高二数学选修2-3教案
高中数学人教A版高二选修2-3教学案:1.2.2_第一课时_组合与组合数公式_Word版含解析

1.2.2组合第一课时组合与组合数公式预习课本P21~24,思考并完成以下问题1.组合的概念是什么?2.什么是组合数?组合数公式是怎样的?3.组合数有怎样的性质?[新知初探]1.组合的概念从n个不同的元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数的概念、公式、性质[点睛]排列与组合的联系与区别联系:二者都是从n个不同的元素中取m(n≥m)个元素.区别:排列与元素的顺序有关,组合与元素的顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列.只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)从a,b,c三个不同的元素中任取两个元素的一个组合是C23.()(2)从1,3,5,7中任取两个数相乘可得C24个积.()(3)1,2,3与3,2,1是同一个组合.()(4)C35=5×4×3=60.()答案:(1)×(2)√(3)√(4)×2.C2n=10,则n的值为()A.10B.5C.3D.4答案:B3.从9名学生中选出3名参加“希望英语”口语比赛,不同选法有()A.504种B.729种C.84种D.27种答案:C4.计算C28+C38+C29=________.答案:120组合的概念[典例]判断下列问题是组合问题还是排列问题:(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?[解](1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.区分排列与组合的方法区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[活学活用]判断下列问题是组合问题还是排列问题:(1)把5本不同的书分给5个学生,每人一本;(2)从7本不同的书中取出5本给某个同学;(3)10个人相互写一封信,共写了几封信; (4)10个人互相通一次电话,共通了几次电话.解:(1)由于书不同,每人每次拿到的也不同,有顺序之分,故它是排列问题.(2)从7本不同的书中,取出5本给某个同学,在每种取法中取出的5本并不考虑书的顺序,故它是组合问题.(3)因为两人互写一封信与写信人与收信人的顺序有关,故它是排列问题. (4)因为互通电话一次没有顺序之分,故它是组合问题.有关组合数的计算与证明[典例] (1)计算C 410-C 37·A 33; (2)证明:m C m n =n C m -1n -1.[解] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:m C m n=m ·n !m !(n -m )! =n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.关于组合数公式的选取技巧(1)涉及具体数字的可以直接用n n -m C m n -1=nn -m ·(n -1)!m !(n -1-m )!=n !m !(n -m )!=C m n 进行计算. (2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的性质C m n =C n -mn简化运算.[活学活用]1.计算:C 38-n 3n +C 3n n +21的值.解:∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5.∵n ∈N *,∴n =10.∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=C 230+C 131=30×292×1+31=466. 2.求使3C x -7x -3=5A 2x -4成立的x 值.解:根据排列数和组合数公式,原方程可化为 3·(x -3)!(x -7)!4!=5·(x -4)!(x -6)!,即3(x -3)4!=5x -6,即为(x -3)(x -6)=40. ∴x 2-9x -22=0,解得x =11或x =-2. 经检验知x =11时原式成立. 3.证明下列各等式. (1)C m n =m +1n +1C m +1n +1; (2)C 0n +C 1n +1+C 2n +2…+C m -1n +m -1=C m -1n +m .解:(1)右边=m +1n +1·(n +1)!(m +1)![(n +1)-(m +1)]!=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C mn =左边,∴原式成立.(2)左边=(C 0n +1+C 1n +1)+C 2n +2+C 3n +3+…+C m -1n +m -1=(C 1n +2+C 2n +2)+C 3n +3+…+C m -1n +m -1=(C 2n +3+C 3n +3)+…+C m -1n +m -1=(C3n +4+C 4n +4)+…+C m -1n +m -1=…=C m -2n +m -1+C m -1n +m -1=C m -1n +m =右边,∴原式成立.简单的组合问题[典例] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件中,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加. [解] (1)C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C 29=36种不同的选法. (3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C 59=126种不同的选法.