苏教版数学高二- 选修2-2教案 《合情推理—归纳推理》(1)
高中数学 合情推理 归纳推理导学案 苏教版选修2-2

高中数学合情推理归纳推理导学案苏教版选修2-2教学目标1、理解归纳推理的含义和步骤.2、能够认识归纳推理的基本模式,并把它们用于对问题的发现解决中去。
3、能够通过观察一些等式、不等式、数列等其它形式的问题,猜想、归纳出它们的变化规律。
重点与难点:(1)重点:利用归纳推理发现问题、提出猜想.。
(2)难点:如何去观察个别事实,发现规律,进行猜想教学过程(一)创设情景,章节引入1、通过袋中摸球的过程,总结探索活动是一个不断的提出猜想—验证猜想—再提出猜想—再验证猜想的过程,2、在一般的数学活动中,我们怎样进行推理?我们怎样验证(证明)结论?3、什么是推理?___________________________________________________(二)案例分析,引入概念案例一蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的,蛇、鳄鱼、海龟、蜥蜴都是爬行动物。
猜想:_______________________________案例二三角形的内角和是π,凸四边形的内角和是2π,凸五边形的内角和是3πL,猜想:_______________________________________归纳推理的定义:从________事实中推演出________的结论的推理方式称为归纳推理。
提炼归纳推理的思维过程:___________________→_________________→_____________________(三)案例赏析,文化熏陶哥德巴赫猜想:“任何大于2的偶数可以表示为两个素数的和”(简称“1+1”)(四)例题教学、巩固概念例1:已知数列{}n a 的第一项11=a ,且nn n a a a +=+11...)3,2,1(=n ,试归纳出这个数列的通项公式。
例2:观察下列不等式:22+133+1< ,22+233+2< ,22+333+3< L L 请你猜想一个一般性的结论.例3:根据图中5个为图形及相应点的个数的变化规律,试猜测第n 个图形中有_______个点(五)课堂练习 1 观察下列等式,从中归纳出一般结论.猜想________________ _____2.已知数列 则数列的第K 项是________ __________________((1) (2) (3) (4) (5)22221=11+3=21+3+5=31+3+5+7=4L 223434561,,,,a a a a a a a a a ++++++L课后作业1.数列2,5,11,20,,47,x …中的x 等于2. 由321312>++,512521>++,5.075.03++73>,运用归纳推理,可猜测出的一般结论是 3. 从222576543,3432,11=++++=++=中得出的一般性结论是___________ 4.322+, 833+,1544+,2455+,……,由此你猜出第n 个数是 5.已知数列,.......14,......,19,15,11,7,3-n 则113是这个数列的第 项。
高中数学新苏教版精品教案《苏教版高中数学选修2-2 2.1 合情推理与演绎推理》

合情推理教学目标结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比进行简单的推理,体会并认识合情推理在数学发现中的作用.教学重点,难点归纳推理和类比推理的特点及其创新性和不严谨性.教学过程我们生活中有很多谚语,特别是关于农耕的,例如“瑞雪兆丰年〞“邋遢冬至干净年〞,以及一些看云识天气的方法,这些都是我们的祖先根据多年的观察总结归纳出来的经验.这些经验就是人们根据长期的实践经验进行归纳的结果农民观察天气,生物学家会去观察鸟类,心理学家会去观察行为和表情,比方说你们也会观察,总结出我上课写在黑板右侧的总是错的,或者我微微一笑,说明接下来就是一个具有挑战性的问题.当然一个对数学感兴趣的数学家就会去观察一些数字.一.问题情境数学教育家G.波利亚在其名著?数学与猜测?中对哥德巴赫猜测的推理过程进行了模拟演示:首先,波利亚说明:归纳法常常从观察开始.一个生物学家会观察鸟类的生活,一个晶体学家会观察晶体的形状,一个对数论有兴趣的数学家会观察整数1,2,3,4,5,…的性质.这一段表达说明:归纳从观察开始,而观察要有归纳的动因,即要有感兴趣、需研究的问题,归纳推理研究问题、发现规律的手段.接着,波利亚说:假设你想要观察鸟的生活并有可能获得有益的结论的话,那么你就应当对鸟稍有熟悉,对鸟感兴趣,甚至你应当喜欢鸟.同样,假设你要考察数,你就应当对它们感兴趣,并且对它们颇为熟悉,你应当会区别偶数和奇数,你应当知道平方数1,4,9,14,25,…以及素数2,3,5,7,11,13,17,19,23,29,….这里,波利亚想要传达的意思是:对你感兴趣的问题你还需要对相关的知识有一定的了解,也即应该从你对这一课题中已经熟悉的、掌握的内容开始你的探究.波利亚又说:即使只有这一点朴素的知识,你也可能观察到一些东西.比方说你可能会碰到这样几个关系:3+7=103+17=20213+17=30并注意到它们之间的类似之处.它会使你想到:3,7,13,和17都是奇素数,10,20210都是偶数….这三个偶数都能够表示为两个奇素数之和,那么其他偶数又怎么样呢?上述过程说明了归纳推理的非常重要的特征:从特殊情形开始,并且所有的特殊情形都要具有类似之处,这个类似之处正是归纳发现的根底.波利亚接着说:那么其他偶数又怎么样呢?它们也有类似的性质吗?