滚动轴承故障诊断
滚动轴承故障及其诊断方法

滚动轴承故障及其诊断方法
滚动轴承是一种很常见的机械元件,广泛用于工业和消费市场,用于
转动机械装置的旋转部件。
它们的主要功能是支撑和稳定轴,允许轴在指
定的位置和方向上旋转,以及在转动时减少摩擦和重复负载。
滚动轴承可
以在各种不同类型的机械设备中找到,例如汽车,风能发电机,摩托车,
电机,空调,电气箱等。
滚动轴承可以长期高效工作,但如果不适当地维护和维修它,可能会
导致故障。
常见的滚动轴承故障包括损坏,轴承旋转变慢,轴承外壳发热,内部损坏,轴键变形,低速磨擦,扭矩问题等。
解决这些问题的关键是找
出故障的根本原因,并根据现场条件采取正确的解决方案。
要有效诊断滚动轴承故障,可以采用以下方法。
1.检查外壳:检查轴承外壳表面,以及固定螺丝和轴承挡圈是否松动、弯曲或破损。
检查底座是否正确安装,轴是否紧固,以及轴承应用的负载
是否正确。
2.状态检查:检查轴承内部和外壳的温度,查看是否有油漆和碳垢,
并检查轴承内部有无异响和异常磁性。
3.拆卸检查:仔细检查轴承内部的轴承衬套、滚珠和圆柱滚道,查看
是否有损坏、磨损或异物。
滚动轴承故障诊断实例

滚动轴承故障诊断实例
滚动轴承故障诊断实例可以包括以下几种情况:
1. 声音异常:当滚动轴承出现故障时,可能会出现异常的噪音,如嘶嘶声、刮擦声或者咔咔声等。
这种情况下,可以通过听觉判断故障的类型和位置。
噪音一般源于滚珠或滚道表面的损伤或者磨损。
2. 振动异常:故障的滚动轴承会导致轴承运行不稳定,产生过大的振动。
可以通过振动传感器来检测振动的频率和幅度,进而判断故障的严重程度和位置。
振动异常可能是由于轴承内部松动、滚子损伤或滚道不平整等问题引起的。
3. 温度异常:滚动轴承运行时,由于磨擦和摩擦产生的热量,轴承温度会有所上升。
但是,如果滚动轴承的温度明显高于正常值,可能表明存在故障。
可以通过红外测温仪或接触式温度计来测量轴承的温度,判断是否存在异常。
4. 润滑问题:滚动轴承需要得到正确的润滑以保持正常运行。
如果滚动轴承出现故障,润滑不足或者污染等问题,会导致滚动轴承的寿命缩短。
可以通过观察润滑脂或润滑油的颜色、黏度以及滚动轴承周围是否有渗漏等来判断润滑是否正常。
上述实例中的故障诊断需要依靠专业的设备和工具,同时需要具备相应的专业知识和经验,建议请专业人士进行诊断和修复。
轴承故障检测、诊断、分析技巧

为了尽可能长时间地以良好状态维持轴承本来的性能,必须保养、检测、检修、以求防事故于未然,确保运转的可靠性,提高生产性、经济性。
对长期运行中的设备来讲,平时的检测跟踪尤为重要,检测项目包括轴承的旋转音、振动、温度、润滑剂的状态等,根据检测结果,设备维护人员可以准确地判断设备的问题点,提早作出预防和解决方案。
一、异常旋转音分析诊断异常旋转音检测分析是采用听诊法对轴承工作状态进行监测的分析方法,常用工具是木柄长螺钉旋具,也可以使用外径为20mm左右的硬塑料管。
相对而言,使用电子听诊器进行监测,更有利于提高监测的可靠性。
轴承处于正常工作状态时,运转平稳、轻快,无停滞现象,发生的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,或者较低的“轰轰”声。
异常声响所反映的轴承故障如下:1、轴承发出均匀而连续的“咝咝”声,这种声音由滚动体在内外圈中旋转而产生,包含有与转速无关的不规则的金属振动声响。
一般表现为轴承内加脂量不足,应进行补充。
若设备停机时间过长,特别是在冬季的低温情况下,轴承运转中有时会发出“咝咝沙沙”的声音,这与轴承径向间隙变小、润滑脂工作针入度变小有关。
应适当调整轴承间隙,更换针入度大一点的新润滑脂。
2、轴承在连续的“哗哗”声中发出均匀的周期性“嗬罗”声,这种声音是由于滚动体和内外圈滚道出现伤痕、沟槽、锈蚀斑而引起的。
声响的周期与轴承的转速成正比。
应对轴承进行更换。
3、轴承发出不规律、不均匀的“嚓嚓”声,这种声音是由于轴承内落入铁屑、砂粒等杂质而引起的。
声响强度较小,与转数没有联系。
应对轴承进行清洗,重新加脂或换油。
4、轴承发出连续而不规则的“沙沙”声,这种声音一般与轴承的内圈与轴配合过松或者外圈与轴承孔配合过松有关系。
声响强度较大时,应对轴承的配合关系进行检查,发现问题及时修理。
二、振动信号分析诊断轴承振动对轴承的损伤很敏感,例如剥落、压痕、锈蚀、裂纹、磨损等都会在轴承及振动测量中反映出来。
所以,通过采用特殊的轴承振动测量器(频率分析器等)可测量出振动的大小,通过频率分布可推断出异常的具体情况。
滚动轴承故障及其诊断方法