解答简单的组合问题的思考方法(1)弄清要做的这件事是什么事;(2)选出的元素是否与顺序有关,也就是看看是不是组合问题; (3)结合两计数原理利用组合数公式求出结果. [活学活用]一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:(1)从口袋内的8个球中取出3个球,取法种数是C 38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C 27=7×62×1=21. (3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C 37=7×6×53×2×1=35.层级一 学业水平达标1.C 58+C 68的值为( )A .36B .84C .88D .504解析:选A C 58+C 68=C 69=C 39=9×8×73×2×1=84. 2.以下四个命题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开两辆车从甲地到乙地解析:选C 选项A 是排列问题,因为2个小球有顺序;选项B 是排列问题,因为甲、乙位置互换后是不同的排列方式;选项C 是组合问题,因为2位观众无顺序;选项D 是排列问题,因为两位司机开哪一辆车是不同的.选C .3.方程C x 14=C 2x -414的解集为( )A .4B .14C .4或6D .14或2解析:选C 由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x ≤14或⎩⎪⎨⎪⎧x =14-(2x -4),2x -4≤14,x ≤14,解得x =4或6.4.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆( )A .220个B .210个C .200个D .1 320个解析:选A C 312=220,故选A .5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A .60种B .48种C .30种D .10种解析:选C 从5名志愿者中选派2人参加星期六的公益活动有C 25种方法,再从剩下的3人中选派2人参加星期日的公益活动有C 23种方法,由分步乘法计数原理可得不同的选派方法共有C 25·C 23=30种.故选C .6.C 03+C 14+C 25+…+C 1821的值等于________. 解析:原式=C 04+C 14+C 25+…+C 1821 =C 15+C 25+…+C 1821=C 1721+C 1821=C 1822=C 422=7 315.答案:7 3157.若已知集合P ={1,2,3,4,5,6},则集合P 的子集中含有3个元素的子集数为________.解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C 36=20种.答案:208.不等式C 2n -n <5的解集为________.解析:由C 2n -n <5,得n (n -1)2-n <5,∴n 2-3n -10<0.解得-2<n <5.由题设条件知n ≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ; (2)解不等式:C x -18>3C x 8.解:(1)原方程等价于m (m -1)(m -2)=6×m (m -1)(m -2)(m -3)4×3×2×1,∴4=m -3,m =7.(2)由已知得:⎩⎪⎨⎪⎧x -1≤8,x ≤8,∴x ≤8,且x ∈N *,∵C x -18>3C x8,∴8!(x -1)!(9-x )!>3×8!x !(8-x )!.即19-x>3x ,∴x >3(9-x ),解得x >274,∴x =7,8.∴原不等式的解集为{7,8}.10.某区有7条南北向街道,5条东西向街道.(如图)(1)图中有多少个矩形?(2)从A 点走向B 点最短的走法有多少种?解:(1)在7条南北向街道中任选2条,5条东西向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有C 27·C 25=210(个).(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A 到B 最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有C 610=C 410=210(种)走法.层级二 应试能力达标1.若C 4n >C 6n ,则n 的集合是( )A .{6,7,8,9}B .{0,1,2,3}C .{n |n ≥6}D .{7,8,9}解析:选A∵C 4n >C 6n,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6,⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6.⇒⎩⎪⎨⎪⎧ n 2-9n -10<0,n ≥6,⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6. ∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种解析:选B 由题意,不同的放法共有C 13C 24=3×4×32=18种. 3.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种D .66种解析:选D 和为偶数共有3种情况,取4个数均为偶数的取法有C 44=1种,取2奇数2偶数的取法有C 24·C 25=60种,取4个数均为奇数的取法有C 45=5种,故不同的取法共有1+60+5=66种.4.过三棱柱任意两个顶点的直线共15条,其中异面直线有( ) A .18对B .24对C .30对D .36对解析:选D 三棱柱共6个顶点,由此6个顶点可组成C 46-3=12个不同四面体,而每个四面体有三对异面直线则共有12×3=36对.5.方程C x 17-C x 16=C 2x +216的解集是________.