当然头一个等于两个奇素数之和偶数是6=3+3.看看超过6的数,我们发现8=3+510=3+7=5+512=5+714=3+11=7+716=3+13=5+11.这样下去总是对的吗?波利亚想告诉我们的是,对从几个特殊情形经过归纳推理得到的结果不能轻信,需要进一步验证.只有在较多的归纳检验证实的根底上得到的结论才能使我们更有信心.最后,波利亚说:无论如何,所看到的这些个别情况,至少可以启发我们提出一个一般性的命题:任何一个大于4的偶数都是两个奇素数的和.至此,实现了归纳推理的目标:一个一般性的结论〔猜测〕.当然,波利亚还进一步说明了证明的必要性.从波利亚的这个案例我们可以发现,对归纳推理的教学应该突出说明以下几点:1、要使学生认识到归纳推理不是盲目的、毫无目的的尝试,科学发现更不是纯属偶然的巧合,必须有一定的内因的驱动和信念的支撑.2、归纳推理的三个特点:从特殊开始的推理;由归纳推理得到的结论仅仅“似真〞;归纳推理是一种创造性的推理.3、归纳推理的思维规程大致为:【活动一】1.观察以下等式,从中可以得出怎样的一般规律?猜测:任何一个正整数都能表示为四个数的平方和.2.在数列中,,通过计算,试猜测这个数列的通项公式.猜测3.前个正整数的和为,前个正整数的平方和从表中发现,于是猜测.归纳推理要具备下述几个要素:1.多个特例综合分析;特例共性的发现:要存在某种相似性;共性的概括:猜测.归纳推理需要大量的原始数据,这是一个漫长的过程,在大数据时代,电脑已局部取代了这个过程,例如分析你的上网数据,分析你的喜好进行广告推送.但我们还有另外一种常用的推理方法.在高中数学学习中,指数函数与对数函数的类比,等差数列和等比数列的类比,平面几何和立体几何的类比,圆和椭圆和双曲线抛物线的类比,实数与虚数的类比等.〔G波利亚的类比〕类比实数的加法与乘法,并列出它们类似的性质.在实数的加法与乘法之间,可以建立如下的对应关系:加〔+〕乘〔×〕加数、被加数乘数、被乘数和积等等,它们具有以下类似的性质:试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合. 球的定义:到一个定点的距离等于定长的点的集合. 圆 球 弦截面圆 直径 大圆 周长 外表积 圆面积球体积例如三角形的性质可以往几个方向类比:一般化为四边形,特殊化为正三角形,升维度为三棱锥,改平面为曲面等【活动二】1.选两个相关知识进行类比2.圆的方程是,那么过圆上一点的切线方程为.猜测新命题:1.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质.类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠.2.类比推理的一般步骤:〔1〕找出两类事物之间的相似性或者一致性.〔2〕用一类事物的性质去推测另一类事物的性质,得出一个明确的命题〔猜测〕.【活动三】1.设,为实数,满足,,求的最大值.解:设,那么,即,,将,两式相加得.根据以上解答过程进行类比,尝试解决下题:设,为实数,满足,,求的最大值.〔2021年江苏高考第13题〕设,由此可以求出,,而2021江苏高考数学卷中的题目就表达出多种形式的类比思想。
苏教版高中数学选修2-2合情推理 归纳推理教案

合情推理-归纳推理教学目标结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳进行简单的推理,体会并认识合情推理在数学发现中的作用.教学重点,难点了解合情推理的含义,能利用归纳进行简单的推理,体会并认识合情推理在数学发现中的作用.教学过程一.问题情境1.情境:从一个或几个已知命题得出另一个新命题的思维过程称为推理.任何一个推理都包含前提和结论两个部分,前提是推理所依据的命题,它告诉我们已知的知识是什么;结论是根据前提推导得的命题.它告诉我们推理的知识是什么.下面是三个推理案例.(1)前提:当0n =时,21111n n -+=;当1n =时,21111n n -+=;当2n =时,21113n n -+=;当3n =时,21117n n -+=;当4n =时,21123n n -+=;当5n =时,21131n n -+=;11,11,13,17,23,31都是质数.结论:对于所有的自然数n ,211n n -+的值都是质数.2.问题:上述案例中的推理各有什么特点?二.学生活动从个别事实推演出一般性结论.三.建构数学1.归纳推理:从个别事实中推演出一般性结论,像这样的推理通常称为归纳推理。
2.归纳推理的思维规程大致为:3.归纳推理的特点:(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包含的范围.(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.(3)归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.归纳推理基于观察和实验,“瑞雪兆丰年”等谚语一样,是 人们根据长期的实践经验进行归纳的结果.四.数学运用1.例题:例1.蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的,蛇鳄鱼海龟蜥蜴都是爬行动物,所以,所有的爬行动物都是用肺呼吸的.例2.三角形的内角和是180,凸四边形的内角和是360,凸五边形的内角和是540,……由此我们猜想:凸n 边形的内角和是(2)180n -⨯.例3.221222223,,331332333+++<<<+++,…… 由此我们猜想:(,,b b m a b m a a m+<+均是正实数). 五.回顾小结:1.归纳推理的概念和特点;2.归纳推理的思维过程.。
