ,8001200=-x , 4分 即甲种节能灯购进400只,乙种节能灯购进800只,进货款恰好为46 000元; 5分 (2)进货款为x x x 2054000)1200(4525-=-+, 销售款为x x x 3072000)1200(6030-=-+利润为x x x 1018000)2054000()3072000(-=---,依题意有x x 3072000%)301)(2054000(-=+-, 7分解得450=x ,7501200=-x , 135001018000=-x ,即甲种节能灯购进450只,乙种节能灯购进750只时,商场获得的利润恰好是进货价的30%,此时利润为13500元. 9分24、(1)9个; 2分 (2)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴AOC COD ∠=∠21,BOC COE ∠=∠21, 3分 ∵︒=∠+∠180BOC AOC , ∴︒=∠+∠=∠+∠=∠+∠90)(212121BOC AOC BOC AOC COE COD , ∴︒=∠+∠=∠90COE COD DOE ; 5分 (3)设x BOE =∠,∵BOE COE ∠=∠2,∴x COE 2=∠ ∴x AOC 3180-︒=∠, ∵OD 平分AOC ∠,∴AOC COD ∠=∠21, ∵︒=∠=∠+∠108DOE COE COD , 7分 ∴︒=+-︒1082)3180(21x x ,︒=36x , 8分 ∴︒=∠72 COE . 9分 25、(1)∵15=OA ,OA OB 3=,∴45=OB , 若点B 在原点的右边,60= AB ,∴点B 对应的有理数为45,线段AB 的中点P 对应的有理数为15, 若点B 在原点的左边,30= AB ,∴点B 对应的有理数为-45;线段AB 的中点P 对应的有理数为-30;(2)当点B 对应的数为正数时,则点M 移动30个单位到达线段AB 的中点P ,点M 移动的时间为10330= 秒,此时点N 移动的距离为20102=⨯,∴点N 对应的有理数为20; (3)设经过x 秒点有ON OM =,若点B 在原点的右边,则1523=-x x ,15=x , 若点B 在原点的左边,则153245-=-x x ,12=x .C BE AD。