解析:因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x+2=16,得x 1=-3(舍去),x 2=5.答案:{5}6.某书店有11种杂志,2元1本的有8种,1元1本的有3种.小张买杂志用去10元钱,则不同买法的种数为________(用数字作答).解析:由已知分两类情况: (1)买5本2元的买法种数为C 58.(2)买4本2元的、2本1元的买法种数为C 48·C 23.故不同买法种数为C 58+C 48·C 23=266. 答案:2667.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 解:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!,整理得n 2-21n +98=0, 解得n =7或n =14,要求C 12n 的值,故n ≥12,所以n =14,于是C 1214=C 214=14×132×1=91.8.已知集合A ={a 1,a 2,a 3,a 4},B ={0,1,2,3},f 是从A 到B 的映射. (1)若B 中每一元素都有原象,则不同的映射f 有多少个? (2)若B 中的元素0无原象,则不同的映射f 有多少个?(3)若f 满足f (a 1)+f (a 2)+f (a 3)+f (a 4)=4,则不同的映射f 又有多少个? 解:(1)显然映射f 是一一对应的,故不同的映射f 共有A 44=24个.(2)∵0无原象,而1,2,3是否有原象,不受限制,故A 中每一个元素的象都有3种可能,只有把A 中每一个元素都找出象,这件工作才算完成,∴不同的映射f 有34=81个.(3)∵1+1+1+1=4,0+1+1+2=4,0+0+1+3=4,0+0+2+2=4,∴不同的映射有:1+C 24A 22+C 24A 22+C 24=31个.。
人教课标版高中数学选修2-3:《离散型随机变量的均值与方差(第2课时)》教案-新版

2.3 离散型随机变量的均值与方差(第2课时)一、教学目标 1.核心素养通过对离散型随机变量的方差的学习,更进一步提高了学生的数学建模能力和数学运算能力. 2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的方差的概念 (2)能计算简单离散型随机变量的方差 (3)并能够解决一些实际问题. 3.学习重点离散型随机变量的方差的概念、公式及其应用. 4.学习难点灵活利用公式求方差.. 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P64-P67,思考:方差、标准差的定义是什么?它们各自反应了什么? 任务2若随机变量X 服从两点分布,则方差为多少?若服从二项分布呢? 任务3根据方差的计算过程,可得到它的什么性质? 2.预习自测(1)已知随机变量x 的分布列则()X D =__________.(2)若随机变量⎪⎭⎫⎝⎛3210~,B X ,则方差DX=________.(二)课堂设计 1.知识回顾(1)均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为则称 n n p x p x p x E +++=...2211ξ为ξ的均值或数学期望,简称期望.(2)均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平. (3)均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量, 且有b aEX b aX E +=+)(①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身;②当1=a 时,b EX b X E +=+)(,即随机变量X 与常数之和的期望等于X 的期;③当0=b 时,aEX aX E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.(4)①若X 服从两点分布,则p X E =)(; ②若ξ~),,(p n B 则np X E =)(. 2.问题探究问题探究一 随机变量方差的定义要从两名同学中挑选出一名同学代表班级参加射击比赛,根据以往的成绩记录,第一名同学击中目标靶的环数的分布列为如果每班只能一人参加年级比赛,你觉得应该让甲乙谁代表班级参赛? 通过计算分析: E (X 1)=5, E (X 2)=5,所以从均值比较不出两名同学的水平高低.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示随机变量在随机试验中取值的平均值.但有时两个随机变量只用这一个特征量是无法区别它们的,还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.但显然两名同学的水平是不同的,要进一步去分析成绩的稳定性. 我们可以定义离散型随机变量的方差.(给出定义)方差:对于离散型随机变量X ,如果它所有可能取的值是n x x x ,....,,21,且取这些值的概率分别是n p p p ,....,,21,那么,n n p X E x p X E x p X E x X D ⋅-++⋅-+⋅-=2222121))((...))(())(()(称为随机变量X 的方差,式中的)(X E 是随机变量X 的均值.标准差:)(X D 的算术平方根)(X D 叫做随机变量X 的标准差,记作)(X σ.随机变量X 的方差、标准差都反映了随机变量取值的稳定与波动、集中与离散的程度;数值越大,说明随机变量取值波动越大,越不稳定;请分别计算探究中两名同学各自的射击成绩的方差.(进一步探究认识用随机变量方差来反映取值的稳定情况)第一名同学5.1)(,8)(==X D X E 第二名同学82.0)(,8)(==X D X E结论:第一名同学的射击成绩稳定性较差,第二名同学的射击成绩稳定性较好,稳定于8环左右.对“探究”的再思考(1)如果其他班级参赛选手的射击成绩都在9环左右,本班应该派哪一名选手参赛? (2)如果其他班级参赛选手的射击成绩都在8环左右,本班应该派哪一名选手参赛? 