_TI_OP_AMP

合集下载

小升初专项训练汉字综合及答案-人教部编版语文

小升初专项训练汉字综合及答案-人教部编版语文

人教部编版语文六年级下册小升初专项训练08汉字综合评卷人得分1.火眼金睛。

下面四组词语中正确的一组是()。

A.暴动暴发暴炸爆竹B.边塞寒冷寨主堵塞C.绞通骄艳摔跤绞尽脑汁评卷人得分、填空题2.区分组词。

催(_______ )爆(_____ —_)葡( _______ )堂摧(_______ )暴(_____ —_)匍( _______ )膛3.比一比,再组词。

帕(________ )框(_____ —_)戒( ________ )即怕(________ )讴(_____ —_)诫( ________ )既4.读拼音,写词语。

d a ng zh i w u kihuia n x i n zh i x:h n hu a n(________________ )( ________________ )y i r a n z i bch exi u sh I q uj i ng di a n()()(f ,sh _ _________6.读拼音,写词语。

ch 6 ng g a o p i b e i han ji e d i gu()()()()x i n ch a ng di a o k e y il i chu a n x i()()()()7.读拼音,写词语:sh o u b i cu o zh e k u n b a ng ji e sh i sh i fu()()()()()s i x i n li e f e i k e g u m i ng x i n zh a n zhu a n t e ng nu o ()()()8.辨字组词,请看清楚哦!侍()牌()隔()篇()待()脾()融()遍()9.辨字组词,请看清楚哦!赖()牌()哲()缝()租()懒()脾()暂()逢()祖()10.看拼音,写词语。

zh a n y i l u c i xisheng b a o ch o u guiding()()()()(_____________ )11.我能仔细辩别,准确组词。

