线性代数高等代数知识点总结优秀课件

合集下载

高等代数知识点总结课件

高等代数知识点总结课件
详细描述
二阶行列式计算较为简单,直接按照定义进行计算即可。三 阶行列式可以利用代数余子式展开,也可以利用对角线法则 进行计算。高阶行列式可以利用递推法或化简法进行计算。
矩阵的秩的定义与性质
总结词
矩阵的秩是矩阵中线性无关的行(或列) 向量的个数,具有一些重要的性质。
VS
详细描述
矩阵的秩具有一些重要的性质,如秩的传 递性、秩的唯一性、秩的性质等。矩阵的 秩可以用来判断线性方程组的解的情况, 如当系数矩阵的秩等于增广矩阵的秩时, 线性方程组有解。
利用秩判断线性方程组解的情况
总结词
利用矩阵的秩可以判断线性方程组解的情况。
详细描述
当系数矩阵的秩等于增广矩阵的秩时,线性 方程组有解;当系数矩阵的秩小于增广矩阵 的秩时,线性方程组无解;当系数矩阵的秩 大于增广矩阵的秩时,线性方程组有无穷多 解。此外,利用矩阵的秩还可以判断线性方 程组解的个数和类型。
逆矩阵的性质
逆矩阵是唯一的;逆矩阵与原矩阵的乘积为单位矩阵;逆矩阵的逆矩阵是原矩阵。
逆矩阵的求法
高斯消元法、伴随矩阵法、初等变换法等。
线性方程组的解法
高斯消元法
将增广矩阵转化为上三角矩阵,从而得到解。
回带求解
将得到的上三角矩阵的解回代到原方程组中, 得到未知数的值。
克拉默法则
当方程组系数行列式不为0时,可以用克拉默 法则求解唯一解。
准型有助于简化二次型的计算和性质研究。
二次型的正定性判断
总结词
正定性判断是确定二次型是否为正定的过程, 正定的二次型具有一些重要的性质。
详细描述
正定性判断是二次型研究中的一个重要问题。 一个二次型被称为正定的,如果它对应于一 个正定矩阵。正定的二次型具有一些重要的 性质,如存在唯一的极小值点,且该极小值 点是全局最小值点。此外,正定的二次型还 具有一些几何意义,如对应于一个凸多面体

线性代数高等代数知识点总结

线性代数高等代数知识点总结
一、行列式知识概述
一、知识结构框图
概念
性质
行列式 展开 计算
证|A|=0
应用
精品PPT
概念 不同行不同列的元素的乘积的代数和。
性质
经转置行列式的值不变; 互换两行行列式变号; 某行有公因子可提到行列式符号外;
拆成行列式的和; 消法变换。
精品PPT
展开
n
D, 当i j,
aki Akj
k 1
D ij
精品PPT
运算
行 列 式
矩阵
初等变换 和标准形
特殊 矩阵
精品PPT
转置
取逆
伴随
加法 (A+B)T=AT+BT
数乘 (kA)T= k AT (kA)1= k1A1 (kA)*= kn1A*
乘法 (AB)T= BT AT (AB) 1= B1 A1 (AB)*= B*A*
转置 (AT)T=A
(AT) 1=(A1)T (AT)*=(A*)T
精品PPT
证|A|=0
AX=0有非零解; 反证法;
R(A)<n; A可逆; |A|= - |A|; A的列向量组线性相关; 0是A的特征值;
精品PPT
应用
AX=0有非零解; 伴随矩阵求逆法;
克拉姆法则; A可逆的证明; 线性相关(无关)的判定; 特征值计算。
精品PPT
二、特殊行列式的值
1.三角行列式
精品PPT
本章所需掌握的题型:
行列式计算(重点) 1、具体阶数行列式计算 2、较简单的n阶行列式计算
与行列式定义、性质有关的问题
需利用行列式进行判定的问题 如:1、“Crammer”法则判定方程组的解况
2、矩阵可逆性 3、向量组相关性(向量个数=向量维数) 4、两个矩阵相似的必要条件 5、矩阵正定、半正定的必要条件