问题探究二 常见随机变量方差及随机变量方差的性质 ①若X 服从两点分布,则)1()(p p X D -= 若),(~p n B X ,则)1()(p np X D -=.②方差的性质:)()(2X D a b aX D =+;22))(()()(X E X E X D -=. 3.运用新知例1有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X ,求)(X E ,)(X D .【知识点:期望、方差】解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以X ~B(200,1%).因为np X E =)(,)1()(p np X D -=,这里n =200,p =1%.所以)(X E =200×1%=2,)(X D =200×1%×99%=1.98. 例2已知随机变量X 的分布列为若E (X )=23. (1)求D (X )的值;(2)若Y =3X -2【知识点:离散型随机变量期望、方差及方差的性质】 解:由12+13+p =1,得p =16.又E (X )=0×12+1×13+16x =23, ∴x =2.(1)D (X )=(0-23)2×12+(1-23)2×13+(2-23)2×16=1527=59. (2)∵Y =3X -2,∴D (Y )=D (3X -2)=9D (X ).==练习1 设X ~B (n ,p ),且E (X )=12,D (X )=4,则n 与p 的值分别为( ) A .18,13 B .12,23C .18,23D .12,13 【知识点:离散型随机变量方差及方差的性质】答案:由X ~B (n ,p ),则4)(,12)(====npq X D np X E ,所以32,18==p n . 练习2 设p 为非负实数,随机变量X 的概率分布为:求E (X )与D (X )的最大值. 解:根据题意,得⎩⎪⎨⎪⎧0≤p <1,0≤12-p <1,解得0≤p ≤12.因为E (X )=-1×(12-p )+0×p +1×12=p , 所以当p =12时,E (X )取得最大值,为12.因为D (X )=(-1-p )2(12-p )+(0-p )2p +(1-p )2×12=-p 2-p +1=-(p +12)2+54,故当p =0时,D (X )取得最大值为1.【知识点:离散型随机变量期望、方差及二次函数的性质】 4.课堂总结 重点难点突破(1)求离散型随机变量均值与方差的方法步骤: ①理解X 的意义,写出X 可能取的全部值; ②求X 取每个值的概率; ③写出X 的分布列; ④由方差的定义求)(X D .(2)方差的性质:(1))()(2X D a b aX D =+;22))(()()(X E X E X D -=. (2)若X 服从两点分布,则()=(1)D X p p -; (3)若ξ~),,(p n B 则(1)D np p ξ=-;(4)方差DX 表示,DX 越大,表示,说明X 的取值越分散;DX 越小,表示,说明X 的取值越集中稳定.(5)方差公式的几种形式:22122))(()())(())(()(X E X E p X E x X E X E X D i ni i -=⋅-=-=∑=.方差的意义数学期望反映了随机变量取值的平均水平,但有时只知道数学期望还不能解决问题,还需要知道随机变量的取值在均值周围变化的情况,即方差.①随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要的理论依据,一般先比较均值,若均值相同,再用方差来决定.②随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;③标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 5.随堂检测1.若随机变量X 满足P (x =c )=1,其中c 为常数,则()X E =________,()X D _______.2.已知随机变量X 的分布列为则()X E 与()X D 的值为( )(A) 0.6和0.7 (B)1.7和0.3 (C) 0.3和0.7 (D)1.7和0.213.已知()5.0100~,B X 则()X E =___,()X D =____. ()12-X E =____,()12-X D =____.4.有一批数量很大的商品,其中次品占1%,现从中任意地连续取出200件商品,设其次品数为X ,则()X E =_____, ()X D =_______.5.已知甲、乙两名射手在同一条件下射击,所得环数x 1、x 2的分布列如下:试比较两名射手的射击水平.如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛?如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?(三)课后作业 基础型 自主突破1.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( )A .0.6和0.7B .1.7和0.09C .0.3和0.7D .1.7和0.21 2.已知X 的分布列为则D (X )等于( )A .0.7B .0.61C .-0.3D .0 3.D (ξ-D (ξ))的值为( )A .无法求B .0C .D (ξ) D .2D (ξ) 能力型 师生共研4.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定5.若ξ是离散型随机变量,P(ξ=X1)=23,P(ξ=X2)=13,且X1<X2,又已知E(ξ)=43,D(ξ)=29,则X1+X2的值为()A.53 B.73C.3 D.1136.设ξ~B(n,p),则有()A.E(2ξ-1)=2np B.D(2ξ+1)=4np(1-p)+1 C.E(2ξ+1)=4np+1D.D(2ξ-1)=4np(1-p)7.