第四章 串级控制系统实验

合集下载

实验四 串级控制系统

实验四 串级控制系统

实验四 加热炉温度串级控制系统(实验地点:程控实验室,崇实楼407)一、实验目的1、熟悉串级控制系统的结构与特点。

2、掌握串级控制系统临界比例度参数整定方法。

3、研究一次、二次阶跃扰动对系统被控量的影响。

二、实验设备1、MATLAB 软件,2、PC 机 三、实验原理工业加热炉温度串级控制系统如图4-1所示,以加热炉出口温度为主控参数,以炉膛温度为副参数构成串级控制系统。

图4-1 加热炉温度串级控制系统工艺流程图图4-1中,主、副对象,即加热炉出口温度和炉膛温度特性传递函数分别为主对象:;)130)(130()(18001++=-s s e s G s 副对象:21802)1)(110()(++=-s s e s G s主控制器的传递函数为PI 或PID ,副控制器的传递函数为P 。

对PI 控制器有 221111)(),/(,111)(c c I c I I c I c c K s G T K K s K K s T K s G ==+=⎪⎪⎭⎫ ⎝⎛+=采用串级控制设计主、副PID 控制器参数,并给出整定后系统的阶跃响应曲线和阶跃扰动响应曲线,说明不同控制方案控制效果的区别。

四、实验过程串级控制系统的设计需要反复调整调节器参数进行实验,利用MATLAB 中的Simulink 进行仿真,可以方便、快捷地确定出调节器的参数。

1.建立加热炉温度串级控制系统的Simulink 模型 (图4-2)在MATLAB 环境中建立Simulink 模型如下:)(01s G 为主被控对象,)(02s G 为副被控对象,Step 为系统的输入,c 为系统的输出,q1为一次阶跃扰动,q2为二次阶跃扰动,可以用示波器观察输出波形。

PID1为主控制器,双击PID 控制器可设置参数:(PID 模块在MATLAB/Simulink Library Browser/Simulink Extras ),Step 为阶跃信号,参数起始时间应设置为0。

过程控制系统第四章 串级控制系统

过程控制系统第四章 串级控制系统
3.副回路对包含的二次扰动以及非线性与参数、负荷变化有很强的抑制能力与一 定的自适应能力。因此,副回路应包括生产过程中变化剧烈、频繁且幅度大的主 要扰动。
本章内容要点
4.主、副过程时间常数之比应在3~10范围之内。副过程时间常数比主过程小得太 多,虽然副回路反应灵敏,控制作用快,但副回路包含的扰动少,对于过程特性 的改善也就减少了。相反,如果副回路的时间常数接近于甚至大于主过程的时间 常数,副回路反映就比较迟钝,不能及时有效地克服扰动。
4.2 串级控制系统特点与分析
4.2.2 大大增强对二次扰动的克服能力
即 ' ,则
c d

1
T01 T0'2
1 T01
T02
(4-11)
4.2 串级控制系统特点与分析
由于
T01 T0'2

T01 T02
,所以 C d 。
以上结论虽然是依据简单的被控过程(一阶惯性环节)和简单的调节规律 (比例控制)推导得出的,但是可以证明,这些结论对于高阶被控过程和其他调 节规律也是正确的。
1
Kc1
K0' 2 T0'2s 1
K01 T01s 1
Km1