而一旦有了压痕,压痕引起的冲击载荷会进一步引起附近 表面的剥落。
这样,载荷的累积作用或短时超载就有可能引起轴承塑性 变形。
1滚动轴承异常的基本形式
(4).腐蚀
润滑油、水或空气水分引起表 面锈蚀(化学腐蚀)
轴承内部有较大的电流通过造 成的电腐蚀
2.3 滚动轴承的振动及其故障特征
2. 幅值域中的概率密度特征 滚动轴承正常时和
发生剥落损伤时的轴 承振动信号的幅值概 率密度分布如图。
轴承振动的概率密度分布
从图中可以看出,轴承发生剥落时,幅值分布的幅 度广,这是由于存在剥落的冲击振动。这样,从概率 密度分布的形状,就可以进行异常诊断。
3 滚动轴承故障诊断方法
2.2 滚动轴承的特征频率
➢ 为分析轴承各部运动参数,先做如下假设: (1)滚道与滚动体之间无相对滑动; (2)每个滚道体直径相同,且均匀分布在内外滚道之间 (3)承受径向、轴向载荷时各部分无变形;
方法: 研究出不承受轴向力时轴承缺陷特征频率,进而,推导出 承受轴向力时轴承缺陷特征频率
1. 不承受轴向力时 轴承缺陷特征频率
d Dm
)
fr
滚动轴承的特征频率
➢ (3) 轴承内外环有缺陷时的特征频率:
➢ 如果内环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fi
f Bi Z
1 (1 2
d Dm
) frZ
➢ 如果外环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fo
f Bo Z
1 (1 2
d Dm
)
f
r
Z
➢ (4) 单个滚动体有缺陷时的特征频率:如果单个有缺陷的 滚动体每自传一周只冲击外环滚道(或外环)一次,则其 相对于外环的转动频率为
滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述引言:滚动轴承作为机械设备中常用的零部件之一,承担着支撑和传递载荷的重要作用。
然而,由于使用环境的恶劣和工作条件的复杂性,滚动轴承往往容易出现各种故障。
因此,为了保证机械设备的正常运行和延长轴承寿命,对滚动轴承的故障进行准确诊断非常重要。
一、故障诊断方法1. 观察法观察法是最常用的故障诊断方法之一。
通过观察滚动轴承的外观和运行状态来判断是否存在故障。
例如,如果发现滚动轴承有异常噪声、温度升高、润滑油泡沫、振动加剧等现象,很可能是轴承出现了故障。
2. 振动诊断法振动诊断法是一种先进的故障诊断方法,可以通过检测轴承的振动信号来判断轴承是否存在故障。
通过分析振动信号的频谱图,可以确定轴承故障的类型和位置。
常用的振动诊断方法包括时域分析、频域分析和小波分析等。
3. 声音诊断法声音诊断法是一种通过听觉判断轴承故障的方法。
通过专业人员对轴承产生的声音进行听觉分析,可以判断轴承是否存在异常。
常见的轴承故障声音包括金属碰撞声、摩擦声和振动声等。
4. 热诊断法热诊断法是一种通过测量轴承的温度来判断轴承故障的方法。
由于轴承在故障状态下会产生摩擦热,因此轴承的温度可以间接反映轴承的工作状态。
通过测量轴承的温度分布,可以判断轴承是否存在异常。
二、故障诊断技术1. 模式识别技术模式识别技术是一种基于机器学习的故障诊断技术,可以根据轴承的振动信号和声音信号等特征,通过训练模型来识别轴承的故障类型。
常用的模式识别技术包括支持向量机、神经网络和决策树等。
2. 图像诊断技术图像诊断技术是一种通过图像处理和分析来判断轴承故障的技术。
通过对轴承的外观图像进行特征提取和分类,可以实现对轴承故障的自动诊断。
常用的图像诊断技术包括边缘检测、纹理分析和目标识别等。
3. 声音信号处理技术声音信号处理技术是一种通过对轴承声音信号进行滤波、频谱分析和特征提取等处理,来判断轴承故障的技术。
通过对声音信号的频谱图和时域图进行分析,可以判断轴承故障的类型和位置。
滚动轴承的故障诊断