2.1.合情推理-苏教版选修2-2教案

2.1. 合情推理-苏教版选修2-2教案教学目标通过本课的学习,学生能够:1.了解合情推理的概念和作用;2.学习合情推理的步骤和方法;3.运用所学知识,对实际问题进行合情推理。
教学重点1.合情推理的概念和作用;2.合情推理的步骤和方法。
教学难点如何运用所学知识进行实际问题的合情推理。
教学过程1.导入•引言:人们在日常生活中常常需要根据有限的信息进行推理,但由于信息不全或不完全可靠,我们往往会做出错误的结论。
那么,怎样才能用有限的信息做出正确的推理呢?今天我们要学习的就是如何进行“合情推理”。
2.学习•合情推理的概念:通过对信息进行分析,找到其中的共性和规律,从而得出正确的结论,这种推理方式被称为“合情推理”。
•合情推理的作用:合情推理能够帮助我们快速和准确地得出结论,尤其在信息量大、信息不完全时,其作用更为显著。
•合情推理的步骤和方法:1.分析问题,确定推理的目的;2.收集信息,筛选有用的信息;3.评价信息的可靠性,确定信息是否存在偏差;4.将信息进行分类,并找出其中的共性和规律;5.根据共性和规律,进行准确的推理,得出正确的结论。
•对于信息偏差和不完全的情况,我们可以采用以下方法:1.收集更多的信息,以丰富推理的依据;2.采用多种途径获取信息,减少信息偏差的可能性;3.与他人讨论,借鉴他人的意见和想法;4.对可能存在问题的信息进行分析和评价,减少其对推理结论的影响。
3.实践•将所学知识运用到实际问题的解决中,引导学生进行合情推理。
总结反思1.本节课学习了什么内容?2.合情推理的作用是什么?3.合情推理的步骤和方法是什么?4.我们在进行合情推理时需要注意哪些问题?5.我们如何将所学知识运用到实际问题的解决中?常见问题解答1.什么情况下需要进行合情推理?合情推理适用于对信息有限或不完全可靠的情况下的推理,尤其在信息量大、信息不完全时,其作用更为显著。
2.如何评价信息的可靠性?评价信息的可靠性需要考虑信息来源的可靠性、信息的真实性、信息的全面性等因素,一般可以通过多种途径获取信息,并进行比较和分析,减少信息偏差的可能性。
苏教版高中数学选修2-2推理案例赏析教案

推理案例赏析教学目标(1)了解推理方式中合情推理和演绎推理的区别和联系; (2)通过对具体的数学思维过程的考察,进一步认识合情推理和演绎推理的作用、特点以及两者之间的紧密联系.教学重点,难点合情推理和演绎推理的区别和联系. 教学过程 一.问题情境在前两节中,我们分别对合情推理和演绎推理的特点与思维过程进行了考察.那么合情推理和演绎推理之间具有怎样的联系和差异?合情推理和演绎推理是怎样推进数学发现活动的? 三.数学运用 1.例题:例1.正整数平方和公式的推导. 提出问题我们知道,前n 个正整数的和为11()123(1)2S n n n n =++++=+, …①那么,前n 个正整数的平方和22222()123?S n n =++++= …② 数学活动思路1(归纳的方案)如下表1-1所示,列举出2()S n 的前几项,希望从中归纳出一般的结论.(表1-1)头:1()S n 与2()S n 会不会有某种联系?如下表1-2所示,进一步列举出1()S n 的值,比较1()S n 与2()S n ,希望能有所发现.(表1-2)观察1()S n 与2()S n 的相应数据,并没有发现明显的联系.怎么办呢?尝试计算.终于在计算1()S n 和2()S n 的比时,发现“规律”了(表1-3).从表1-3中发现21()21()3S n n S n +=,于是猜想2(1)(21)()6n n n S n ++=. …③公式(3)的正确性还需要证明.思考:上面的数学活动是由那些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥什么作用? 思路2(演绎的方案)尝试用直接相加的方法求出正整数的平方和. (1)把正整数的平方表示出来,有222211,2(11)1211,==+=+⨯+2223(21)2=+=+22⨯1,+2224(31)3231,=+=+⨯+22(1)2(1)1n n n =-+-+,左右两边相加,得2221()[()][2()2]S n S n n S n n n =-+-+,等号两边的2()S n 被削去了,所以无法从中求出2()S n 的值,尝试失败了!(2)从失败中汲取有用信息,进行新的尝试.前面的失败尝试还是有意义的,因为尽管我们没有求出2()S n ,却求出了1()S n 的表达式,即2121()(1)22n n n S n n n +-==+,它启示我们:既然能用上面方法求出1()S n ,那么我们也应该可以用类似的方法求出2()S n .(3)尝试把两项和的平方公式改为两项和的立方公式.具体方法如下:33311,2(11)==+323332131311,3(21)232321,=+⨯+⨯+=+=+⨯+⨯+332(3)3(1)3(1)1n n n n =-+-+-+.左右两边分别相加,得323321()[()]3[()]3[()]S n S n n S n n S n n n =-+-+-+.由此知323212323()23(1)(21)()366n n n S n n n n n n n S n ++-++++===.思考:上面的数学活动是由哪些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥什么作用? 上面的案例说明:(1)数学发现活动时一个探索创造的过程.