ti半导体芯片基础知识

ti半导体芯片基础知识

ti半导体芯片基础知识TI,即德州仪器(Texas Instruments),是一家全球领先的半导体制造商,提供广泛的模拟和数字芯片产品。

以下是一些与TI半导体芯片相关的基础知识:1. **模拟芯片和数字芯片:** TI生产的芯片涵盖了模拟和数字两个主要领域。

模拟芯片处理连续信号,例如声音和光线,而数字芯片处理离散信号,如二进制数据。

2. **微控制器和处理器:** TI生产了许多嵌入式系统的关键组件,包括微控制器和数字信号处理器(DSP)。

这些芯片用于各种应用,从家用电器到工业自动化。

3. **功放芯片:** TI的功放芯片广泛用于音频应用,包括音响系统、耳机和汽车音响。

4. **模拟运算放大器(Op-Amp):** TI提供了各种用于模拟电路设计的运算放大器,用于放大信号、滤波和其他模拟电路应用。

5. **功率管理芯片:** TI的功率管理芯片用于提供电源管理解决方案,包括DC-DC转换器、电源管理IC和电池管理IC等。

6. **通信芯片:** TI提供通信芯片,包括无线通信和有线通信的解决方案,用于手机、网络设备、工业通信等领域。

7. **传感器:** TI生产各种传感器,例如温度传感器、压力传感器和光传感器,用于测量环境参数。

8. **电源管理和电池管理:** TI的芯片在电源管理和电池管理方面有广泛的应用,用于延长电池寿命、提高功效性能等。

9. **无线射频(RF)芯片:** TI的RF芯片用于实现各种无线通信标准,如蓝牙、Wi-Fi和射频识别(RFID)等。

10. **工业自动化芯片:** TI提供了广泛用于工业控制和自动化系统的芯片,包括PLC(可编程逻辑控制器)和工业通信解决方案。

这些是TI半导体芯片的一些基础知识。

TI一直在推动技术的创新,提供广泛的解决方案,覆盖了许多不同的应用领域。

MAXIM和TI芯片命名规则

MAXIM和TI芯片命名规则

MAXIM和TI芯片命名规则MAXIM命名规则AXIM前缀是“MAX”。

DALLAS则是以“DS”开头。

MAX×××或MAX××××说明:1后缀CSA、CWA 其中C表示普通级,S表示表贴,W表示宽体表贴。

2 后缀CWI表示宽体表贴,EEWI宽体工业级表贴,后缀MJA或883为军级。

3 CPA、BCPI、BCPP、CPP、CCPP、CPE、CPD、ACPA后缀均为普通双列直插。

举例MAX202CPE、CPE普通ECPE普通带抗静电保护MAX202EEPE 工业级抗静电保护(-45℃-85℃)说明 E指抗静电保护MAXIM数字排列分类1字头模拟器 2字头滤波器 3字头多路开关4字头放大器 5字头数模转换器 6字头电压基准7字头电压转换 8字头复位器 9字头比较器三字母后缀:例如:MAX358CPDC = 温度范围P = 封装类型D = 管脚数温度范围:C = 0℃至70℃(商业级)I = -20℃至+85℃(工业级)E = -40℃至+85℃(扩展工业级)A = -40℃至+85℃(航空级)M = -55℃至+125℃(军品级)封装类型:A SSOP(缩小外型封装)B CERQUADC TO-220, TQFP(薄型四方扁平封装)D 陶瓷铜顶封装E 四分之一大的小外型封装F 陶瓷扁平封装H 模块封装, SBGA(超级球式栅格阵列, 5x5 TQFP) J CERDIP (陶瓷双列直插)K TO-3 塑料接脚栅格阵列L LCC (无引线芯片承载封装)M MQFP (公制四方扁平封装)N 窄体塑封双列直插P 塑封双列直插Q PLCC (塑料式引线芯片承载封装)R 窄体陶瓷双列直插封装(300mil)S 小外型封装T TO5,TO-99,TO-100U TSSOP,μMAX,SOTW 宽体小外型封装(300mil)X SC-70(3脚,5脚,6脚)Y 窄体铜顶封装Z TO-92,MQUAD/D 裸片/PR 增强型塑封/W 晶圆MAXIM 专有产品型号命名MAX XXX (X) X X X1 2 3 4 5 61.前缀:MAXIM公司产品代号2.产品系列编号:100-199 模数转换器600-699 电源产品200-299 接口驱动器/接受器700-799 微处理器外围显示驱动器300-399 模拟开关模拟多路调制器800-899 微处理器监视器400-499 运放900-999 比较器500-599 数模转换器3.指标等级或附带功能:A表示5%的输出精度,E表示防静电4 .温度范围:C= 0℃至70℃(商业级)I =-20℃至+85℃(工业级)E =-40℃至+85℃(扩展工业级)A = -40℃至+85℃(航空级)M =-55℃至+125℃(军品级)5.封装形式:A SSOP(缩小外型封装)B CERQUADC TO-220, TQFP(薄型四方扁平封装)D 陶瓷铜顶封装E 四分之一大的小外型封装F 陶瓷扁平封装 H 模块封装, SBGAJ CERDIP (陶瓷双列直插)K TO-3 塑料接脚栅格阵列LLCC (无引线芯片承载封装)M MQFP (公制四方扁平封装)N 窄体塑封双列直插P 塑封双列直插 Q PLCC (塑料式引线芯片承载封装) R 窄体陶瓷双列直插封装(300mil)S 小外型封装T TO5,TO-99,TO-100U TSSOP,μMAX,SOTW 宽体小外型封装(300mil)X SC-70(3脚,5脚,6脚)Y 窄体铜顶封装Z TO-92MQUAD /D裸片/PR 增强型塑封/W 晶圆6.管脚数量:A:8B:10,64C:12,192D:14E:16F:22,256G:24H:44I:28 J:32 K:5,68 L:40M:7,48N:18O:42P:20Q:2,100R:3,84 S:4,80 T:6,160U:60V:8(圆形)W:10(圆形)X:36Y:8(圆形)Z:10(圆形)DALLAS命名规则例如DS1210N.S. DS1225Y-100INDN=工业级S=表贴宽体 MCG=DIP封Z=表贴宽体 MNG=DIP工业级IND=工业级 QCG=PLCC封 Q=QFPAD的命名规则AD常用产品型号命名规则DSP信号处理器放大器工业用器件通信电源管理移动通信视频/图像处理器等模拟A/D D/A 转换器传感器模拟器件AD产品以“AD”、“ADV”居多,也有“OP”或者“REF”、“AMP”、“SMP”、“SSM”、“TMP”、“TMS”等开头的。