0
s2

T01 T0'2 T01T0'2
s 1
Kc1K0' 2K01Km1 T01T0'2

0
20

02
T01 T0'2 T01T0'2
1 Kc1K0' 2 K01Km1 T01T0'2
则串级控制系统的特征方程式可写成如下标准形式:
1 Wc1 (s)W0'2 (s)W01 (s)Wm1 (s) 0

过程控制系统第四章 串级控制系统

过程控制系统第四章 串级控制系统

4.1 串级控制基本概念
单回路控制系统解决了工业生产过程中大量的参数定值控制问题,在大多数 情况下,这种简单系统能满足生产工艺的要求。但是,当被控过程的时滞或扰 动量很大,或者工艺对控制质量的要求很高或很特殊时,采用单回路控制系统 就无法满足生产的要求。此外,随着现代工业生产过程的发展,对产品的产量、 质量,对提高生产效率、节能降耗以及环境保护提出了更高的要求,这使工业 生产过程对操作条件要求更加严格,对工艺参数要求更加苛刻,从而对控制系 统的精度和功能要求更高。在这样的情况下,产生了串级控制系统。
4.1 串级控制基本概念
4.1.2 串级控制系统的工作过程
加热炉串级控制系统的工作过程是:当处在稳定工况时,被加热物料的流 量和温度不变,燃料的流量与热值不变,烟囱抽力也不变,炉出口温度和炉膛温 度均处于相对平衡状态,调节阀保持一定的开度,此时炉出口温度稳定在给定值 上,当扰动破坏了平衡工况时,串级控制系统便开始了其控制过程。根据不同的 扰动,分三种情况讨论。
4.1 串级控制基本概念
x1
主调节器
x2
副调节器

z1
z2
调节阀
f3 f2 炉 膛 y2
副测量变送器
管壁
主测量变送器
图 4-3 串级控制系统框图
f1
物料
y1
2. 被加热物料的流量和初温变化 f1 t ——一次扰动或主回路扰动
扰动 f1 t 使炉出口温度变化时,主回路产生校正作用,克服f1 t
4.1 串级控制基本概念
T1C
T1T
热物料
T2C
T2 T
热物料
加热炉
燃料
冷物料
加热炉
燃料
冷物料
a)单回路系统(控制出口温度) b)单回路系统(控制炉膛温度) 图4-l 加热炉温度控制系统

过程控制工程第四章串级控制系统

过程控制工程第四章串级控制系统

温度控制器应该是定值控制
,起主导作用。而燃烧室温
度控制器则起辅助作用 它
在克服干扰D2的同时,应
该受烧成带温度控制器的操
纵,操纵方法就是烧成带温
度控制器的输出作为燃烧室
温度控制器的设定值,从而
就形成了右图所示的串级控
制系统。
天津大学仁爱学院信息工程系
9
《过程控制系统》 Process Control System
第四章 串级控制系统
比较上述两个控制系统,它们各有自己的长处。第一种控制系统包
括了所有干扰,设定值第二种控制系统能对主要的和一些次要干_
上扰提前发现,及早控制。如果能将两个控制系统结合起来,发挥
各自优势,不是两全其美吗! 另外,控制燃烧室的温度2并不是目
的,真正的目的是烧成带的
温度稳定不变,所以烧成带
副环都有各自的调节对象、测量变送元件和调节器。
天津大学仁爱学院信息工程系
11
《过程控制系统》 Process Control System
第四章 串级控制系统
4.1.2 串级控制系统的组成
1.串级控制系统的方框图 根据隔焰式隧道窑串级控制系统的方框图,可得串级控
制系统标准方框图如下图所示。
天津大学仁爱学院信息工程系
12
《过程控制系统》 Process Control System
第四章 串级控制系统
2. 串级控制系统有关的术语
①主、副回路 在外面的闭合回路称为主回路(主环),在里 面的闭合回路称为副回路(副环)。 ②主、副控制器 处于主回路中的控制器称为主控制器;处于 副回路中的控制器称为副控制器。 ③主、副被控变量 主回路的被控交量称为主被控变量,也称 为主变量或主参数;副回路的被控变量称为副被控变量,也 称为副变量或副参数。 ④主、副对象 主回路所包括的对象称为主对象;副回路所包 括的对象称为副对象。 ⑤主、副检测变送器 检测和变送主变量的称为主检测变送器; 检测和变送副变量的称为副检测变送器。 ⑥一、二次干扰 进入主回路的干扰称为一次干扰;进人副 回路的干扰称为二次干扰。