这是一个不断地提出猜想、验证猜想的过程.合情推理和演绎推理相辅相成,互相为用,共同推动着发现活动的进程.(2)合情推理是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论、提供思路的作用.(3)演绎推理是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判断”和证明,从而为调控探索活动提供依据.对这两种推理在数学活动中的作用,著名的数学家G 波利亚作了精辟的论述:“数学的创造过程与任何其它知识的创造过程一样,在证明一个数学定理之前,先得猜测这个定理的 内容;在完成详细的证明之前,先得推测证明的思路.创造过程式一个艰苦曲折的过程.数学家创造性的工作是论证推理,即证明.但这个证明是通过合情推理、通过猜想而发现的,” 五.回顾小结:1.合情推理和演绎推理的区别和联系; 2.体会这两种推理在数学活动中的作用.。
苏教版数学高二-数学苏教版选修2-2素材 互动课堂 合情推理第一课时

互动课堂疏导引导推理是由一个或几个已知判断作出一个新的判断的思维形式.由于数学中通常把判断称为命题,因而数学推理是由已知命题推出新的命题的思维形式.推理一般分为合情推理和演绎推理,合情推理包括归纳推理和类比推理.(1)归纳推理所谓归纳推理就是根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.是从特殊到一般的推理.归纳推理:根据一类事物的几个特殊对象具有某种属性F,而作出该类事物都具有属性F 的结论的推理.其推理形式是:∵A 1具有性质F,A 2具有性质F,…A n 具有性质F,.)(1F A A A A n 类事物都具有性质∴⊂⋃⋃ 归纳推理的基础是对个别或部分对象的实验和观察,而缺乏对全体对象的考察,因而所得的结论具有偶然性,只能称之为归纳猜想,其正确与错误是需要严格论证的.案例1 观察下图,可以发现:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52由上述事实,你能得出怎样的结论?【探究】 将上述事实分别叙述如下:前2个奇数的和等于2的平方;前3个奇数的和等于3的平方;前4个奇数的和等于4的平方;前5个奇数的和等于5的平方;……由此猜想:前n(n ∈N +)个连续奇数的和等于n 的平方,即1+3+5+…+(2n-1)=n 2【规律总结】归纳猜想是一种重要的思维方法,但结果的正确性还有待于证明,归纳往往从观察开始,观察,实验,对有限地资料进行归纳整理,提出带有规律性的猜想,是数学研究的基本方法之一.(2)类比推理①类比推理是根据两个或两类对象的某些属性相同或相似,而推出它们的某种其他属性也相同或相似的思维形式,也称为类比法,类比推理是以比较为基础的,在对两个或两类对象的属性进行比较时,若发现它们有较多的相同点或相似点,则可以把其中一个或一类对象的另外一种属性推移到另一个或另一类对象中去.由于类比法是根据两个或两类不同对象的某些特殊属性的比较,而作出有关另一个特殊属性的结论的,因此类比推理是从特殊到特殊的推理.②类比法的类型(ⅰ)简单类比 仅仅依据两个研究对象在形式或现象方面的某些相同或相似,而推出它们在其他某方面相同或相似的方法,称为简单类比.简单类比的结构模式为对象A :具有属性a 1、a 2、…、a n 、m对象B :具有属性a 1′、a 2′、…、a n ′.)'(':)',,','(2211相同或相似与具有属性对象相同或似与与与m m m B a a a a a a n n 由于简单类比侧重于外在形式和表面现象的比较,较少涉及事物的本质方面,因而其类比猜想的可靠性较差.(ⅱ)科学类比 为了提高类比猜想的可靠程度,一般来说需要增加作为推理基础的相同方面的属性,因为相同属性越多,推出属性相同的可能性就越大;同时要提高类比属性与推出属性的相关程度,二者联系愈密切,结论就愈可靠.于是,便出现了科学类比的方法.如果所研究的两个对象有较多相同或相似的属性,而且这些属性之间具有因果关系R,由此推出它们有其他相同或相似的属性及关系R′,这种方法就是科学类比.科学类比的结构模式为对象A :具有属性a 1、a 2、…、a n ,m 和关系R对象B :具有属性a 1′、a 2′、…、a n ′.'':)',,','(2211R m B a a a a a a n n 和关系具有对象相同或似与与与 与简单类比不同的是,科学类比重视因果关系.由于因果关系往往反映了事物的本质与内在联系,因而通过科学类比形成的猜想具有较大的可靠性.案例2 在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式__________________成立.【探究】本题考查等差数列与等比数列的类比.一种较本质的认识是:等差数列→用减法定义→性质用加法表述(若m ,n ,p,q ∈N *且m+n=p+q ,则a m +a n =a p +a q );等比数列→用除法定义→性质用乘法表述(若m ,n ,p,q ∈N *且m+n=p+q ,则a m ·a n =a p ·a q ). 由此,猜测本题的答案为:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).事实上,对等差数列{a n },如果a k =0,则a n+1+a 2k-1-n =a n+2+a 2k-2-n =…=a k +a k =0.所以有:a 1+a 2+…+a n =a 1+a 2+…+a n +(a n+1+a n+2+…+a 2k-2-n +a 2k-1-n )(n <2k-1,n ∈N *).