若随机变量X1~B(n,0.2),X2~B(6,p),X3~B(n,p),且E(X1)=2,D(X2)=32,则σ(X3)的值是()A.0.5 B. 1.5 C. 2.5 D.3.5自助餐1.已知离散型随机变量X的分布列如下表.E(X)=0,D(X)=1,则a=________,b=________.2.变量ξ的分布列如下:其中a,b,c成等差数列.若E(ξ)=13,则D(ξ)的值是________.3.抛掷一枚质地均匀的骰子,用X表示掷出偶数点的次数.(1)若抛掷一次,求E(X)和D(X);(2)若抛掷10次,求E(X)和D(X).4.有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令ξ=x·y.求:(1)ξ所取各值的分布列;(2)随机变量ξ的数学期望与方差.(四)参考答案预习自测 1.1.2 2.920 随堂检测 1.c ,0 2. D3.50, 25, 99, 1004. 2,1.985. 解:92.0106.092.081=⨯+⨯+⨯=ξE ,94.0102.094.082=⨯+⨯+⨯=ξE∴甲、乙两射手的射击平均水平相同.又8.0,4.021==ξξD D∴甲射击水平更稳定.如果对手在8环左右,派甲;如果对手在9环左右,派乙. 课后作业 基础型 1.D 2.B 3.C 能力型 4.A 5.C 6.D 7.C 自助餐 1.512, 14 2.593.解:(1)X 服从两点分布,∴E (X )=p =12.D (X )=p (1-p )=12×(1-12)=14. (2)由题意知,X ~B (10,12). ∴E (X )=np =10×12=5, D (X )=npq =10×12×(1-12)=52.4.解:(1)随机变量ξ的可能取值有0,1,2,4,“ξ=0”是指两次取的卡片上至少有一次为0,其概率为 P (ξ=0)=1-23×23=59;“ξ=1”是指两次取的卡片上都标着1,其概率为 P (ξ=1)=13×13=19;“ξ=2”是指两次取的卡片上一个标着1,另一个标着2,其概率为P (ξ=2)=2×13×13=29; “ξ=4”是指两次取的卡片上都标着2,其概率为P (ξ=4)=13×13=19. 则ξ的分布列为(2)E (ξ)=0×59+1×19+2×29+4×19=1,D (ξ)=(0-1)2×59+(1-1)2×19+(2-1)2×29+(4-1)2×19=169.。
人教课标版高中数学选修2-3:《二项式定理(第1课时)》教案-新版

1.3 二项式定理 第一课时一、教学目标 1.核心素养通过二项式定理的推导过程的学习,提高学生的归纳推理能力,树立由特殊到一般的数学思想,增强学生的逻辑推理能力. 2.学习目标(1)初步掌握求二项展开式.(2)熟练运用通项公式求二项展开式中指定的项(如常数项、有理项). 3.学习重点熟练运用通项公式求二项展开式中指定的项(如常数项、有理项). 4.学习难点熟练运用通项公式求二项展开式中指定的项(如常数项、有理项). 二、教学设计 (一)课前设计1.预习任务(阅读教材完成)1.二项式定理:=+nb a )( ; 2.(1)n b a )(+的二项展开式中共有 项; (2)二项式系数: ;(3)二项展开式的通项公式:=+1r T ,它是展开式的第 项. 2.预习自测1.二项式91()x x-的展开式的第3项是( )A .-84x 3B .84x 3C .-36x 5D .36x 5 解:D2.(1+x )7的展开式中x 2的系数是( ) A .42 B .35 C .28 D .21 解:D3.在62()x x-的二项展开式中,常数项等于________.解:-160 (二)课堂设计1.知识回顾(1)错误!未找到引用源。
;(2)错误!未找到引用源。
(3)错误!未找到引用源。
2.问题探究问题探究一探究归纳,形成二项式定理●活动一回顾旧知,回忆展开式(a+b)4=(a+b) (a+b) (a+b) (a+b)展开式中的各项是什么?思考:ab3是怎样来的?有多少个?引导学生追究每个系数的来源,借助于组合的思想找到规律,从中体会到探索的乐趣.归纳结论:由上面的探索得到:(a+b)4=C04a4+C14a3b+C24a2b2+C34ab3+C44b4●活动二大胆猜想(a+b)n展开式中的各项是什么?归纳:一般对于任意的正整数n,有:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r…+C n n b n(n∈N*)并指出:①这个式子所表示的定理叫二项式定理.右边的多项式叫(a+b)n的二项展开式.各项系数C r n(r=0、1、2、…、n)叫做二项式系数.②式子中的C r n a n-r b r叫做二项展开式的通项.记做:T r+1=C r n a n-r b r.上述结论是从分析了少数特例后,得出了一般的结论,这种方法叫不完全归纳法,还需用数学归纳法证明,但这里教材不要求证明了.问题探究二利用二项式定理能解决问题?1.求二项式的指定项或其系数例1.(1)(1+x)7的展开式中x2的系数是( )A.42 B.35 C.28 D.21【知识点:二项式展开式的系数求法,考查运算能力】解:选D 依题意可知,二项式(1+x)7的展开式中x2的系数等于C27×15=21.(2)在(2x2-1x)5的二项展开式中,x的系数为( )A.10 B.-10 C.40 D.-40【知识点:二项式展开式的系数求法,考查运算能力】解:D.(2x2-1x)5的展开式的通项为T r+1=5rC(2x2)5-r(-1x)r=5rC25-r(-1)r x10-3 r,令10-3r=1得,r=3,∴T4=35C22(-1)3x=-40x.∴x的系数是-40.例2.(1)在62()x x-的二项展开式中,常数项等于________.【知识点:二项式展开式的系数求法,考查运算能力】解:-160.由通项公式得T r +1=6r C x 6-r 2()r x-=(-2)r 6r C x 6-2r,令6-2r =0,解得r =3,所以是第4项为常数项,T 4=(-2)336C =-160.