第四章 串级控制系统

第四章 串级控制系统
要求: 被加热物料的出口温度为定值。 控制方案一 影响因素: (1)被加热物料的流量和初温f1(t); (2)燃料油压力的波动、流量的变化、燃料值的变化f2(t); 被控参数: 出口温度 控制参数:燃料油流量
(3)烟囱抽力变化f3(t);
(4)配用、炉膛漏风和环境温度的影响f4(t). 缺陷:由于对象内部燃料油要经管道传输、燃烧、传热等一系列环节,总滞后较大 (15min),导致控制作用不及时,另燃料油压力变化较大且频繁,致使偏差较大。 东北大学
' K02 K02
K C 2 KV K 02 1 K C 2 KV K 02 K m 2
' T02
T02 1 K C 2 KV K 02 K m 2
由于Km2>1,有:
' T02 T02
从以上可以证明,由于副回路的存在,可以使等效对象的时间常数大大减小,整个 系统中对象总的时间滞后近似地等于主对象的时间滞后,单回路控制系统对象总的时间 滞后要有所缩短,使得系统的动态响应加快,控制更加及时,最大动态偏差得到减小;
进料 精 1馏 塔 再 沸 器
FC
设 定 值 FT
2
蒸汽
凝液 塔底出料
进料 精 1馏 塔
TT
TC
FC
FT
最大偏差不超过 1.5 C
o
再 沸 器
2
蒸汽
凝液 塔底出料
东北大学
4.2串级控制系统的应用范围 4. 克服对象的非线性
工业过程存在非线性,负荷变化引起工作点的移动,通过调节阀的 特性补偿。由于受调节阀等各种条件的限制,仍存在较大非线性。 采用串级控制系统,能适应负荷和操作条件的变化,自动调节副调 节器的给定值,改变调节阀未知,使系统运行在新的工作点。

实验四串级控制系统

实验四串级控制系统

液位-液位串级控制系统
具体步骤如下:
①串级控制系统的投运准备 串级控制的最主要特征是一个控 制系统,两个控制回路,内回路 (副环)含在外回路(主环)之 内;有两个控制器,仅有一个执 行机构,因为主控制器是通过发 出指令来操纵副控制器,由副控 制器负责执行控制,完成控制动 作,所以,主控制器的输出作为 副控制器的设定。如何实现?-注意控制器在限号转接面板上的 连线或按钮。
液位-液位串级控制系统
(3)SP1加干扰。注意:设定值变化10%,具体向哪个方 向变化取决于当前水位的状况。
(4)给系统施加一干扰后待其稳定,需观察控制过程是 否满意。 (5)然后可将主控制器的比例度调整到50~20,每次改 变后,都要改变给设定值加扰动进行测试,观察控制过 渡过程曲线的变化—是否稳定较快,超调量较小,接近 4:1衰减震荡过程。最后确定一组最合适的参数.
(2)投运需按照“先副后主”的原则进行,先投运副控制器,再 投运主控制器。待两个液位都基本达到稳定,分别将两个控制器 的设定值与测量值(液位高度)对齐,即消除系统偏差。
液位-液位串级控制系统
具体步骤如下:
特别注意:调整副控制器的设定值时,应该在哪里调? (实际工业中一般是操作测量值等于设定值,在这为了加快试验速度, 才采用此法操作;)
液位-液位串级控制系统
具体步骤如下:
①串级控制系统的投运准备 同上次实验操作,首先检查管路、阀门(闸板的高度),设备加电, 进行信号连线,构建一个以1#控制器为主控制器,2#控制器为副 控制器,以调节阀为执行环节的串级控制系统; 启动实验软件,选择主、副控制器,全部都置于手动状态;先调 整副控制器的手动输出为50%左右,启动水泵。待系统达到平稳, 其间不要频繁调整阀的开度; 在自动控制系统投运自动前,务必要确保控制系统运行后一定是 负反馈控制,即控制作用是消弱而不是增强干扰作用的影响-根据 调节阀的作用方向,确定主、副控制器的正、反作用;由于副控 制器是先于主控制器投入工作,必须先保证副控制器单独工作时 也是负反馈(通过set键->PID->cont->ract/act)

第四章 串级控制系统实验

第四章  串级控制系统实验

要做的实验项目是:实验一单容自衡水箱液位特性测试实验实验二单容液位定值控制系统实验实验三双容(串联)水箱特性的测试实验实验四双容(串联)水箱液位定值控制系统实验实验五双容(串联)液位串级控制系统实验实验六前馈-反馈控制系统实验第四章串级控制系统实验第一节串级控制系统概述一、串级控制系统的概述图4-1是串级控制系统的方框图。

该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的给定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。