线性代数总复习PPT 很全!.ppt

线性代数总复习PPT  很全!.ppt
m
x11 x22 xmm 0有非零解
线性方程组1,2 ,
,m
x1
0非零解
xm
R1,2, ,m m m是向量个数
判别法 1
n个n元1,2 ,
,
线性
n
相关
1,2 ,
,n
0
r1,2 , ,n n
n个n元1,2 ,
,
线性无关
n
1,2 ,
,n
0
r1,2 , ,n n
判别法 2
n阶方阵A可逆 A 0 A E
存在方阵B,使AB E,或BA E 秩 Ann n
A的行(列)向量组线性无关。 齐次线性方程组Ann X 0仅有零解 A的特征值全部 0
可逆矩阵的性质
设A,B都是n阶可逆矩阵,k是非零数,则
1
A1 1 A,
3 AB 1 B 1 A1
线性相关,则必可由1,2 ,
,
线性
m
表示,
并且表法惟一。
3、秩(A)= 列向量组的秩 = 行向量组的秩
定理
向量
可由1,2 ,
,
线性表示
m
x11 x22 xmm 有解
线性方程组1,2 ,
,m
x1
有解
xm
R1,2 , ,m R1,2 , ,m,
定理
向量组1,2 ,
,
线性相关
证明 设 x11 x22 x33 0
1.

x11 2 3 x21 2 x32 3 0
x1 x2 1 x1 x2 x3 2 x1 x3 3 0
因为1
,2
,3
线性无关,所以
x1 x1
x2 x2
x3

高等代数课件--第三章 线性方程组§3.3 线性相关性

高等代数课件--第三章 线性方程组§3.3 线性相关性

(*)
只有零解;向量1,2,…,s组线性相关的充 要条件是齐次线性方程组(*)有非零解.
在向量个数为n时,根据Cramer法 则,前一结论可改写 已知i=(ai1, ai2,…, ain), i=1,2,…,n, 则
1,2,…,s线性无关|aij|0
1,2,…,s线性相关|aij|=0
任意添加一个向量(如果还有的话),所得
的部分向量组都线性相关,则此部分组称
为一个极大线性无关组。
等价定义:
设1, 2,…,s为Pn中的一个向量组,它 的一个部分组i1, i2,…,ir若满足
i) i1, i2,…,ir线性无关
ii) 对任意的j (1 j s), j可经i1, i2,…, ir 线性表出 则称i1, i2,…,ir为向量组1, 2,…,s的一个
§3.3 线性相关性
一个十分重要的概念
一、线性组合
定义: 对于向量,1, 2, …,s ,如果存 在P上的数k1,k2,…,ks使
= k11+ k22+ …+kss
则称向量为向量组1, 2, …,s的一个 线性组合.另一种称呼是,可以由向 量组1, 2, …,s线性表出。
极大线性无关组(简称极大无关组)
性质:
1) 通常一个向量组的极大无关组不唯 一。. 2) 一个线性无关的向量组的极大无关组就 是其自身.
3)一个向量组的任意两个极大无关组都等 价. 4) 一个向量组的任意两个极大无关组都含 有相同个数的向量.
2. 向量组的秩
定义 向量组的极大无关组所含向量
个数称为这个向量组的秩.
性质
1) 单独一个向量线性相关当且仅当它是零 向量;单独一个向量线性无关当且仅当它 是非零向量. 2) 一向量组线性相关的充要条件是其中 至少有一个向量可由其余向量线性表出.