(2)已知8()ax x-展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28【知识点:二项式展开式的系数求法,考查运算能力】解:选C 由题意知48C ·(-a )4=1 120,解得a =±2,令x =1,得展开式各项系数和为(1-a )8=1或38.例3.(1) 在(x -2)5y)4的展开式中x 3y 2的系数为________. 【知识点:二项式展开式的系数求法,考查运算能力】 解:480 (x -2)5的展开式的通项为T r +1=5r C x 5-r (-2)r ,令5-r =3得r =2,得x 3的系数25C (-2)2=40;y)4的展开式的通项公式为T r +1=4r C 4-ry r ,令r =2得y 2的系数24C 2=12,于是展开式中x 3y 2的系数为40×12=480.(2) 在(x -1)(x -2)(x -3)(x -4)(x -5)的展开式中,含x 4的项的系数是________. 【知识点:二项式展开式的系数求法,考查运算能力】解:-15.从4个因式中选取x ,从余下的一个因式中选取常数,即构成x 4项,即-5x 4-4x 4-3x 4-2x 4-x 4,所以x 4项的系数应是-1-2-3-4-5=-15. 3.课堂总结 【知识梳理】二项式定理及其通项公式1.二项式定理:01()()n n n r n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈2.(1)nb a )(+的二项展开式中共有错误!未找到引用源。
高二数学选修2-3教案

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式二次备课第课时总第教案课型:新授课主备人:审核人:1.1分类加法计数原理和分步乘法计数原理一、教学目标:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题二、教学重难点:重点:分类计数原理(加法原理)与分步计数原理(乘法原理)难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解三、教学方法讲授法四、教学过程一、新课讲授引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法.总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2)发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有m=N+n种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:.A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A ,B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种).变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m种不同的方法,在第2类方案中有2m种不同的方法,在第3类方案中有3m种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n类办法,在第1类办法中有1m种不同的方法,在第2类办法中有2m种不同的方法……在第n类办法中有nm种不同的方法.那么完成这件事共有nmmmN+⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.2 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A,2A,…,1B,2B,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.探究:你能说说这个问题的特征吗?(2)发现新知二次备课分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯=种不同的方法.(3)知识应用例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.3 综合应用例3. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是二次备课123N m m m =++=4+3+2=9;( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .(3)26232434=⨯+⨯+⨯=N 。
人教版高中数学选修2-3:2.2.2 事件的相互独立性教案

(一) 复习引入问题1:三个臭皮匠能顶一个诸葛亮吗?诸葛亮一人组成的团队PK臭皮匠三人组成的团队,他们解决同一个问题的概率分别为:诸葛亮解决问题的概率为0.85;臭皮匠老大解决问题的概率为0.5,老二为0.4,老三为0.3,要求臭皮匠团队成员必须独立解决,三人中至少有一人解决问题就算团队胜出,问臭皮匠团队与诸葛亮团队谁的胜算比较大?臭皮匠团队的亲友团做了如下的解释,设事件A:臭皮匠老大能解决问题;事件B:臭皮匠老二能解决问题;事件C:臭皮匠老三能解决问题;则臭皮匠团队能胜出的概率为P=P(A)+P(B)+P(C)=0.5+0.45+0.4=1.35,所以臭皮匠团队必胜。
你认为这种计算方法合理吗?教师提问,让学生利用已有知识对臭皮匠亲友团的回答做出是否正确的判断。
将我们的俗语改编成题,激发学生学习兴趣,同时引出本节主要内容:事件的独立性。
课题2.2.2 事件的相互独立性课时 1 授课时间主备人:教学目标知识与技能了解相互独立事件的概念,初步掌握用定义判断某些事件是否相互独立,能区分互斥事件与相互独立事件。
了解相互独立事件同时发生的概率的乘法公式,会运用此公式计算一些简单的概率问题。
过程与方法:经历概念的形成及公式的探究、应用过程,培养学生观察、分析、类比、归纳的能力,培养学生自主学习的能力与探究问题的能力。
