一次函数图像专题详解

合集下载

第2讲 一次函数的图像及性质(讲义)解析版

第2讲 一次函数的图像及性质(讲义)解析版
(2)由图像可得: x ³ 6 . 【总结】本题考察了一次函数与一元一次不等式的关系. 例 9.已知一次函数解析式是 y = 1 x - 3 .
2
(1)当 x 取何值时, y = 2 ? (2)当 x 取何值时, y > 2 ? (3)当 x 取何值时, y < 2 ? (4)当 x 取何值时, 0 < y < 2 ?
2 (4)令 0 < 1 x - 3 < 2 ,解得: 6 < x < 10 .
2 【总结】本题考察了一次函数与不等式的关系,本题也可以通过函数图像求解. 例 10.已知函数 f (x) = -3x + 1 .
(1)当 x 取何值时, f (x) = -2 ? (2)当 x 取何值时, 4 > f (x) > -2 ? (3)在平面直角坐标系中,在直线 f (x) = -3x + 1 上且位于 x 轴下方所有点,它们的横 坐标的取值范围是什么?
A. x < 0
B. x > 0
C. x < 2
D. x > 2 .
【答案】A
【分析】根据题意在函数图像中寻找 y > 3 时函数图像所在的位置,发现此时函数图像对
应的 x 范围是小于零,从而得出答案
【详解】解:∵由函数图象可知,当 x<0 时函数图象在 3 的上方,
∴当 y>3 时,x<0.
故选:A.
【总结】本题考察了一次函数与一元一次不等式的关系. 例 8.已知 y = kx + b(k ¹ 0) 的函数图像如图所示:
(1)求在这个函数图像上且位于 x 轴上方所有点的横坐标的取值范围; (2)求不等式 kx + b £ 0 的解集.

一次函数图象和性质专题

一次函数图象和性质专题

一次函数图象和性质专题题型一、一次函数图像的作图1、在同一平面直角坐标系中画出下列每组函数的图象. (1)y =2x (2)y =2x +32、说出直线y =3x +2与221+=x y ;y =5x -1与y =5x -4的相同之处. 直线y =3x +2与221+=x y 的 ,相同,所以这两条直线 同一点,且交点坐标 ;直线y =5x -1与y =5x -4的 相同,所以这两条线 .题型二、一次函数图形的平移1、直线521,321--=+-=x y x y 和x y 21-=的位置关系是 ,直线521,321--=+-=x y x y 可以看作是直线x y 21-=向 平移 个单位得到的; 向平移 个单位得到的。

2、直线y=2x-3可以由直线y=2x 经过 单位而得到;直线y=-3x+2可以由直线y=-3x 经过 而得到;直线y=x+2可以由直线y=x-3经过 而得到.题型三、一次函数图像的平行1、函数y =kx -4的图象平行于直线y =-2x ,求函数若直线4y kx =-的解析式为 ;2、已知一次函数35y x =+与一次函数6y ax =-,若它们的图象是两条互相平等的直线,则a = .题型四、一次函数图形与坐标轴的交点1、一次函数y=kx+b 当x=0时,y= 横坐标为0点在 上,在y kx b =+中;当y=0时,x= 纵坐标为0点在 上。