2018-2019学年浙教版七年级上数学期末测试题及答案

2018-2019学年浙教版七年级上数学期末测试题及答案

期末检测题【本检测题满分:120分,时间:120分钟】一、选择题(每小题3分,共36分)1.若a 、b 为实数,且4711++-+-=a aa b ,则b a +的值为( )A.1±B.4C.3或5D.52.根据下图所示的程序计算代数式的值,若输入n 的值为5,则输出的结果为( ) A.16 B.2.5 C.18.5 D.13.53.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A.2(3)a b -B.23()a b -C.23a b -D.2(3)a b -4.某种型号的电视机,5月份每台售价为元, 6月份降价20%,则6月份每台售价为( ) A.元B.%20x元 C.元 D.元5. 已知两数在数轴上的位置如右图所示,则化简代数式12a b a b +--++的结果是( ) A. B.C. D.6.当n 为正整数时,212(1)(1)n n +---的值是( )A.0B.2C.-2D.不能确定7.已知关于的方程的解是,则的值是( ) A.1B.53C.51D.-18.x 3的倒数与392-x 互为相反数,那么x 的值是( ) A.23 B.23- C.3 D.-3 9. 一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x 辆客车,可列方程为( )A.4432864x -=B.4464328x +=C.3284464x +=D.3286444x +=10.如右图,∠AOB =130°,射线OC 是∠AOB 内部任意一条射线,OD 、OE 分别是∠AOC 、∠BOC 的平分线,下列叙述正确的是( ) A.∠DOE 的度数不能确定B.∠AOD +∠BOE =∠EOC +∠COD =∠DOE =65°C.∠BOE =2∠CODD.∠AOD =21∠EOC11. 已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于( ) A.45° B.60° C.90° D.180° 12. 如果要在一条直线上得到6条不同的线段,那么在这条直线上应选几个不同的点( ) A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共30分)13.若,,则 ;21.14.已知,,则代数式.15.一个长方形的一边长34a b +,另一边长a b +,那么这个长方形的周长为 . 16.一个长方体的箱子放在地面上且紧靠墙角,它的长、宽、高分别是a 、b 、c ,则这个箱子露在外面的面积是______________.(友情提示:先想象一下箱子的放置情景吧!) 17.若代数式213k--的值是1,则k = _________. 18. 猜数字游戏中,小明写出如下一组数:52,74,118,1916,3532,…,小亮猜想出第六个数字是6764,根据此规律,第n 个数是___________.19. 已知线段AB =8,延长AB 到点C ,使BC =21AB ,若D 为AC 的中点,则BD 等于__________.20.如下图,C ,D 是线段AB 上两点,若CB =4 cm ,DB =7 cm ,且D 是AC 的中点,则AC =____ _.21.请你规定一种适合任意非零实数的新运算“”,使得下列算式成立:,,,A B D C……你规定的新运算=_______ (用的一个代数式表示).22.下图是一个数值转换机.若输入数3,则输出数是_______.三、解答题(共54分)23.(10分)化简并求值: (1)21,其中,,.(2),其中,.24.(5分)已知代数式的值为,求代数式的值.25.(5分)已知关于的方程的解为2,求代数式的值. 26.(6分)如下图,线段,点是线段上任意一点,点是线段的中点,点是线段的中点,求线段的长.27.(6分)某餐厅中,一张桌子可坐6人,有以下两种摆放方式: (1)当有张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?28.(6分)一种笔记本的售价为2.2元/本,如果买100本以上,超过100本部分的售价为2元/本.(1)小强和小明分别买了50本和200本,他们俩分别花了多少钱?(2)如果小红买这种笔记本花了380元,她买了多少本?(3)如果小红买这种笔记本花了元,她买了多少本?29.(8分)某酒店客房部有三人间、双人间客房,收费数据如下表:普通(元/间/天)豪华(元/间/天)三人间150 300双人间140 400为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1 510元,则旅游团住了三人普通间和双人普通间客房各多少间?30.