情感态度与价值观:通过设置恰当而有趣的课前引例,激发学生学习本小节知识的兴趣,通过小组合作学习让学生体会合作学习的乐趣教学准备ppt重点难点教学重点:了解相互独立事件的概念,如何求相互独立事件都发生的概率。
教学难点:公式的推导与应用。
教师活动学生活动设计意图。
人教版高中选修2-3《正态分布》教案

人教版高中选修2-3《正态分布》教案一、教学目标1.知识与技能:–能够通过计算、观察与分析进行正态分布的基本参数估计与计算;–能够根据数据特征确定正态分布的使用条件,并运用正态分布解决实际问题。
2.过程与方法:–提高学生数理思维能力及运用计算机软件进行数据统计和分析的能力;–提高学生观察、归纳、分析问题及解决问题的能力。
3.情感态度与价值观:–培养学生科学态度,认识正态分布的重要性和应用价值,拓宽学生科学视野。
二、教学重、难点1.教学重点:–正态分布的基本概念与相关参数的计算;–正态分布的性质及模型的应用;–正态分布与假设检验。
2.教学难点:–正态分布在实际中的广泛应用。
三、教学内容1. 正态分布的基本概念与参数1.正态分布的定义–介绍正态分布的基本特征和概念。
2.正态分布的概率密度函数和分布函数–掌握正态分布的概率密度函数和分布函数的定义;–画出正态分布的概率密度函数和分布函数的图像。
3.正态分布的标准化–掌握正态分布的标准化转化法,以及标准正态分布表的使用方法。
2. 正态分布的参数估计与计算1.正态分布的基本形式–介绍正态分布的基本形式,以及参数的含义;–学习如何通过样本来估计总体的参数。
2.样本均值和样本标准差–掌握样本均值和样本标准差的定义和计算方法;–从样本中估计总体的均值和标准差。
3.抽样分布–掌握样本均值和样本标准差的概率分布,以及如何计算抽样分布。
3. 正态分布的应用1.正态分布的性质及模型的应用–描述正态分布的各种统计特征;–掌握利用正态分布进行概率估计的方法;–了解正态分布在实际问题中的应用,如质量控制、投资、风险评估等。
2.正态分布与假设检验–了解假设检验的基本内容及步骤;–学习如何从正态分布的角度来诠释假设检验。
四、教学方法1.授课讲解:对正态分布相关概念和公式进行讲解,以期解决学生对于正态分布不熟悉的情况。
2.讲解示范法:用实例向学生呈现正态分布的应用场景及应用方法,以期加深学生对于正态分布在实践中的应用认识。
数学选修23教学计划

数学选修23教学计划数学选修2-3教学计划一、指导思想认真学习与贯彻课程标准改革的精神,以学生为本,以教导处教学计划为指导。
面向全体学生,全面提高学生的素质,发展学生的智力,培养学生的数学能力,提高学生的数学成绩。
较好地完成高中必修3下半册和选修2-1的部分教学任务。
学生情况及教材分析高中教学内容深,学生接受起来很困难。
所以教师要根据实际情况,面对全体,因材施教,对学习有障碍的学生进行个别辅导。
以优待差,发挥学生群体的作用。
抓好三类生的教学,促进尖子生,带好中等生,扶好下等生。
二、学生情况及简要分析高二(1)班学生来自恰热克镇各村,现该班有 (36) 名学生,他们都是团员,该班学生都自愿组织的,学生的热情较高,组织情况也很好。
三、教材分析高中选修2-1的部分教学内容。
通过教学,要使学生把数学与实际生活联系起来,掌握必须掌握的基础知识与基本技能,进一步培养学生的数学创新意识良好个性品质以及初步的辩证唯物主义的观点。
第一章命题,本章主要学习四种命题,四种命题的相互关系,充分条件与必要条件,充要条件,简单逻辑连接词,含有一个最词的明天的否定有关知识。
结好了方法才会学有所获。
在教学中面向全体学生,因材施教,加强引导,使学生养成良好的学习习惯,注重培养学生兴趣和主动性。
鼓励学生大胆创新,勇于探索。
培养学生创新能力和创新意识。
努力提高学生成绩。
4、教师千方百计想出最直观的教学方法,把课程讲明白,直到学生弄明白为止。
多使用直观简捷的教学方法,注重兴趣教学。
根据学生容易遗忘的特点,要及时有效地搞好复习。
课前提问抓住重点,每周的自习课搞好一周的复习巩固,做好每个单元的训练。
教师一定要有耐心、信心,相信学生会学好的五、高中数学教学计划指导思想准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。
针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基矗六、教学建议1、树立以学生为主体的教育观念。
数学选修2-3教案

第一章计数原理1.1分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2)发现新知m种不同的方分类加法计数原理完成一件事有两类不同方案,在第1类方案中有n种不同的方法. 那么完成这件事共有法,在第2类方案中有N+=nm种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种).变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.2 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.探究:你能说说这个问题的特征吗?(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯=种不同的方法.(3)知识应用例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.3 综合应用例3. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .(3)26232434=⨯+⨯+⨯=N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)发现新知
分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有 种不同的方法,在第2类方案中有 种不同的方法. 那么完成这件事共有
种不同的方法.