从而对等比数列{b n },如果b k =1,则有等式b 1b 2…b n =b 1b 2…b 2k-1-n(n <2k-1,n ∈N *)成立.【规律总结】本题是一道小巧而富于思考的妙题,主要考查观察分析能力,抽象概括能力,考查运用类比的思想方法由等差数列{a n }而得到等比数列{b n }的新的一般性的结论. 活学巧用1.在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线…… 由此猜想凸n 边形有几条对角线?解析:凸四边形有2条对角线;凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条……于是猜想凸n 边形的对角线条数比凸n-1边形多n-2条对角线.由此凸n 边形对角线条数为2+3+4+5+…+(n-2)=21n(n-3)(n≥4,n ∈N *). 2.意大利数学家斐波那契(L.Fibonacci)在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对大兔子每月能生一对小兔子,而每对小兔子过了一个月就可长成大兔子.如果不发生死亡,那么由一对大兔子开始,一年后能有多少对大兔子呢?我们依次给出各个月的大兔子对数,并一直推算下去到无尽的月数,可得数列: 1,1,2,3,5,8,13,21,34,55,89,144,233,….这就是斐波那契数列,此数列中a 1=a 2=1,你能归纳出,当n≥3时a n 的递推关系式吗? 解析:从第3项开始,逐项观察分析每项与其前面几项的关系易得:从第3项起,它的每一项等于它的前面两项之和,即a n =a n-1+a n-2(n≥3,n ∈N *).3.已知15441544,833833,322322=+=+=+,……,若b a b a 66=+(a 、b 均为实数),请推测a=___________________,b=______________________.解析:由三个等式知:整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测ba +6中: a=6,b=62-1=35,即a=6,b=35答案:6;354.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A.a n =3n-1B.a n =3nC.a n =3n -2nD.a n =3n-1+2n-3解析:a 1=1=30,a 2=3=31,a 3=9=32,a 4=27=33,……由此猜想a n =3n-1答案:A5.类比实数的加法和向量的加法,列出它们相似的运算性质.解析:(1)两实数相加后,结果是一个实数,两向量相加后,结果仍是一个向量.(2)从运算律的角度考虑,它们都满足交换律和结合律.即a+b=b+a; a +b =b +a .(a+b)+c=a+(b+c); (a+b)+c=a+(b+c).(3)从逆运算的角度考虑,二者都有逆运算,即减法运算.a+x=0与a+x=0都有唯一解,x=-a与x=-a.(4)在实数加法中,任意实数与0相加都不改变大小,即a+0=a.在向量加法中,任意向量与零向量相加,既不改变该向量的大小,亦不改变该向量的方向,即a+0=a.6.类比圆的下列特征,找出球的相关特征.(1)平面内与定点距离等于定长的点的集合是圆;(2)平面内不共线的3个点确定一个圆;(3)圆的周长与面积可求;(4)在平面直角坐标系中,以点(x0,y0)为圆心、r为半径的圆的方程为(x-x0)2+(y-y0)2=r2.解析:(1)在空间内与定点距离等于定长的点的集合是球;(2)空间中不共面的4个点确定一个球;(3)球有面积与体积;(4)在空间直角坐标系中,以点(x0,y0,z0)为球心,r为半径的球的方程为(x-x0)2+(y-y0)2+(z-z0)2=r2.7.在平面上,我们如果用一条直线去截正方形的一个角,那么截下一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面.这时从正方体上截下三条侧棱两两垂直的三棱锥O—LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是__________________________________________.解析:考虑到直角三角形的两条边互相垂直,所以我们可以选取有3个面两两垂直的四面体,作为直角三角形的类比对象.如图所示,与Rt△ABC相对应的,是四面体P DEF;与Rt△ABC的两条边交成1个直角相对应的,是四面体P DEF的3个面在一个顶点处构成3个直二面角;与Rt△ABC 的直角边边长a、b相对应的,是四面体P DEF的面△DEF,△PDF和△DPE的面积S1,S2和S3;与Rt△ABC的斜边边长c相对应的,是四面体P DEF的面△PEF的面积S.由此,我们可以类比Rt△ABC中的勾股定理,猜想出四面体P DEF四个面的面积之间的关系.如下图(1)(2)所示,我们知道,在Rt△ABC中,由勾股定理,得c2=a2+b2.(1) (2)于是,类比直角三角形的勾股定理,在四面体P DEF中,我们猜想S2=S21+S22+S23成立.。
高二数学苏教版选修2-2教学案第2章1归纳推理

江苏省泰兴中学高二数学讲义()
归纳推理
【学习目标】
.了解合情推理的含义,体会合情推理基本的分析问题的方法,认识归纳推理的方法,并把它用于对问题的发现中去;
.归纳推理是从特殊到一般的一种推理方法,通常归纳的个体数目越多越具有代表性,推广的一般命题越可靠,它是发现问题的重要方法.