TI芯片参数

TI芯片参数

TLC08x宽带高输出驱动单电源运算放大器系列TLV246x低功耗轨至轨输入/输出运算放大器系列轨至轨,指器件的输入输出电压范围可以达到电源电压。

传统的模拟集成器件,如运放。

A/D.D/A等,其模拟引脚的电压范围一般都达不到电源,以运放为例,电源为+/-15V 的运放,为确保性能(首先是不损坏,其次是不反相,最后是足够的共模抑制比),输入范围一般不要超过+/-10V,常温下也不要超过+/-12V;输出范围,负载RL(10kohm)时一般只有+/-11V,小负载电阻(600ohm)时只能保证+/-10V。

这对器件的应用带来很多不便。

现在rail-to-rail 的单电源模拟器件已形成系列(如MAXIM,AD,TI 等),在许多对性能(精度)要求不高的场合,我们可以考虑全部采用单+5V甚至+2.7V的模拟器件来构成我们的系统,这样模拟电路和数字电路便可以公用一个电源(不过要注意电源去耦)。

而且这类器件大量采用SOT封装,有利于设计出体积功耗都很小的产品The OPA842 provides a level of speed and dynamic range previously unattainable in a monolithicop amp. Using unity-gain stable, voltage-feedback architecture with two internal gain stages, theOPA842 achieves exceptionally low harmonic distortion over a wide frequency range. The "classic" differential input provides all the familiar benefits of precision op amps, such as biascurrent cancellation and very low inverting current noise compared with wideband current differential gain/phase performance, low-voltage noise, and high output current drive make theOPA842 ideal for most high dynamic range applications.OPA842 提供了在单片运算放大器所无法实现速度和动态范围。

lm358是什么芯片

lm358是什么芯片

lm358是什么芯片LM358是一种双运算放大器(Op-Amp),常见于模拟电路中。

它是由德州仪器(TI)公司生产的,拥有两个独立的运算放大器,具有低功耗、宽电压范围、大共模抑制比等特点。

本文将详细介绍LM358芯片的特点、应用领域以及其工作原理。

一、特点1. 电源电压范围广:LM358的电源电压范围可以达到3V至32V,因此在很多应用场景下都能够满足需求。

2. 低功耗:由于采用了双运算放大器结构,LM358的功耗相对较低,适用于对功耗要求较高的系统。

3. 大共模抑制比:LM358的共模抑制比可以达到70dB以上,能够有效地抑制共模噪声,提高系统性能。

4. 可调增益:通过外部电阻调整,可以改变LM358的增益,满足不同的信号处理需求。

5. 外部电容补偿:LM358支持外部电容补偿,可以提高系统的稳定性。

二、应用领域由于LM358具有低功耗和宽电压范围等特点,广泛应用于各种模拟电路中。

以下是LM358常见的应用领域:1. 传感器信号放大:LM358能够将传感器产生的微小信号放大,提高其可靠性和灵敏度。

2. 滤波器:LM358可以用作滤波器的关键部件,实现对信号的滤波处理。

3. 比较器:LM358可以用作比较器,通过比较两个输入信号的大小,输出相应的电平信号。

4. 音频放大:LM358可以用作音频放大器,实现音频信号的放大和处理。

5. 手持设备:由于LM358功耗低,体积小,常用于各种手持设备中,如便携式音频播放器、数码相机等。

三、工作原理LM358的工作原理基本上是通过两个运算放大器相互连接而形成的。

每个运算放大器都由一个差动放大器和一个级联放大器组成。

差动放大器:差动放大器是LM358的输入阶段,用来实现对输入信号的放大和差分输出。

差动放大器的输入端是非反相输入端(+)和反相输入端(-),通过改变这两个输入端的电压差,可以实现对输入信号的不同放大倍数。

级联放大器:级联放大器是LM358的输出阶段,用来将差动放大器输出的信号进行进一步放大。

运算放大器:输入和输出限制

运算放大器:输入和输出限制

●大家好,欢迎来到TI Precision Labs(德州仪器高精度实验室)。

本次视频将介绍运算放大器的Input&Output Limitations,即输入和输出限制。

我们将会探讨运放的Common-mode input voltage(共模输入电压),input and output voltage swinglimitations(输入和输出电压摆幅限制)。

通过本节视频,你将学会判定电路误差是由哪些限制引起的。

●Hello,and welcome to the TI Precision Labs discussing op amp input and outputlimitations.In this video we’ll discuss op amp common-mode input voltage,input and output voltage swing limitations,and show how to determine the source ofcircuit errors caused by these limitations.●首先,我们来看一个简单的non-inverting buffer circuit(同相缓冲电路),也就是电压跟随器。