(3)知识应用
例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:
3综合应用
例3.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.
①从书架上任取1本书,有多少种不同的取法?
②从书架的第1、2、3层各取1本书,有多少种不同的取法?
③从书架上任取两本不同学科的书,有多少种不同的取法?
【分析】
①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.
高二数学选修2-3教案
第课时 总第教案
课型:新授课主备人:审核人:
1.1分类加法计数原理和分步乘法计数原理
一、教学目标:
①理解分类加法计数原理与分步乘法计数原理;
②会利用两个原理分析和解决一些简单的应用问题
二、教学重难点:
重点:分类计数原理(加法原理)与分步计数原理(乘法原理)
难点: 分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解
分析:选出一组参赛代表,可以分两个步骤.第l步选男生.第2步选女生.
解:第1步,从30名男生中选出1人,有30种不同选择;
第2步,从24名女生中选出1人,有24种不同选择.
根据分步乘法计数原理,共有
30×24 =720
种不同的选法.
探究:如果完成一件事需要三个步骤,做第1步有 种不同的方法,做第2步有 种不同的方法,做第3步有 种不同的方法,那么完成这件事共有多少种不同的方法?
2分步乘法计数原理
(1)提出问题
问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以 , ,…, , ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?
用列举法可以列出所有可能的号码:
我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9 = 54个不同的号码.
探究:你能说说这个问题的特征吗?
(2)发现新知
分步乘法计数原理完成一件事有两类不同方案,在第1类方案中有 种不同的方法,在第2类方案中有 种不同的方法.那么完成这件事共有
种不同的方法.
(3)知识应用
例2.设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?
三、教学方法
讲授法
四、教学过程
一、新课讲授
引入课题
先看下面的问题:
①从我们班上推选出两名同学担任班长,有多少种不同的选法?
②把我们的同学排成一排,共有多少种不同的排法?
要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法.总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.
A大学B大学
生物学数学
化学会计学
医学信息技术学
物理学法学
工程学
如果这名同学只能选一个专业,那么他共有多少种选择呢?
分析:由于这名同学在A , B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择A , B两所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有
②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.
③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这
如果完成一件事情需要 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?
一般归纳:
完成一件事情,需要分成n个步骤,做第1步有 种不同的方法,做第2步有 种不同的方法……做第n步有 种不同的方法.那么完成这件事共有
种不同的方法.
理解分步乘法计数原理:
分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.
5+4=9(种).
变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?
探究:如果完成一件事有三类不同方案,在第1类方案中有 种不同的方法,在第2类方案中有 种不同的方法,在第3类方案中有 种不同的方法,那么完成这件事共有多少种不同的方法?
如果完成一件事情有 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?
3.理解分类加法计数原理与分步乘法计数原理异同点
①相同点:都是完成一件பைடு நூலகம்的不同方法种数的问题
②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.
在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.
1 分类加法计数原理
(1)提出问题
问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?
问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
一般归纳:
完成一件事情,有n类办法,在第1类办法中有 种不同的方法,在第2类办法中有 种不同的方法……在第n类办法中有 种不同的方法.那么完成这件事共有
种不同的方法.
理解分类加法计数原理:
分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.