【预习导引】
.由数列,,,,…猜想该数列的第项可能是
.观察下列等式,并从中归纳出一般结论
()²()
²
²
²…
…
结论结论
仿照上面的过程,观察²,²²,²²²,…得结论
³,³³,³³³,…得结论
.楼梯共有级,每步只能跨一级或两级,走完这级楼梯共有()种不同的走法,则(),(),()的关系是
【典例剖析】
例.()在平面内观察:凸四边形有两条对角线,凸五边形有条对角线,凸六边形有条对角线,…,由此猜想凸边形有条对角线
()
你能作出什么猜想?证明你的猜想
()已知数列{}的前项和为,,
计算,并猜想表达式
例.计算()的值:
当时,;当时,;
当时,;当时,;
当时,;当时,;
而都是质数,请作出归纳推理,并验证猜想是否正确.
例.设平面内有条直线,其中有且仅有条直线互相平行,任意条直线不过同一点,若用表示这条直线的交点个数,
()求;
()猜想的表达式,并尝试解释你的发现.。
2.1《合情推理-归纳推理》教案(苏教版选修1-2)

苏教版选修1-2(2-2)新课程教学案合情推理—归纳推理●江苏省睢宁县菁华学校(221200) 卢清莲一、学习要求:1、通过生活中的实例和已学过的数学实例,了解推理、归纳推理的含义;2、能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的应用;3、通过已学知识感受和体会归纳推理的思维方法,进一步培养创新意识.二、互动课堂:(一)自学评价:1、识记:___________________________的思维过程称为推理.解:从一个或几个已知命题得出另一个新的命题.巧记方法:“推出道理”即“推理”.2、识记:根据一类事物的_________具有某种性质,推出这一类事物的_______都具有这种性质的推理叫归纳推理,简称归纳法.解:部分对象,所有对象;巧记方法:由“特殊”到“一般”的推理.3、已知一数列:2,4,8,16,gg g g g g ,则它的通项公式是____________. 解:2()n a n n N =∈.4、已知一数列:3g g g g g g ,则它的通项公式是____________.解:)n a n N =∈.5、归纳推理的一般步骤是:①___________;②___________;③_____________.解:观察、实验;概括、推广;猜想.6、思考:归纳推理的特点是什么?解:简要地说是:①特殊—一般;②猜测的或然性;③创造性.(二)新课引入:意大利数学家斐波那契(L g Fibonacci )在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对成年兔子每月能生一对小兔子,而每对小兔子过了一个月就长成了成年兔子,如果不发生死亡,那么由一对成年兔子开始,一年后能有多少对成年兔子呢?在学生无法解决的情况下,提出怎样解决这个问题呢?先深入学习本节知识吧!(三)互动探究:1、见本节开头的三个推理案例,回答几个推理各有什么特点? 解答:共同点:都是由前提与结论两部分组成.不同点:(1)是由特殊到一般的推理;(2)是由特殊到特殊的推理;(3)是由一般到特殊的推理.2、列举几个归纳推理的的例子,并检查当n =6,7,8,9,10,11时本节开头的推理案例中结论的正确性.由此你能得出什么结论?解答:(1)在一次数学测验中,甲、乙同学都考得及格,由此得出其他同学也考得及格;(2)凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,由此我们猜想:凸n 有1(3)2n n -条对角线;等等 其中(1)的结论不正确,(2)正确.当n =6时,211n n -+=41;当n =7时,211n n -+=53;当n =8时,211n n -+=67;当n =9时,211n n -+=83;当n =10时,211n n -+=101;当n =11时,211n n -+=121;121不是质数,从而得出结论:对于小于11的自然数n ,211n n -+的值都是质数.(四)经典范例:例1、已知数列{}n a 的通项公式21()(1)n a n N n +=∈+,12()(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1),(2),(3)f f f 的值,推测出()f n 的值.【学生讨论:】(学生讨论结果预测如下)(1)113(1)1144f a =-=-= 1213824(2)(1)(1)(1)(1)94936f a a f =--=⋅-=⋅== 12312155(3)(1)(1)(1)(2)(1)163168f a a a f =---=⋅-=⋅= 由此猜想,2()2(1)n f n n +=+ 解题回顾:虽然由归纳推理所得的结论未必正确,但它所具有的特殊到一般,由具体到抽象的认识功能,对于数学发现,科学家的发明是十分有用的.(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性的命题(猜想);是解决上述问题的根据.例2、解答新课引入问题:解:从具体问题出发,经过观察、分析再进行归纳.本题提出的问题就需要我们去观察和分析,我们依次给出各个月的成年兔子对数,并一直推算下去到无尽的月数,可得数列:1,1,2,3,5,8,13,21,34,55,89,144,233,g g g ,这就是斐波那契数列,此数列中,11a =,你能归纳出,当3n ≥时,n a 的递推关系吗?从第3项开始,逐项观察分析每项与其前面几项的关系易得,从第3项起,它的每一项等于它前面两项之和,即*12(3,)n n n a a a n n N --=+≥∈.(五)追踪训练:1、设1111122334(1)n s n n =++++⨯⨯⨯+g g g ,写出1s =_____,2s =_____,3s =_____,4s =_____,归纳推理出n s =______________. 