滚动轴承的故障诊断一、滚动轴承的常见故障滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。
据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。
滚动轴承的常见故障形式有以下几种。
1. 疲劳剥落(点蚀)滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。
严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。
疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。
然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。
轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。
2. 磨损润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。
磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。
3. 胶合胶合是一个表面上的金属粘附到另一个表面上去的现象。
其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。
通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。
胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。
4. 断裂轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。
5. 锈蚀锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。
滚动轴承故障诊断分析全解

滚动轴承故障诊断分析全解
滚动轴承是机械设备中的重要元件,也是故障率最高的构件。
其突发的故障可能会严重影响机械设备的正常运行,即使是轻微的故障,也会降低设备的使用寿命。
因此,对滚动轴承的故障进行及时诊断和维修,是确保轴承的正常运行的关键。
本文将对滚动轴承故障诊断进行全面阐述,以便于有助于轴承的可靠运行。
一般来讲,滚动轴承的故障可以归结为以下几类:
(1)疲劳损坏:由于长期的使用,滚动轴承中的滚动体和锥形齿轮等内部零件可能会因疲劳而损坏,最终导致轴承的故障;
(2)腐蚀破坏:由于设备运行时的温度、湿度及磨损较大,滚动轴承容易受到空气、油品及其他化学性腐蚀剂的作用,从而造成内部零件的磨损;
(3)水分侵入:滚动轴承组装后,如果存在漏油现象,则滚动轴承内部容易污染,从而导致滚动体及锥形齿轮等内部零件受损;
(4)润滑油工作性能不佳:润滑油在机械设备运行时,若由于品质或温度等原因,润滑油的性能不佳,轴承容易受到损坏;
(5)安装不良:滚动轴承安装后,若没有正确地调整轴的负荷和动转瞬间,将会对轴承组件产生振动和噪音,从而导致故障。
滚动轴承寿命预测与故障诊断