图4-1 串级控制系统方框图R-主参数的给定值; C1-被控的主参数; C2-副参数;f1(t)-作用在主对象上的扰动; f2(t)-作用在副对象上的扰动。

二、串级控制系统的特点串级控制系统及其副回路对系统控制质量的影响已在有关课程中介绍,在此将有关结论再简单归纳一下。

1.改善了过程的动态特性;2.能及时克服进入副回路的各种二次扰动,提高了系统抗扰动能力;3.提高了系统的鲁棒性;4.具有一定的自适应能力。

三、主、副调节器控制规律的选择在串级控制系统中,主、副调节器所起的作用是不同的。

主调节器起定值控制作用,它的控制任务是使主参数等于给定值(无余差),故一般宜采用PI或PID调节器。

由于副回路是一个随动系统,它的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P或PI调节器。

四、主、副调节器正、反作用方式的选择正如单回路控制系统设计中所述,要使一个过程控制系统能正常工作,系统必须采用负反馈。

对于串级控制系统来说,主、副调节器的正、反作用方式的选择原则是使整个系统构成负反馈系统,即其主通道各环节放大系数极性乘积必须为正值。

各环节的放大系数极性是这样规定的:当测量值增加,调节器输出也增加,则调节器的放大系数K c为负(即正作用调节器),反之,K c为正(即反作用调节器);本装置所用电动调节阀的放大系数K v恒为正;当过程的输入增大时,即调节器开大,其输出也增大,则过程的放大系数K0为正,反之K0为负。

实验4 串级控制系统

实验4 串级控制系统

• 右侧的副控制器只接受外部的模拟信号(左侧的主控制器)作为设定
输入
串级控制系统的投运准备
1. 同上次实验操作,首先检查管路、阀门(闸板的高度),设备加电;
进行控制系统信号连线,构建一个下液位为主参数 ,中水位为副参 数,1#控制器为主控制器,2#控制器为副控制器,以调节阀为执行
环节的串级控制系统;
Z1 (s)
Z2 (s)
• 注意:Y1(s)、Y2(s)分别代表什么?Z1(s)、Z2(s)代表什么?U1(s)与 R1(s)有什么联系?
实验要求与内容
• 实验要求:构建一个以下水箱液位为主被控参数、中水箱液位为副被
控参数的串级控制系统;学习、掌握如何在工程中将串级控制系统无 扰地投入自动运行,学习正确整定串级系统控制器参数的基本方法,
串级控制系统的连线准备
• 串级控制最主要的特征是一个控制系统中有两个控制回路,副回路含
在主回路之内;两个控制器是串联的,通过仅有的一个执行环节进行 控制,主控制器指挥操纵副控制器完成控制动作 • 在实际操作中,应特别注意控制器连线以及界面上显示的操作状态 • 实验过程中使用的两控制器,左侧控制器为主控制器,其输入端连接 到下液位变送器,输出端接到右侧副控制器的设定值输入端口;右侧 控制器为副控制器,其输入端连接到中液位变送器,输出端接到控制 阀的输入端口
串级控制系统手动-自动无扰切换
特别提示:实际的工业控制操作,一般要调整测量值等于设定值,在
实验中为了缩短实验时间,故采用调整设定值等于测量值
MV1
PV1 PV2
MV2
串级系统方框图与实际信号连接对照
3. 待各控制器的偏差消除后,分别把比例度和积分时间设置为 100 和
30。然后按“先副后主”的顺序,把两控制器依次投入“自动”;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要做的实验项目是:实验一单容自衡水箱液位特性测试实验实验二单容液位定值控制系统实验实验三双容(串联)水箱特性的测试实验实验四双容(串联)水箱液位定值控制系统实验实验五双容(串联)液位串级控制系统实验实验六前馈-反馈控制系统实验第四章串级控制系统实验第一节串级控制系统概述一、串级控制系统的概述图4-1是串级控制系统的方框图。

该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的给定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。