解:12;23;34;45;1n n +. 2、已知13a =,26a =,且21n n n a a a ++=-,则33a =(A )A. 3B. -3C. 6D. -6解:3213a a a =-=,4323a a a =-=-,5436a a a =-=-,6543a a a =-=-,7653a a a =-=,8766a a a =-=,故{}n a 是以6项为一个周期的数列,所以333a a =.3、观察:1(1201)12⨯-⨯=,1(2312)22⨯-⨯=,1(3423)32⨯-⨯=,1(4534)42⨯-⨯=,g g g g g g .你能做出什么猜想? 解: []1(1)(2)(1)12n n n n n ++-+=+. 三、拓展延伸:通过计算215,225,235,245,g g g ,你能很快算出21995吗?分析:2152251001(11)25==⨯⨯++;2256251002(21)25==⨯⨯++;24520251004(41)25==⨯⨯++;由此,归纳出21995100199(1991)25=⨯⨯++.解题回顾:首先考察得出个位上的数字为5的自然数的平方数的末两们是25,只需要探索其百们以上的数的规律,并归纳,猜想出结论.四、总结回顾:1.归纳推理是由部分到整体,从特殊到一般的推理.通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.2.归纳推理的一般步骤:1)通过观察个别情况发现某些相同的性质.2)从已知的相同性质中推出一个明确表述的一般命题(猜想).五、课外练习与检测1、下面的几个推理是归纳推理的是(C )①教室内有一把椅子坏了,则该教室内的所有椅子都坏了;②由直角三角形,等腰三角形,等边三角形的内角和是180o ,归纳出所有三角形的内角和都是180o ;③由圆的性质得出球的有关性质.A. ①②③B. ②③C. ①②D. ①③2、平面上有(3)k k ≥条直线,其中1k -条直线互相平行,剩下一条与它们不平行,则这k 条直线将平面分成区域的个数为(C ).A. kB. k +2C. 2kD. 2k +23、设2222121234(1)n n s n -=-+-++-gg g ,通过计算1s ,2s ,3s ,4s ,g g g 可以猜测n s 等于(D ) A. (1)2n n + B. (1)2n n +- C. (1)(1)2n n n +- D.1(1)(1)2n n n -+- 4、设等差数列{}n a 的公差是d ,那么21a a d =+;3212a a d a d =+=+;4313a a d a d =+=+;g g g g g g由此猜想等差数列的通项公式是n a =________.解:观察d 的系数与序号的关系可得: 1(1)n a a n d =+-.5、设0()sin f x x =,/10()()f x f x =,/21()()f x f x =,g g g ,/1()()n n f x f x +=.n N ∈,则2005()f x =__________________________.解://10()()sin cos f x f x x x ===;//21()()cos sin f x f x x x ===-;//32()()(sin )cos f x f x x x ==-=-;//43()()(cos )sin f x f x x x==-=;//541()()sin cos ()f x f x x x f x ====;62()()f x f x =,g g g ,44()()n f x f x +=,故可知()n f x 是以4为周期的函数.所在20051()()cos f x f x x ==.6、设2()41f n n n =++,*n N ∈,计算(1)f ,(2)f ,(3)f ,(4)f ,g g g ,(10)f 的值,同时作出归纳推理,并验证猜想是否正确.解:2(1)114143f =++=,2(2)224147f =++=,2(3)334153f =++=,2(4)444161f =++=,2(5)554171f =++=,2(6)664183f =++=,2(7)774197f =++=,2(8)8841113f =++=,2(9)9941131f =++=,2(10)101041151f =++=.因为43,47,53,61,71,83,97,113,131,151都是质数.所以归纳为:当n 取任何非负整数时,2()41f n n n =++都是质数.因为2(40)4040414141f =++=⨯,所以(40)f 是合数.因此上面的归纳是错误的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 合情推理—归纳推理教案(1)
学习目标
1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。
2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
学习重点、难点
教学重点了解合情推理的含义,能利用归纳进行简单的推理。
教学难点用归纳进行推理,做出猜想。
学习过程
一、课堂引入
从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理
二、问题情境
案例1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。
案例2、三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒由此我们猜想:凸边形的内角和是(2)180
n-⨯︒
案例3、221222221
,,,
331332333
+++
<<<
+++