高等代数知识点总结课件

高等代数知识点总结课件

行列式的展开定理
• 总结词:行列式的展开定理是行列式计算的核心,它提供了计算行列式 值的有效方法。
• 详细描述:行列式的展开定理指出,一个$n$阶行列式等于它的主对角线上的元素的乘积与其它元素乘积的代数和的相 反数。具体来说,对于一个$n$阶行列式$|\begin{matrix} a{11} & a{12} & \cdots & a{1n} \ a{21} & a{22} & \cdots & a{2n} \ \vdots & \vdots & \ddots & \vdots \ a{n1} & a{n2} & \cdots & a{nn} \end{matrix}|$,其值等于 $a{11}A{11} + a{21}A{21} + \cdots + a{n1}A{n1}$,其中$A{ii}$表示去掉第$i$行和第$i$列后得到的$(n-1)$阶行列 式的值。
04
线性函数与双线性函数
线性函数的定义与性质
线性函数的定义
线性函数是数学中的一种函数,其图 像为一条直线。在高等代数中,线性 函数是指满足 f(ax+by)=af(x)+bf(y) 的函数。
线性函数的性质
线性函数具有一些重要的性质,如加 法性质、数乘性质、零元素性质和负 元素性质等。这些性质在解决实际问 题中具有广泛的应用。
欧几里得空间与酉空间
欧几里得空间
欧几里得空间是一个几何空间,它满足 欧几里得几何的公理。在欧几里得空间 中,向量的长度和角度都可以用实数表 示。
VS
酉空间
酉空间是一种特殊的线性空间,它满足酉 几何的公理。在酉空间中,向量的长度和 角度都可以用复数表示。酉空间在量子力 学、信号处理等领域有广泛应用。

高等代数知识点总结 PPT

高等代数知识点总结 PPT

• 复数域上的标准分解定理
在复数域上,每个次数大于1的多项式f都有如下的 标准分解
f a ( x x 1 ) n 1 L ( x x t) n t
其中a是f的常数项, x1,…,xt 是f全部互不相同的根, n1,…,nt分别是这些根的重数.
• 实数域上的标准分解定理
在实数域上,每个次数大于1的多项式f都有如下的
|U V|i1Lim式 U -i1 --L ---i-m - 式 V i-1 -L ---i-m -
1
x1 V x12
M x n1
1
1L
x2 L
x
2 2
L
M
x n1 L
1
xn
x
2 n
(x j xi )
M
1i j n
x n1 n
V 0 x1, ..., xn 互 不 相 同
对单位矩阵做一次初等变换

每个秩数为r的矩阵都等价于
Ir 0
0
0
• 对于m×n矩阵A,B下列条件等价
1. AB,即A可由初等变换化成B
2. 有可逆矩阵P,Q使得PAQ=B
3. 秩A=秩B
4. A,B的标准型相同
可逆矩阵vs列满秩矩阵
对于n阶矩阵A,下列条件等价
1. A是可逆矩阵
2. |A|0
3. 秩A=n
4. 有B使得AB=I或BA=I
f(x)=g(x)q(x)+r(x),r(x)=0或degr(x)<degg(x).
• 最大公因式的存在和表示定理
任意两个不全为0的多项式都有最大公因式,且对 于任意的最大公因式d(x)都有u(x)和v(x)使得
d(x)=f(x)u(x)+g(x)v(x)

线性代数知识点全面总结PPT课件

线性代数知识点全面总结PPT课件

一、向量组的线性相关性主要知识网络图
运算
概念
n 线性表示

判定
向 量 组 的 线
向 量 线性相关
概念
判定 概念
充要条件 充分条件
性 相
线性无关
判定
充要条件
6、n阶方阵的行列式 (1) |AT| = |A|;
(3) |AB| = |A||B| ; (5) |A*| = |A|n-1 .
(2) |kA| = kn|A| ; (4) |A-1| = |A|-1 ;
第6页/共61页
四、典型例题
1、方阵的幂运算 2、求逆矩阵 3、解矩阵方程 4、A*题
第7页/共61页
2.对A经过有限次初等变换得到B, 则A等价B.
~ ~ 求逆,

A E E
A1
A E E 列 A1
用途
求矩阵A的秩、最简型、标准形. 求线第性20方页/程共6组1页的解.
概念 性质
初等方阵
对单位矩阵实施一次初等变换而得到的 矩阵称为初等方阵.
三种初等变换对应三种初等方阵.
初等方阵都是可逆矩阵,其逆仍然是同 种的初等矩阵.
4、若AB = E( 或BA =E ), 则B = A-1 。 5、若A为对称矩阵,则AT =A 。 6、若A为反对称矩阵,则AT=-A 。
第4页/共61页
三、重要公式、法则。
1、矩阵的加法与数乘
(1) A + B = B + A ; (2) (A + B ) + C = A + ( B + C ); (3) A + O = O + A = A; (4) A + (-A) = O; (5) k(lA) = (kl)A ; (6) (k+l)A = kA+ lA ; (7) k( A + B )= kA + kB ; (8) 1A = A, OA = O 。