图4-1 串级控制系统方框图R-主参数的给定值; C1-被控的主参数; C2-副参数;f1(t)-作用在主对象上的扰动; f2(t)-作用在副对象上的扰动。

二、串级控制系统的特点串级控制系统及其副回路对系统控制质量的影响已在有关课程中介绍,在此将有关结论再简单归纳一下。

1.改善了过程的动态特性;2.能及时克服进入副回路的各种二次扰动,提高了系统抗扰动能力;3.提高了系统的鲁棒性;4.具有一定的自适应能力。

三、主、副调节器控制规律的选择在串级控制系统中,主、副调节器所起的作用是不同的。

主调节器起定值控制作用,它的控制任务是使主参数等于给定值(无余差),故一般宜采用PI或PID调节器。

由于副回路是一个随动系统,它的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P或PI调节器。

四、主、副调节器正、反作用方式的选择正如单回路控制系统设计中所述,要使一个过程控制系统能正常工作,系统必须采用负反馈。

对于串级控制系统来说,主、副调节器的正、反作用方式的选择原则是使整个系统构成负反馈系统,即其主通道各环节放大系数极性乘积必须为正值。

各环节的放大系数极性是这样规定的:当测量值增加,调节器输出也增加,则调节器的放大系数K c为负(即正作用调节器),反之,K c为正(即反作用调节器);本装置所用电动调节阀的放大系数K v恒为正;当过程的输入增大时,即调节器开大,其输出也增大,则过程的放大系数K0为正,反之K0为负。

五、串级控制系统的整定方法在工程实践中,串级控制系统常用的整定方法有以下三种:(一)逐步逼近法所谓逐步逼近法,就是在主回路断开的情况下,按照单回路的整定方法求取副调节器的整定参数,然后将副调节器的参数设置在所求的数值上,使主回路闭合,按单回路整定方法求取主调节器的整定参数。

而后,将主调节器参数设在所求得的数值上,再进行整定,求取第二次副调节器的整定参数值,然后再整定主调节器。

依此类推,逐步逼近,直至满足质量指标要求为止。

(二)两步整定法两步整定法就是第一步整定副调节器参数,第二步整定主调节器参数。

整定的具体步骤为:1.在工况稳定,主回路闭合,主、副调节器都在纯比例作用条件下,主调节器的比例度置于100%,然后用单回路控制系统的衰减(如4:1)曲线法来整定副回路。

记下相应的比例度δ2S和振荡周期T2S。

2.将副调节器的比例度置于所求得的δ2S值上,且把副回路作为主回路中的一个环节,用同样方法整定主回路,求取主回路的比例度δ1S和振荡周期T1S。

3.根据求取的δ1S、T1S和δ2S、T2S值,按单回路系统衰减曲线法整定公式计算主、副调节器的比例度δ、积分时间T I和微分时间T d的数值。

4.按“先副后主”,“先比例后积分最后微分”的整定程序,设置主、副调节器的参数,再观察过渡过程曲线,必要时进行适当调整,直到过程的动态品质达到满意为止。

(三)一步整定法由于两步整定法要寻求两个4:1的衰减过程,这是一件很花时间的事。

因而对两步整定法做了简化,提出了一步整定法。

所谓一步整定法,就是根据经验先确定副调节器的参数,然后将副回路作为主回路的一个环节,按单回路反馈控制系统的整定方法整定主调节器的参数。

具体的整定步骤为:1.在工况稳定,系统为纯比例作用的情况下,根据K02/δ2=0.5这一关系式,通过副过程放大系数K02,求取副调节器的比例放大系数δ2或按经验选取,并将其设置在副调节器上。

2.按照单回路控制系统的任一种参数整定方法来整定主调节器的参数。

3.改变给定值,观察被控制量的响应曲线。

根据主调节器放大系数K1和副调节器放大系数K2的匹配原理,适当调整调节器的参数,使主参数品质指标最佳。

4.如果出现较大的振荡现象,只要加大主调节器的比例度δ或增大积分时间常数T I,即可得到改善。

第二节水箱液位串级控制系统一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统采用不同控制方案的实现过程。

二、实验设备1.实验对象及控制屏、SA-11挂件一个、SA-12挂件两个、计算机一台、万用表一个;2.RS485/232转换器一个、通讯线一根;3.SA-22挂件一个、SA-23挂件一个。

三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。

副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。

主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。

副调节器的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。

由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。

本实验系统结构图和方框图如图4-2所示。

图4-2 水箱液位串级控制系统(a)结构图 (b)方框图四、实验内容与步骤本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

智能仪表控制1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS-485通讯口上,将控制屏右侧RS-485通讯线通过RS-485/232转换器连接到计算机串口COM1,并按照下面的控制屏接线图连接实验系统。