画一次函数的图象,常选取(0, )、( ,0)两点连线。

2、直线y =4x -3过点(_____,0)、(0, );3、直线y =-x +2与x 轴的交点坐标是 ,与y 轴的交点坐标是4、 一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b = .题型五、一次函数图像与系数1、直线y mx n =+如图所示,化简:2m n m --= .2、 如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)图象的是( )3、已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )4、当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是( )A B C D题型六、一次函数图像与坐标轴围成的三角形面积 1、求函数323-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.Oxy mx n =+(第1题)OxyxyOx yOxyOA.B.C .D .O y x O y x O y x O yxD.C.B .A .2、一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b .3、一次函数y =k x +3的图象与两坐标轴围成的三角形面积是24,求k.一次函数的性质题型一、一次函数的增减性1、已知函数y =(m -3)x -32.(1)当m 取何值时,y 随x 的增大而增大? (2)当m 取何值时,y 随x 的增大而减小?2、函数y=(k-1)x+2,当k >1时,y 随x 的增大而______,当k <1时,y 随x 的增大而_____3、 如图所示,已知正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =--的图象大致是( )4、已知点(x1, y1)和(x2, y2)都在直线 y=43x-1上, 若x1 < x2, 则 y 1__________y 25、已知一次函数2(3)16y m x m =++-,且y 的值随x 值的增大而增大. (1)m 的范围;(2)若此一次函数又是正比例函数,试求m 的值.xxxxD .C.B .A .题型二、一次函数象限问题1、若 a 是非零实数 , 则直线 y=ax-a 一 定( ) A.第一、二象限 B. 第二、三象限 C.第三、四象限 D. 第一、四象限2、 已知一次函数y kx b =+的图象不经过第三象限,也不经过原点,那么k b 、的取值范围是( ) A.0k >且0b < B.0k >且0b < C.0k <且0b >D.0k <且0b <3、若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )A.第一象限B. 第二象限C.第三象限D.第四象限4、已知一次函数(3)21y m x m =-+-的图象经过一、二、四象限,求m 的取值范围.题型三、一次函数增减性与象限的综合1、 已知一次函数y =(1-2m)x +m-1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.2、已知一次函数y =(1-2k ) x +(2k +1). ①当k 取何值时,y 随x 的增大而增大? ②当k 取何值时,函数图象经过坐标系原点?③当k 取何值时,函数图象不经过第四象限?求一次函数解析式的常见题型一. 定义型例1. 已知函数y m x m=-+-()3328是一次函数,求其解析式。

第七讲 一次函数的图像及解析式

第七讲  一次函数的图像及解析式

第七讲一次函数的图像及解析式【知识储备】一次函数的图象一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,其中k表示直线的倾斜程度叫直线的斜率,b表示直线与y轴交点的纵坐标叫截距。

直线与y轴的交点(0,b),直线与x轴的交点(-kb,0)。

正比例函数y=kx的图象是经过原点(0,0)的直线。

一次函数的图象的基本性质函数k b 经过的象限Y随x的变化图象y=kx+b(b≠0)k>0 b>0 一,二,三y随x的增大而增大y=kx+b(b≠0)k>0 b<0 一,三,四y随x的增大而增大y=kx+b(b≠0)k<0 b>0 一,二,四y随x的增大而减小y=kx+b(b≠0)k<0 b<0 二,三,四y随x的增大而减小一次函数的图象的补充性质1、k=±1时,直线与x轴夹角45°; k=±3时,直线与x轴夹角60°;k=±33时,直线与x轴夹角30°;2、直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2,反之亦然。

3、直线y=k1x+b1与直线y=k2x+b2垂直,则k1·k2=-1,反之亦然。

4、直线y=k1x+b1与直线y=k2x+b2的交点坐标为方程组⎩⎨⎧+=+=2211bxkybxky的解。

【例题解析】例题1、若直线y=(k+2)x+b上两点(1, y1)和(5, y2)满足y1<y2,则k的取值范围为_________。

例题2、已知一条直线平行于直线y=-3x+m,且与直线y=-x-5的交点在y轴上,求该直线。

例题3、对于一次函数y=(k-2)x+3-k ,x 每增加1,y 的值就减少4,该函数的解析式为 ,它的图像与x 轴的交点的坐标为 ,与y 轴的交点的坐标为 ,与两坐标轴所围成的三角形的面积为 。

例题4、已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B•在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,求正比例函数和一次函数的解析式。

专题十五 一次函数及图像

专题十五   一次函数及图像

专题十五一次函数及图像1、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.2、正比例函数性质:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx (k不为零) ①k不为零②x指数为1 ③b取零3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线。

b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小4、直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2 (2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2(4)两直线垂直:即k1﹒k2=-1(5)两直线交于y轴上同一点: b1=b25用待定系数法确定一次函数解析式一般步骤(一设二代三解四还原):(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.例题导航:一、一次函数、正比例函数的定义例1:若关于x的函数1=+是一次函数,则m= ,n .y n x-(1)m例2:若23y x b=+-是正比例函数,则b的值是()二、一次函数的性质例3:已知32my是正比例函数,且y随x的增大而减小,则m的值为=m x)1-2(-_______.例4:函数y=(k-1)x,y随x增大而减小,则k的范围是 ( )A.0k D.1≤<k><k B.1k C.1三、系数与图像的关系例5:若m<0, n>0, 则一次函数y=mx+n的图象不经过()A.第一象限B. 第二象限C.第三象限D.第四象限.例6:若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<3四、待定系数法求函数解析式例7:一次函数y=kx+b的图象经过点(2,-1)和(0,3),•求这个一次函数的解析式。