同相输入端输入的是一个三角波信号,幅度从-1.5V到+1.5V。

正常情况下,输出端将会得到一个一模一样的信号。

但实际上由于某些原因,这个运放的输出不可能超过1V。

这种非线性就叫做clipping(“削波”)。

●是什么引起了这种“削波”现象呢?稍后我们会回答这个问题,现在我们先要明确一些术语的定义。

●Lets start by considering this simple non-inverting buffer circuit.An triangle-waveinput signal of+/-1.5V is applied to the non-inverting input,and one might expect the output to look exactly the same.For some reason,the op amp output does not increase past+1V.This type of nonlinearity is called“clipping.”●What is causing this clipping behavior?We’ll answer this question later in thepresentation,but first let’s define some terms that are necessary to properlyunderstand this issue.●Common mode voltage(共模电压)是指放大器两个输入端的平均电压。

输入电容——共模?差模?

输入电容——共模?差模?

输入电容——共模?差模?
 翻译: TI信号链工程师Michael Huang (黄翔)
 运放的输入电容参数经常使人困惑或是忽略。

现在让我们明确这些参数怎样才是最好的应用。

 运放电路的稳定性受输入电容的影响,它在反向输入端引入了一个相移,即到达反向输入端的反馈支路的延迟。

反馈网络受输入电容影响形成了一个不想要的极点。

引入输入电容来计算反馈网络的阻抗特性是保证运放电路稳定性的重要一步。

但是,哪种电容有影响?差模SPICE电容?共模电容?还是都有?
 运放输入电容一般可以在输入阻抗参数一栏找到,差模电容和共模电容都有标明。

运算放大器:输入和输出限制

运算放大器:输入和输出限制

●大家好,欢迎来到TI Precision Labs(德州仪器高精度实验室)。

本次视频将介绍运算放大器的Input&Output Limitations,即输入和输出限制。

我们将会探讨运放的Common-mode input voltage(共模输入电压),input and output voltage swinglimitations(输入和输出电压摆幅限制)。

通过本节视频,你将学会判定电路误差是由哪些限制引起的。

●Hello,and welcome to the TI Precision Labs discussing op amp input and outputlimitations.In this video we’ll discuss op amp common-mode input voltage,input and output voltage swing limitations,and show how to determine the source ofcircuit errors caused by these limitations.●首先,我们来看一个简单的non-inverting buffer circuit(同相缓冲电路),也就是电压跟随器。

同相输入端输入的是一个三角波信号,幅度从-1.5V到+1.5V。

正常情况下,输出端将会得到一个一模一样的信号。

但实际上由于某些原因,这个运放的输出不可能超过1V。

这种非线性就叫做clipping(“削波”)。

●是什么引起了这种“削波”现象呢?稍后我们会回答这个问题,现在我们先要明确一些术语的定义。

●Lets start by considering this simple non-inverting buffer circuit.An triangle-waveinput signal of+/-1.5V is applied to the non-inverting input,and one might expect the output to look exactly the same.For some reason,the op amp output does not increase past+1V.This type of nonlinearity is called“clipping.”●What is causing this clipping behavior?We’ll answer this question later in thepresentation,but first let’s define some terms that are necessary to properlyunderstand this issue.●Common mode voltage(共模电压)是指放大器两个输入端的平均电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单电源运放图集前言前段时间去福州出差,看到TI的《A Single-Supply Op-Amp Circuit Collection》这篇文章,觉得不错,就把它翻译了过来,希望能对大家有点用处。

这篇文章没有介绍过多的理论知识,想要深究的话还得找其他的文章,比如象这里提到过的《Op Amps for Everyone》。

我的E文不好,在这里要感谢《金山词霸》。

^_^水平有限(不是客气,呵呵),如果你发现什么问题请一定指出,先谢谢大家了。

E-mail:wz_carbon@王桢10月29日介绍我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。

1. 1电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。

这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。

但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。

在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。

一般是正负15V,正负12V和正负5V也是经常使用的。

输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。

正电源引脚接到VCC+,地或者VCC-引脚连接到GND。

将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在V om之内。

有一些新的运放有两个不同的最高输出电压和最低输出电压。

这种运放的数据手册中会特别分别指明V oh和V ol。

需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。

(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。

另外现在运放的供电电压也可以是3V也或者会更低。

出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail的运放,这样就消除了丢失的动态范围。

需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail的电压。

虽然器件被指明是Rail-To -Rail的,如果运放的输出或者输入不支持Rail-To-Rail,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是Rail-To-Rail。