,由此我们猜想:
a a m
b b m
+
<
+
(,,
a b m均
为正实数)
二、学生活动
案例1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。
由此猜想:
案例2、三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒由此我们猜想:凸边形的内角和是(2)180
n-⨯︒
由此猜想:
案例3、221222221
,,,
331332333
+++
<<<
+++
,由此我们猜想:
a a m
b b m
+
<
+
(,,
a b m均
为正由此猜想:
三、建构数学
这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理。
(简称:归纳) 归纳推理的一般步骤:
⑴对有限的资料进行观察、分析、归纳整理;
⑵提出带有规律性的结论,即猜想;
⑶检验猜想。
S1具有P,
S2具有P,
……
Sn具有P,(S1,S2,…,Sn是A类事物的对象)
所以A类事物具有P。
练习1、下列推理是归纳推理吗?为什么?
金受热后体积膨胀,
银受热后体积膨胀,
铜受热后体积膨胀,
铁受热后体积膨胀,
金、银、铜、铁都是金属。
所以,所有的金属受热后都体积膨胀。
练习2、当n=0时,n2-n+11=11;
当n=1时,n2-n+11=11;
当n=2时,n2-n+11=13;
当n=3时,n2-n+11=17;
当n=4时,n2-n+11=23;
当n=5时,n2-n+11=31;
11,11,13,17,23,31都是质数。
所以,对于所有的自然数n ,n 2-n+11的值都是质数. 3、所有的金属都能导电,铁是金属,所以,铁能导电。
4、长方形的对角线的平方等于长与 宽的平方和。
所以,长方体的对角线的平方等于长、宽、高的平方和。
四、数学运用
1.例题:
例1:观察下图,可以发现 1=12, 1+3=4=22, 1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, ……
你能否从中归纳出一般性法则?
例2.已知数列{n a }的第一项1a =1,且 11n
n n
a a a +=+ (n =1,2,3,···),则这个数列的通项公式为____.
例3.数一数图中的凸多面体的面数F 、顶点数V 和棱数E,然后探求面数F 、顶点数V
和棱数E之间的关系。
凸多面体面数(F)顶点数(V)棱数(E)
四棱柱
三棱锥
八面体
三棱柱
四棱锥
尖顶塔
猜想凸多面体的面数F、顶点数V和棱数E之间的关系式为:
五、案例赏析,文化熏陶(皇冠明珠:歌德巴赫猜想(P28阅读))
哥德巴赫猜想:“任何大于2的偶数可以表示为两个素数的和”(简称“1+1”)
在陈景润之前,关于偶数可表示为s个质数的乘积与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了“9 + 9 ”。
1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”。
1932年,英国的埃斯特曼(Estermann)证明了“6 + 6 ”。
1937年,意大利的蕾西(Ricei)先後证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。
1938年,苏联的布赫夕太勃(Byxwrao)证明了“5 + 5 ”。
1940年,苏联的布赫夕太勃(Byxwrao)证明了“4 + 4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c 是一很大的自然数。
1956年,中国的王元证明了 “3 + 4 ”。
1957年,中国的王元先後证明了 “3 + 3 ”和 “2 + 3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,中国的王元证明了“1 + 4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。
四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。
”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。
1950年,有人从22国推进到35国。
1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。
看来这种推进仍然十分缓慢。
电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。
四色猜想的计算机证明,轰动了世界。
它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。
不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。
六.课堂练习:
1(a,b a __b __
===⋅⋅⋅===练习均为实数),请推测
练习2:(梵塔传说)传说在古老的印度有一座神庙,神庙中有三根针和套在一根针上的64个圆环。
古印度的天神指示他的僧侣们按下列规则,把圆环从一根针上全部移到另一根针上,第三根针起“过渡”的作用。
1.每次只能移动1个圆环;
2.较大的圆环不能放在较小的圆环上面。
如果有一天,僧侣们将这64个圆环全部移到另一根针上,那么世界末日就来临了。
请你试着推测:把n个圆环从1号针移到3号针,最少需要移动多少次?
七、回顾小结
1、推理、归纳推理的定义;
2、归纳推理的特点、作用;
八、课外作业
1.课本P29练习 2 ,4,5;
2.找一个你感兴趣的数学定义、公式或定理,探究它的来源,你也可以通过翻阅书籍、上网查找资料来寻求依据。