将LT3下水箱变送器输出“1~5V”对应接至智能调节仪Ⅰ的“1,2”两端;将LT2中水箱变送器输出“0.2~1V”对应接至智能调节仪Ⅱ的“3,2”两端。

图4-3 智能仪表控制“水箱液位串级控制”实验接线图2.接通总电源空气开关和钥匙开关,打开24V开关电源,给液位变送器上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给电动调节阀及智能仪表1上电。

3.参数设置智能仪表Ⅰ参数设置:Sn=33、DIP=1、dIL=0、dIH=50、oPL=0、oPH=100、CF=0、Addr=1,智能调节仪Ⅱ参数设置:Sn=32、DIP=1、dIL=0、dIH=50、oPL=0、oPH=100、CF=8、Addr=2,智能调节仪参数设置请参考智能调节仪使用手册。

4. 打开上位机组态王组态环境,选择“THJ-3智能仪表控制工程”,点击“VIEW”按钮进入组态王运行环境,在主菜单中点击“实验九、水箱液位串级控制系统”,进入实验监控界面。

5.将主控仪表设置为“手动”,并将输出值设置为一个合适的值,此操作可通过调节仪表实现。

6.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少主调节器的输出量,使下水箱的液位平衡于设定值,且中水箱液位也稳定于某一值(此值一般为3~5cm,以免超调过大,水箱断流或溢流)。

7.按本章第一节中任一种整定方法整定调节器参数,并按整定得到的参数进行调节器设定。

8.待液位稳定于给定值时,将调节器切换到“自动”状态,待液位平衡后,通过以下几种方式加干扰:(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(2)打开阀门F2-1、F2-4(或F2-5),用变频器支路以较小频率给中水箱(或下水箱)打水(干扰作用在主对象或副对象);(3)将“阀F1-5、F1-13”开至适当开度(改变负载);(4)将电动调节阀的旁路阀F1-4(电磁阀上电)开至适当开度。

以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。

加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,下水箱液位的响应过程曲线将如图4-4所示。

图4-4 下水箱液位阶跃响应曲线9.适量改变主、副控调节仪的PID参数,重复步骤8,用计算机记录不同参数时系统的响应曲线。

五、实验报告要求1.画出水箱液位串级控制系统的结构框图。

2.用实验方法确定调节器的相关参数,并写出整定过程。

3.根据扰动分别作用于主、副对象时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能。

4.分析主、副调节器采用不同PID参数时对系统性能产生的影响。

6.综合分析两种控制方案的实验效果。

六、思考题1.试述串级控制系统为什么对主扰动(二次扰动)具有很强的抗扰能力?如果副对象的时间常数与主对象的时间常数大小接近时,二次扰动对主控制量的影响是否仍很小,为什么?2.当一次扰动作用于主对象时,试问由于副回路的存在,系统的动态性能比单回路系统的动态性能有何改进?3.串级控制系统投运前需要作好那些准备工作?主、副调节器的正反作用方向如何确定?4.为什么本实验中的副调节器为比例(P)调节器?5.改变副调节器的比例度,对串级控制系统的动态和抗扰动性能有何影响,试从理论上给予说明。

6.评述串级控制系统比单回路控制系统的控制质量高的原因?第六章前馈-反馈控制系统实验反馈控制是按照被控参数与给定值之差进行控制的。

它的特点是,调节器必须在被控参数出现偏差后才能对它进行调节,补偿干扰对被控参数的影响。

基于过程控制系统总具有滞后特性,因而从干扰的产生到被控参数的变化,需要一定长的时间后,才能使调节器产生对它进行调节作用,从而对干扰产生的影响得不到及时地抑止。

为了解决这个问题,提出一种与反馈控制在原理上完全不同的控制方法。

由于这种方法是一种开环控制,因而它只对干扰进行及时地补偿,而不会影响控制系统的动态品质。

即当扰动产生,补偿器立即根据扰动的性质和大小,改变执行器的输入信号,从而消除干扰对被控量的影响。

由于这种控制是在扰动发生的瞬时,而不是在被控制量发生变化后进行的,故称其为前馈控制或扰动补偿。

相关文档
最新文档