大学 高等代数 线性代数

大学 高等代数 线性代数

其中 ( r2 ( x )) ( r1 ( x )) 或 r2 ( x ) 0 . 若 r2 ( x ) 0 ,用 r2 ( x ) 除 r1 ( x ) ,得
r1 ( x ) q3 ( x )r2 ( x ) r3 ( x ),
……
如此辗转下去,显然,所得余式的次数不断降低, 即
于是有
u( x ) f ( x )h( x ) v( x ) g( x )h( x ) h( x ) f ( x ) | f ( x )h( x )
又 f ( x ) | g( x )h( x ),
f ( x ) | h( x ).
推论
若 f1 ( x ) | g( x ), f 2 ( x ) | g( x ) ,且
证: " " 显然.
" " 设 ( x )为 f ( x ), g( x ) 的任一公因式,则
( x ) f ( x ), ( x ) g( x ), 从而 ( x ) 1, 又 1 ( x ),
( x ) c, c 0.
故 ( f ( x ), g( x )) 1.
………………
ri 2 ( x ) qi ( x )ri-1 ( x ) ri ( x )
……………… rs 3 ( x ) qs1 ( x )rs 2 ( x ) rs1 ( x )
rs 2 ( x ) qs ( x )rs1 ( x ) rs ( x ) rs1 ( x ) qs1 ( x )rs ( x ) 0
( f ( x )、g( x )) u( x ) f ( x ) v( x ) g( x ).
注:
若仅求 ( f ( x )、g( x )) ,为了避免辗转相除时出现
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A的行最简形为E. A为初等阵的乘积
rAn (满秩) A的行(列)向量组的秩都是n.
A的行(列)向量组线性无关
任一n维向量 都可由行(列)向量组线性表示
A的特征值均不为零 ATP A为1正AP 定阵.E
方阵A与E 相似 A = E
A正定
i >0 p=n A=PTP k>0
判断题:
[ ]1.若A2 ,则A.
线性代数高等代数知识点总结 优秀课件
概念 不同行不同列的元素的乘积的代数和。
性质
经转置行列式的值不变; 互换两行行列式变号; 某行有公因子可提到行列式符号外;
拆成行列式的和; 消法变换。
展开
n
D, 当i j,
aki Akj
k 1
D ij
0,
当i j;
n
D, 当i j,

aik Ajk
k 1
伴随
(A*)*=|A|n2A*
AA*=A*A=|A|I
其它
A-1=|A|-1A* 当A可逆时,
A*=|A|A1
15
行列式
秩数
加法
r(A+B)≤r(A)+r(B)
数乘 |kA|=kn|A|
r(kA)=r(A) (k≠0)
乘法 |AB|=|A||B| r(A)+r(B)-n≤r(AB)≤r(A), r(B)
转置 |AT|=|A|
r(AT)=rA)=n 伴随 |A*|=|A|n1 r(A*)= 1, 若r(A)=n1
0, 若r(A)<n1
其它
定义 性质
若P, Q可逆,则 r(A)=r(PA)=r(AQ) =r(PAQ)
16
初等变换
行变换
列变换
换法变换
倍法变换
消法变换
D ij
0,
当i j.
其中, ij
1, 0,
i j i j
计算
数字 型
抽象 型
三角化法; 重要行列式法; 加边法; 递推法。
用行列式性质; 用矩阵性质; 用特征值; 利用矩阵相似。
【热点】注意与矩阵的运算相联系的一些行列式 的计算及其证明.
证|A|=0
AX=0有非零解; 反证法;
R(A)<n; A可逆; |A|= - |A|; A的列向量组线性相关; 0是A的特征值;