(8分)某餐饮公司为了更方便地为大庆路沿街20户居民提供早餐,决定在路旁建立一个快餐店,点选在何处,才能使这20户居民到点的距离总和最小?期末检测题参考答案一、选择题1.D 解析:由题意可知a -1=0,所以a =1,b =4,所以a +b =1+4=5.2.A 解析:由程序图可知输出的结果为3.3.A4.C5. B 解析:由数轴可知,且所以, 故12(1)(2)122 3.a b a b a b a b a b a b b +--++=+--++=+-+++=+6.C 解析:当n 为正整数时,,,所以. 7.A 解析:将代入方程,得,解得.8.C 解析:由题意可知03923=-+x x ,解得,故选C.9. B 解析:乘坐客车的人数为,因为每辆客车可乘坐44人,所以乘坐客车的人数又可以表示为44,所以可列方程.通过整理可知选B. 10.B 解析:∵ OD 、OE 分别是∠AOC 、∠BOC 的平分线, ∴ ∠AOD =∠COD ,∠EOC =∠BOE .又∵ ∠AOD +∠BOE +∠EOC +∠COD =∠AOB =130°, ∴ ∠AOD +∠BOE =∠EOC +∠COD =∠DOE =65°,故选B . 11.C 解析:由题意得∠α+∠β=180°,∠α+∠γ=90°, 两式相减可得∠β-∠γ=90°,故选C . 12.B 解析:∵ 一条直线上n 个点之间有2)1(-n n 条线段,∴ 要得到6条不同的线段,则n =4,选B .二、填空题13.56 8 解析:,2121.14.5 解析:将两式相加,得,即.15.解析:长方形的周长为:.16. 解析:根据一个长方体的箱子放在地面上且紧靠墙角,那么说明有三个面紧贴墙及地面,三个面露在外面,并且,如果长方体箱子的一个顶点在墙角,那么长方体该顶点正对的顶点紧连的三个面露在外面.故计算该三个面面积的和为:.17.-4 解析:由213k--=1,解得.18.322+nn解析:∵ 分数的分子分别是:,,,…,分数的分母分别是:21+3=5, 22+3=7,23+3=11,24+3=19,322个数是第 ∴ +nnn .19.2 解析:如右图所示,因为BC =21AB ,AB =8,所以BC =4,AC =AB +BC =12. 因为D 为AC 的中点,所以CD =21AC =6.所以BD =CD -BC =2.20.6 cm 解析:因为点D 是线段AC 的中点,所以AC =2DC . 因为CB =4 cm ,DB =7 cm ,所以CD =BD -BC =3 cm , 所以AC =6 cm. 21.ab ba 22+解析:根据题意可得:12+22, =67-=32-+42-,154-=32-+52, 则=a 2+b 2=abb a 22+. 22.65 解析:设输入的数为,根据题意可知,输出的数=.把代入,即输出数是65.三、解答题123.解:(1)21=212=.将,,代入得原式=.(2).将,代入得原式.24.解:.因为3,故上式.25.解:因为是方程的解,所以.解得,所以原式.26.解:因为点是线段的中点,所以.因为点是线段的中点,所以.因为,所以.27. 解:(1)第一种摆放方式中,有一张桌子时能坐6人,每多一张桌子能多坐4人. 即有张桌子时,能坐.第二种摆放方式中,有一张桌子时能坐6人,每多一张桌子能多坐2人, 即.(2)打算用第一种摆放方式来摆放餐桌. 因为当时,用第一种方式摆放餐桌:,用第二种方式摆放餐桌:, 所以选用第一种摆放方式. 28.解:(1)小强的总花费=2.2×50=110(元);小明的总花费为:2.2×100+(200-100)×2=220+200=420(元). (2)小红买的本数为:100+21002.2380⨯-=100+80=180(本).(3)当≤220时,本数=2.2n ; 当>220时,本数=100+21002.2⨯-n =100+2220-n =102-n.29.解:设三人普通间共住了人,则双人普通间共住了()50-x 人. 由题意得510 12505.014035.0150=-⨯⨯+⨯⨯xx , 解得x =24,即5026-=x 且2438=(间),26213=(间). 答:旅游团住了三人普通间客房8间,双人普通间客房13间. 30.分析:面对复杂的问题,应先把问题“退”到比较简单的情形.如下图,如果沿街有2户居民,很明显点设在、之间的任何地方都行.如下图,如果沿街有3户居民, 点应设在中间那户居民门前.以此类推,沿街有4户居民,点应设在第2、3户居民之间的任意位置, 沿街有5户居民,点应设在第3户居民门前 ……故若沿街有户居民,当为偶数时,点应设在第2n 、12+n户居民之间的任意位置; 当为奇数时,点应设在第21+n 户居民门前.解:根据以上分析,当时,点应设在第10、11户居民之间的任意位置......。