这样才能保证系统的功能不会退化,这是设计者的义务。

1. 2虚地单电源工作的运放需要外部提供一个虚地,通常情况下,这个电压是VCC/2,图二的电路可以用来产生VCC/2的电压,但是他会降低系统的低频特性。

图二R1和R2是等值的,通过电源允许的消耗和允许的噪声来选择,电容C1是一个低通滤波器,用来减少从电源上传来的噪声。

在有些应用中可以忽略缓冲运放。

在下文中,有一些电路的虚地必须要由两个电阻产生,但是其实这并不是完美的方法。

在这些例子中,电阻值都大于100K,当这种情况发生时,电路图中均有注明。

1. 3交流耦合虚地是大于电源地的直流电平,这是一个小的、局部的地电平,这样就产生了一个电势问题:输入和输出电压一般都是参考电源地的,如果直接将信号源的输出接到运放的输入端,这将会产生不可接受的直流偏移。

如果发生这样的事情,运放将不能正确的响应输入电压,因为这将使信号超出运放允许的输入或者输出范围。

解决这个问题的方法将信号源和运放之间用交流耦合。

使用这种方法,输入和输出器件就都可以参考系统地,并且运放电路可以参考虚地。

当不止一个运放被使用时,如果碰到以下条件级间的耦合电容就不是一定要使用:第一级运放的参考地是虚地第二级运放的参考第也是虚地这两级运放的每一级都没有增益。

任何直流偏置在任何一级中都将被乘以增益,并且可能使得电路超出它的正常工作电压范围。

如果有任何疑问,装配一台有耦合电容的原型,然后每次取走其中的一个,观察电工作是否正常。

除非输入和输出都是参考虚地的,否则这里就必须要有耦合电容来隔离信号源和运放输入以及运放输出和负载。

一个好的解决办法是断开输入和输出,然后在所有运放的两个输入脚和运放的输出脚上检查直流电压。

所有的电压都必须非常接近虚地的电压,如果不是,前级的输出就就必须要用电容做隔离。

(或者电路有问题)1. 4组合运放电路在一些应用中,组合运放可以用来节省成本和板上的空间,但是不可避免的引起相互之间的耦合,可以影响到滤波、直流偏置、噪声和其他电路特性。

设计者通常从独立的功能原型开始设计,比如放大、直流偏置、滤波等等。

在对每个单元模块进行校验后将他们联合起来。

除非特别说明,否则本文中的所有滤波器单元的增益都是1。

1. 5选择电阻和电容的值每一个刚开始做模拟设计的人都想知道如何选择元件的参数。

电阻是应该用1欧的还是应该用1兆欧的?一般的来说普通的应用中阻值在K欧级到100K欧级是比较合适的。

高速的应用中阻值在100欧级到1K欧级,但他们会增大电源的消耗。

便携设计中阻值在1兆级到10兆欧级,但是他们将增大系统的噪声。

用来选择调整电路参数的电阻电容值的基本方程在每张图中都已经给出。

如果做滤波器,电阻的精度要选择1%E -96系列(参看附录A)。

一但电阻值的数量级确定了,选择标准的E-12系列电容。

用E-24系列电容用来做参数的调整,但是应该尽量不用。

用来做电路参数调整的电容不应该用5%的,应该用1%。

基本电路2.1放大放大电路有两个基本类型:同相放大器和反相放大器。

他们的交流耦合版本如图三所示。

对于交流电路,反向的意思是相角被移动180度。

这种电路采用了耦合电容――Cin。

Cin 被用来阻止电路产生直流放大,这样电路就只会对交流产生放大作用。

如果在直流电路中,Cin被省略,那么就必须对直流放大进行计算。

在高频电路中,不要违反运放的带宽限制,这是非常重要的。

实际应用中,一级放大电路的增益通常是100倍(40dB),再高的放大倍数将引起电路的振荡,除非在布板的时候就非常注意。

如果要得到一个放大倍数比较的大放大器,用两个等增益的运放或者多个等增益运放比用一个运放的效果要好的多。

图三2.2衰减传统的用运算放大器组成的反相衰减器如图4所示图四在电路中R2要小于R1。

这种方法是不被推荐的,因为很多运放是不适宜工作在放大倍数小于1倍的情况下。

正确的方法是用图5的电路。

图五在表一中的一套规格化的R3的阻值可以用作产生不同等级的衰减。

对于表中没有的阻值,可以用以下的公式计算R3=(V o/Vin)/(2-2(V o/Vin))如果表中有值,按以下方法处理:为Rf和Rin在1K到100K之间选择一个值,该值作为基础值。