专题:一次函数的图像及性质重难点(答案)有答案

专题:一次函数的图像及性质重难点(答案)有答案

初中数学.精品文档如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯专题:一次函数的图像及性质重难点考点一一次函数的图像及性质1.一次函数y=kx+b与y=kx的图像关系(1)平移变换:y=kx------------------------→y=kx+b;(2)作图:通常采用“两点定线”法作图,一般取直线:与y轴的交点(0,b) ,与x轴的交点(-bk,0) ;注意:平移前后两直线,平行直线的系数k ;2.一次函数y=kx+b的图像与性质k b示意图象限增减性k>0 b>0y随x增大而.b<0k<0 b>0y随x增大而.b<0注意:①系数k叫直线的斜率,反映直线的倾斜程度,与直线的增减性有关,即:k>0时直线递增,k<0时直线递减;②常数b叫直线的截距,反映直线与y轴的交点位置,即:b>0时直线交于y正半轴,b<0时直线交于y负半轴.【例1】1.对于y=-2x+4的图象,下列说法正确的是(D) A.经过第一、二、三象限B.y随x的增大而增大C.图象必过点(-2,0) D.与y=-2x+1的图象平行2.若ab<0且a>b,则函数y=ax+b的图象可能是(A) 3.将函数y=-0.5x 的图象向上平移3个单位,得到的函数与x轴、y轴分别交于点A,B,则△AOB 的面积是9 .4.已知一次函数y=kx+2k+3(k≠0)的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为-1 .5.已知一次函数y=(2m-1)x-m+3,分别求下列m的范围:(1)过一、二、三象限;(2)不过第二象限;(3) y随x增大减小.(4)与y正半轴相交.解:(1) 12<m<3;(2) m≥3;(3) m<12;(4) m<3且m≠12.变式训练1:1.点A(x1,y1),B(x2,y2)是一次函数y=kx+2(k<0)图象上不同的两点,若t=(x2-x1)(y2-y1),则( A )A.t<0 B.t=0 C.t>0 D.t≤0 2.如图,在同一坐标系中,一次函数y=mx+n与正比例函数y=mnx (m,n为常数,且mn≠0)的图象可能是( A )3.将直线y=3个单位得到直线y=-3x-n,则实数m= - 3 ,n= -2 .4.已知函数y=abx+a-b的图像经过一、二、四象限,则函数y=ax+b的图像经过一三四象限.5.已知直线l:y=kx+b与直线y=-3x+4平行,且与直线y=-2x-2交y轴于上同一点.(1)直线l:y=kx+b的关系式为y=-3x-2 ;(2)当-3≤x<1时,求直线l的函数值y的取值范围.解:(2)-5<y≤7考点二一次函数关系式的确定1.求一次函数表达式的方法称为:待定系数法.【例2】1.已知y是x的一次函数,下表列出了y与x的部分x …-101…y …1m -5…A.-2.一次函数的图象经过点A(-2,-1),且与直线y=2x+1平行,则此函数的表达式为(B)A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-5 3.若y-2与x成正比例,且当x=1时,y=6,则y关于x的函数表达式是y=4x+2 .4.已知一次函数图像经过两点A(2,7)、B(m,-5),且与直线y=-2x+1相交于y轴一点C,则m的值是-2 .5.已知某产品的成本是5元/件,每月的销售量y(件)与销售价格x(元/件)成一次函数关系,调查发现,当售价定位30元/件时,每月可售出360件产品,若降价10元,每月可多售出80件.(1)求销售量y与销售价格x的函数关系式;(2)若某月可售出480件产品,求该月的利润.解:(1) y=-8x+600;(2)当y=480,x=15,利润=4800元.变式训练2:1.如图1,两摞相同规格的碗整齐地叠放,根据图信息,则饭碗的高度y(cm)与饭碗数x (个)之间关系式是y=1.5x+4.5 ;图1 图22.如图2,已知直线l1与直线l2相较于点A,点A的横坐标为-1,直线l2与x轴交于点B(-3,0),若△ABO的面积为3,则l1的函数关系式是y=-2x ;l2的函数关系式是y=x+3 .3.已知函数y=kx+b,当自变量x满足-3≤x≤2时,函数值y的取值范围是0≤y≤5,求该函数关系式.