【七年级数学】2018学年七年级数学上期末试卷

【七年级数学】2018学年七年级数学上期末试卷

2018学年七年级数学上期末试卷
2018学年浙江省杭州市滨江区七年级(上)期末数学试卷
参考答案与试题解析
一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的注意可以用多种不同的方法选取正确答案
1.3的倒数是()
A.﹣3 B. 3 c. D .
考点倒数.
分析根据倒数的定义若两个数的乘积是1,我们就称这两个数互为倒数可知.
解答解3的倒数是.
故选c.
点评主要考查倒数的定义,要求熟练掌握.需要注意的是
倒数的性质负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义若两个数的乘积是1,我们就称这两个数互为倒数.
2.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()
A. c>a>0>b B. a>b>0>c c. b>0>a>c D. b>0>c>a
考点有理数大小比较;数轴.
专题综合题.
分析数轴上的数,右边的数总比左边的数大,利用这个特点可比较四个数的大小.。

浙教版-学年度上学期七年级数学期末综合练习试题2(含解析)

浙教版-学年度上学期七年级数学期末综合练习试题2(含解析)

2018-2019浙教版七年级上数学期末综合练习试题2姓名:__________班级:__________考号:__________题号一二三总分得分一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.0.593×107 B.5.93×106 C.5.93×102 D.5.93×1072.下列实数中是无理数的是()A. B.C. D.03.下列各式中,是方程的个数为()(1)﹣4﹣3=﹣7;(2)3x﹣5=2x+1;(3)2x+6;(4)x﹣y=v;(5)a+b>3;(6)a2+a﹣6=0.A.1个B.2个 C.3个D.4个4.下列关于角的说法正确的是()A.两条射线组成的图形叫做角 B.角的大小与这个角的两边的长短无关C.延长一个角的两边 D.角的两边是射线,所以角不可度量5.下列立体图形中,都是柱体的为( )6.计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.57.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A .7B .6C .5D .48.若关于x 的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=-3D.x=2 9.已知a 和b 一正一负,则+的值为( )A .0B .2C .﹣2D .根据a 、b 的值确定10.设A ,B ,C 均为多项式,小方同学在计算“A ﹣B ”时,误将符号抄错而计算成了“A+B ”,得到结果是C ,其中A=x 2+x ﹣1,C=x 2+2x ,那么A ﹣B=( ) A .x 2﹣2xB .x 2+2x C .﹣2 D .﹣2x二、填空题(本大题共6小题,每小题3分,共18分) 11.如果向东走3米记为+3米,那么向西走6米记作 .12.如果一个数的平方根为5a-1和a+7,那么这个数是_________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019七年级上数学期末模拟试题
班级________________姓名_____________总分___________
一.选择题(共12小题)
1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()
2.绝对值大于2且小于5的所有整数的和是()
A.0 B.7 C.14 D.28
3.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()
A.﹣1 B.1 C.52015 D.﹣52015
4.对代数式a2+b2的意义表达不确切的是()
A.a与b的平方和B.a与b的平方的和
C.a2与b2的和D.a的平方与b的平方的和
5.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()
A.1 B.2 C.1或2 D.任何数
6.如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子?()
A.3 B.4 C.5 D.6
7.2016的相反数是()
A.2016 B.﹣2016 C.D.﹣
8.下列说法中正确的有()
①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积.
A.1个B.2个C.3个D.4个
9.如果代数式x2﹣2x+5的值等于7,则代数式3x2﹣6x﹣1的值为()
A.5 B.6 C.7 D.8
10.已知ax=bx,下列结论错误的是()
A.a=b B.ax+c=bx+c C.(a﹣b)x=0 D.
11.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()
A.垂线段最短
B.经过一点有无数条直线
C.经过两点,有且仅有一条直线
D.两点之间,线段最短
12.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()
A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1
二.填空题(共6小题)
13.计算:|﹣|=.
14.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.
15.比较大小关系:32.
16.若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=.
17.当x=时,2x﹣3与的值互为倒数.
18.如图,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC=.
三.解答题(共8小题)
19.计算:(1)(2﹣3)﹣(﹣4﹣1)
(2)
20.如图:
(1)用代数式表示阴影部分的面积;
(2)当a=10,b=4,π的取值为3时,求阴影部分的面积.
21.已知(a2﹣1)x2﹣(a+1)x+8=0是关于x的一元一次方程.(1)求代数式2008(a+x)(x﹣2a)+3a+5的值;
(2)求关于y方程a|y|=x的解.
22.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;
(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.
23.
请你参考黑板中老师的讲解,用运算律简便计算:
(1)999×(﹣15)
(2)999×118+999×(﹣)﹣999×18.
24.出租车司机小李某天下午营运全是在东西走向的人民大道上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6
(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?
(2)若汽车耗油量为3升/千米,这天下午小李开车共耗油多少升?
25.读一读,想一想:1857年德国统计学家恩思特•恩格尔阐明了一个定律:随着家庭和个人收入增加,收入中用于食品方面的支出比例将逐渐减少,反映这一定律的系数称为恩格尔系数n,计算公式为:n=100%.国际上常常用恩格尔系数来衡量一个国家和地区人民生活水平的状况,根据联合国粮农组织提出的标准,恩格尔系数n在59%以上为贫困,50%≤n<
59%为温饱,40%≤n<50%为小康,30%≤n<40%为富裕,n低于30%为最富裕.(摘自:宜昌日报电子版)
张伯家庭的所有支出都有详尽的记载.2000年与1997年相比较,总体物价稳定但食品价格下降了7.5%,因而张伯家2000年所购买的食品和在1997年完全相同的情况下人均少支出150元,而人均个人消费支出总额增加了170元;1997年,张伯家人均食品支出总额比其人均个人消费支出总额的一半还少381元.
(1)设1997年张伯家人均食品支出总额为x(元),人均个人消费支出总额为y(元).请用含x的代数式表示y;
(2)已知1997年和2000年张伯家的恩格尔系数都与宜昌市城区抽样调查得到的恩格尔系数相同,请你计算说明,1997年到2000年宜昌市城区人民生活水平已开始步入由小康型过渡到富裕型的转型期.
26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….。

相关文档
最新文档