将Rin除以二得到RinA和RinB。

将基础值分别乘以1或者2就得到了Rf、Rin1和Rin2,如图五中所示。

在表中给R3选择一个合适的比例因子,然后将他乘以基础值。

比如,如果Rf是20K,RinA和RinB都是10K,那么用12.1K的电阻就可以得到-3dB的衰减表一图六中同相的衰减器可以用作电压衰减和同相缓冲器使用。

图六2.3加法器图七是一个反相加法器,他是一个基本的音频混合器。

但是该电路的很少用于真正的音频混合器。

因为这会逼近运放的工作极限,实际上我们推荐用提高电源电压的办法来提高动态范围。

同相加法器是可以实现的,但是是不被推荐的。

因为信号源的阻抗将会影响电路的增益。

图七2.4减法器就像加法器一样,图八是一个减法器。

一个通常的应用就是用于去除立体声磁带中的原唱而留下伴音(在录制时两通道中的原唱电平是一样的,但是伴音是略有不同的)图八2. 5模拟电感图九的电路是一个对电容进行反向操作的电路,它用来模拟电感。

电感会抵制电流的变化,所以当一个直流电平加到电感上时电流的上升是一个缓慢的过程,并且电感中电阻上的压降就显得尤为重要。

图九电感会更加容易的让低频通过它,它的特性正好和电容相反,一个理想的电感是没有电阻的,它可以让直流电没有任何限制的通过,对频率是无穷大的信号有无穷大的阻抗。

如果直流电压突然通过电阻R1加到运放的反相输入端上的时候,运放的输出将不会有任何的变化,因为这个电压同过电容C1也同样加到了正相输出端上,运放的输出端表现出了很高的阻抗,就像一个真正的电感一样。

随着电容C1不断的通过电阻R2进行充电,R2上电压不断下降,运放通过电阻R1汲取电流。

随着电容不断的充电,最后运放的两个输入脚和输出脚上的电压最终趋向于虚地(Vcc/2)。

当电容C1完全被充满时,电阻R1限制了流过的电流,这就表现出一个串连在电感中电阻。

这个串连的电阻就限制了电感的Q值。

真正电感的直流电阻一般会比模拟的电感小的多。

这有一些模拟电感的限制:电感的一段连接在虚地上模拟电感的Q值无法做的很高,取决于串连的电阻R1模拟电感并不像真正的电感一样可以储存能量,真正的电感由于磁场的作用可以引起很高的反相尖峰电压,但是模拟电感的电压受限于运放输出电压的摆幅,所以响应的脉冲受限于电压的摆幅。

2.6仪用放大器仪用放大器用于需要对小电平信号直流信号进行放大的场合,他是由减法器拓扑而来的。

仪用放大器利用了同相输入端高阻抗的优势。

基本的仪用放大器如图十所示图十这个电路是基本的仪用放大电路,其他的仪用放大器也如图中所示,这里的输入端也使用了单电源供电。

这个电路实际上是一个单电源的应变仪。

这个电路的缺点是需要完全相等的电阻,否则这个电路的共模抑制比将会很低(参看文档《Op Amps for Everyone》)。

图十中的电路可以简单的去掉三个电阻,就像图十一中的电路。

图十一这个电路的增益非常好计算。

但是这个电路也有一个缺点:那就是电路中的两个电阻必须一起更换,而且他们必须是等值的。

另外还有一个缺点,第一级的运放没有产生任何有用的增益。

另外用两个运放也可以组成仪用放大器,就像图十二所示。

图十二但是这个仪用放大器是不被推荐的,因为第一个运放的放大倍数小于一,所以他可能是不稳定的,而且Vin-上的信号要花费比Vin+上的信号更多的时间才能到达输出端。

滤波电路这节非常深入的介绍了用运放组成的有源滤波器。

在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。

相关文档
最新文档