每个秩数为r的矩阵都等价于
Ir 0
0
0
• 对于m×n矩阵A,B下列条件等价
1. AB,即A可由初等变换化成B
2. 有可逆矩阵P,Q使得PAQ=B
3. 秩A=秩B
4. A,B的标准型相同
18
多角度看可逆阵
n阶方阵A可逆 A B B A E
A 0 (非退化阵) A x0只 有 零 解 A xb有 唯 一 解
对单位矩阵做一次初等变换
1
1
1
01
1
0
1
1
c
1
1
1
c1
1
对A做一次行变换 = 用相应的初等矩阵左乘以A 对A做一次列变换 = 用相应的初等矩阵右乘以A
17
矩阵等价
• A,B行等价有可逆矩阵P使得A=PB
• 每个矩阵都行等价于唯一一个行最简形矩阵
• A,B等价有可逆矩阵P,Q使得A=PBQ
本章所需掌握的题型:
行列式计算(重点) 1、具体阶数行列式计算 2、较简单的n阶行列式计算
与行列式定义、性质有关的问题
需利用行列式进行判定的问题 如:1、“Crammer”法则判定方程组的解况
2、矩阵可逆性 3、向量组相关性(向量个数=向量维数) 4、两个矩阵相似的必要条件 5、矩阵正定、半正定的必要条件
应用
AX=0有非零解; 伴随矩阵求逆法;
克拉姆法则; A可逆的证明; 线性相关(无关)的判定; 特征值计算。
二、特殊行列式的值
1.三角行列式
a11 a22
* a11
a22
0 a11a22 ann
0
ann *
ann
0
a1n *
a1n
a2(n1)
a2(n1)
n(n1)
(1) 2 a a1n 2(n1) an1
14
转置
取逆
伴随
加法 (A+B)T=AT+BT
数乘 (kA)T= k AT (kA)1= k1A1 (kA)*= kn1A*
乘法 (AB)T= BT AT (AB) 1= B1 A1 (AB)*= B*A*
转置 (AT)T=A
(AT) 1=(A1)T (AT)*=(A*)T
取逆
(A1) 1=A (A1)*=(A*)1
1.错(不满足消去律) 2对 3 错(不满足交换律) 4.错(不一定是方阵) 5.对 6 错 (同4) 7对 8对 9 错(不存在关于加法的公式,同理行列 式也不存在关于加法的公式)
4、若A是n阶可逆矩阵,则 | A1 || A|1
5、若A是n阶矩阵,i(i1,2, ,n) 是A的n个特征值,则
n
| A | i i1
6、若A与B相似,则 | A || B |
行列式的计算(重点)
常用方法:
三角化法 展开降阶法(和消元相结合最为有效) 加边法 归纳法
化为已知行列式(一些有固定形式的行列 式,如:三角形、爪型、“范德蒙”行列式 等)
an1
* an1
0
2.范氏行列式
111
x1 x2 x3
x12
x22
x32
x x x n1
n1
n1
1
2
3
1
xn
xn2
(xi x j )
ni j1
xn1 n
3.箭式行列式
x1 a2 a3 b2 x2 0 b3 0 x3
bn 0 0
an 0
x1
k
n 2
ak bk xk
0
b2
x2 0
b3
0 x3
[ ]2.若A,B为同阶矩,阵 则(AB)T AT BT. [ ]3.若A,B为n阶方阵,则(AB)(AB) A2 B2. [ ]4.若矩阵A,B有AB0,则A 0或B 0. [ ]5.若A,B均为n阶方阵,若AB0,则A 0或B 0. [ ]6.对于任意矩 A,B阵 .有AB BA. [ ]7.若A,B都是 n阶方,阵 则AB BA. [ ]8.若A,B,C为同阶可逆,则 方(A阵BC)1 C1B1A1. [ ]9.若A,B,为同阶可逆,则 方(A阵 B)1 A1B1. [ ]10.A与B可交换的必要条 A,B件 是为 同阶方 . 阵
xn
bn
00
0
0
( x1
n k2
ak bk xk
)
n k2
xk
xn
4.与分块矩阵相联系的准三角行列式
Am O A B Am *
* Bn
O Bn
;
O Am (1)mn A B * Am
Bn *
Bn O .
三、有关行列式的几个重要公式
1、若A是n阶矩阵,则 | kA|kn | A|
2、若A,B是n阶矩阵,则 | AB|| A||B| 3、若A是n阶矩阵,则 | A* || A|n1
相关文档
最新文档