滚动轴承寿命预测与故障诊断滚动轴承是机械传动系统中常用的一种关键零部件,因其结构简单、可靠性高、运转稳定等特点被广泛应用于工业制造、交通运输、航天航空等领域。
然而,在长期的使用中,由于负载、转速、温度等因素的影响,滚动轴承很容易出现各种故障,严重影响机械设备的正常性能。
因此,预测滚动轴承的寿命并对其故障进行诊断具有极其重要的意义,不仅能够减少机器设备的维修成本,更能提高机器设备的运行效率和安全性。
一、滚动轴承寿命预测的基本理论滚动轴承寿命预测是指通过对滚动轴承在特定工况下的运行情况进行数学模型建立和系统分析,来预测滚动轴承在未来一段时间内的使用寿命。
其基本理论是寿命公式理论,即基于统计学原理,通过对有限数量的试验数据进行分析,来估计大量相似产品的寿命。
该理论最早由Weibull提出,现广泛应用于各种设备的寿命预测中。
滚动轴承的寿命是指在一定的负载、转速、温度等工况条件下,维持基本性能的使用寿命。
通常将运转时间作为寿命评定标准,其评定方法有两种,即L10寿命和L50寿命。
其中L10寿命是指在有10%以上的滚动轴承失败的情况下所需要的运转时间,L50寿命则是指在有50%以上的滚动轴承失败的情况下所需的运转时间。
滚动轴承寿命预测的方法一般有以下几种:1、基于模型的预测法该方法是在通过对相关参数的观测和测量得到大量样本数据的基础上,建立滚动轴承故障模型,对其进行数学分析和计算,从而提出一定的预测理论。
该方法的优点是可以快速准确地预测滚动轴承的寿命,缺点是在模型建立过程中,需要考虑多种因素的影响,模型的建立难度较高。
2、基于统计模型的预测法该方法是通过统计分析大量实测数据,确定影响滚动轴承寿命的关键因素,建立相应的统计模型,并通过多种分析方法,包括生存分析、半参数估计和回归分析等来预测滚动轴承的寿命。
该方法的优点是具有较强的实用性和普适性,但缺点是要求样本数据的质量和数量均较高,在实际操作中要具备较为广泛的背景知识和大量的经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二组实验
轴承故障数据:
数据打开后应采用X105_DE_time作为分析数据,其他可作为参考,转速1797rpm
轴承型号:6205-2RS JEM SKF, 深沟球轴承
采样频率:12k Hz
1、确定轴承各项参数并计算各部件的故障特征频率
通过以上原始数据可知次轴承的参数为:
轴承转速r=1797r/min;滚珠个数n=9;滚动体直径d=;
轴承节径D=39mm;:滚动体接触角α=0
由以上数据计算滚动轴承不同部件故障的特征频率为:
外圈故障频率f1=r/60 * 1/2 * n(1-d/D *cosα)=
内圈故障频率f2=r/60 * 1/2 * n(1+d/D *cosα)=
滚动体故障频率f3=r/60*1/2*D/d*[1-(d/D)^2* cos^2(α)]=
保持架外圈故障频率f4=r/60 * 1/2 * (1-d/D *cosα)=
2.对轴承故障数据进行时域波形分析
将轴承数据导入MATLAB中直接做FFT分析得到时域图如下:并求得时域信号的各项特征:
(1)有效值:;(2)峰值:;
(3)峰值因子:;(4)峭度:;
(5)脉冲因子:;(6)裕度因子::
3.包络谱分析
对信号做EMD模态分解,分解得到的每一个IMF信号分别和原信号做相关分析,找出相关系数较大的IMF分量并对此IMF分量进行Hilbert变换。
由图中可以看出经过EMD分解后得到的9个IMF分量和一个残余量。
IMF分量分别和原信号做相关分析后得出相关系数如下:
由上表得:IMF1的相关系数明显最大,所以选用IMF1做Hilbert
包络谱分析。
所得Hilbert包络谱图如下:
对包络谱图中幅值较大区域局部放大得到下图
由以上包络图的局部放大图中可以看出包络图中前三个峰值最大也最明显,三个峰值频率由小到大排列分别为、、。
把这三个频率数值和前文计算所得的理论值进行比较可知:频率值最大为和内圈的故障理论计算特征频率f2=相近,说明此轴承的故障发生在轴承的内圈。
clc
程序1:原始信号时域分析及小波去噪处理
clear all
z=importdata('C:\Users\wangkun\Desktop\轴承诊断\');
x1=(1:4096);
clear z;
N=4096;
fs=12000;
n=0:N-1;
t=n/fs;
f=n*fs/N;
figure(1);
plot(t,x1);
xlabel('t');
ylabel('幅值');
title('原信号时域图')
%小波去噪
[thr,sorh,keepapp]=ddencmp('den','wv',x1);
xd=wdencmp('gbl',x1,'db3',2,thr,sorh,keepapp);
figure(2);
plot(t,xd);
xlabel('t');
ylabel('幅值');
title('小波去噪后时域图')
程序2:EMD分解及Hilbert包络
clc
clear all
z=load('C:\Users\wangkun\Desktop\轴承诊断\');
x=(1:1024);
N=1024;
fs=12000;
n=0:N-1;
f=n*fs/N;
lag=N;
n=0:N-1;
t=n/fs;
imf=emd(x);
[m,n]=size(imf); %imf为一m*n阶矩阵,m是imf分量,n为数据点
emd_visu(x,1:length(x),imf,m); %实信号的信号重构及emd结果显示函数for i=1:m
a(i)=kurtosis(imf(i,:));%峭度
b(i)=mean(imf(i,:)); %均值;
c(i)=var(imf(i,:)); %方差;
d(i)=std(imf(i,:)); %均方值
e(i)=std(imf(i,:)).^; %均方根值
f(i)=skewness(imf(i,:)); %计算偏度
end
[k,c]=max(a); %k为峭度最大值,c为最大元素在数组中的位置
[r,lags]=xcorr(x,lag,'unbiased'); %计算序列的自相关函数
for i=1:m
[R,lags]=xcorr(imf(i,:),lag,'unbiased'); %计算序列的自相关函数
a=corrcoef(R(1:N/2),r(1:N/2)); %相关系数矩阵【对称】,主对角元素为1 xg(i)=abs(a(1,2)); %相关系数
end
[R,C]=max(xg); %R为最大值,C为最大元素在数组中的位置
figure(4);
y = hilbert(imf(C,:));
a = abs(y);%包络
b=fft(a);
mag1=abs(b);
mag=mag1*2/N;
f1=(0:N-1)*fs/N;
plot(f1(1:N/2),mag(1:N/2));
%set(gca,'xlim',[0,.400]); title('包络');
xlabel('频率');
ylabel('幅值');。