解:当k>0时y=x+3;当k<0时y=-x+2;考点三一次函数与方程、不等式【例3】1.如图3,函数y1=2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式2x>ax+3的解集是(A)A.x>1 B.x<1C.x>2 D.x<22.如图是直线y=kx+b的图象,图3初中数学.精品文档根据图上信息填空:(1)方程kx +b =0的解是 x =1 ; 方程kx +b =2的解是 x =0 ;(2)不等式kx +b >0的解集为 x <1 , 不等式kx +b <0的解集为 x >1 ; (3)当自变量x >0 时,函数值y <2, 当自变量x <0 时,函数值y >2;(4)不等式0<kx +b ≤2的解集为 0≤kx +b <1 ; 变式训练3:1.一元一次方程ax -b =0的解为x =-3,则函数y =ax -b 的图象与x 轴的交点坐标是( B ) A .(3,0) B .(-3,0) C .(0,3) D .(0,-3) 2.如图,函数y =ax +b 和y =kx 的交于点P ,根据图象解答:(1)方程ax +b -kx =0的解是 x =-4 ; (2)方程组⎩⎨⎧y =ax +b ,y =kx的解是 ;(3)不等式ax +b<kx 的解集是_ x >-4__;(4)不等式组 的解集为 -4<x <0 .考点四 两个一次函数相交综合应用【例4】如图,直线l 1的解析表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A B ,,直线l 1,l 2交于点C . (1)求点D 的坐标和直线l 2的解析表达式; (2)求△ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点P 的坐标. 解:(1) D (1,0)和直线l 2:y =32x -6;(2) C (2,-3)和△ADC 的面积4.5; (3)点P 的坐标(6,3).※课后练习1.平面直角坐标系中,将y =3x 的图象向上平移6个单位,则平移后的图象与x 轴的交点坐标为( B ) A .(2,0) B .(-2,0) C .(6,0) D .(-6,0) 2.直线y =kx +b 经过第一、三、四象限,则直线y =bx -k 的图象可能是( C )3.直线y =3(x -1)在y 轴上的截距是-3 ,其图像不过第 二 象限且由直线y = 3x -1 向下平移2单位得到.4.已知直线y =kx +m 与直线y =-2x 平行且经过点P (-2,3),则直线y =kx +m 与坐标轴围成的三角形的面积是 14 .5.若y =ax +2与y =bx +3的交于x 轴上一点,则a b = 23 .6.已知函数y =2x -3,当自变量x 的取值范围是-1<x ≤0, 则函数值y 的取值范围是 -5<y ≤-3 .7.如图1,正比例函数y 1的图象与一次函数y 2的图象交于点A (1,2),两直线与y 轴围成的△AOC 的面积为2,则这正比例函数的解析式为y 1= 2x ,一次函数y 2= -2x +4 . 8.如图2,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得不等式组的解集 x <-3 .图1 图29.某商店购进一批单价为16元/件的电子宠物,销售一段时间后,为了获取更多利润,商店决定提高售价.经试销发现:当按20元/件的价格销售时,每月能卖出360件;当按25元/件的价格销售时,每月能卖出210件.若每月的销售数量y (件)是售价x (元/件)的一次函数,则按28元/件的价格销售时,这个月可卖出____120____件,这个月的利润是___1440___元.10.如图,直线l 1:y=x+1与直线l 2:y=mx+n 相交于点P (1,b ). (1)根据图中信息填空: ①b =2 ; ②方程组的解为;③不等式x+1≤mx+n 的解集为 x ≤1 ;(2)判断直线l 3:y=nx+m 是否也经过点P ? 请说明理由.解:(2)直线l 3:y=nx+m 经过点P . 理由:因为y=mx+n 经过点P (1,2),所以m+n=2,所以直线y=nx+m 也经过点P .11.如图,直线l 1:y 1=2x +1与坐标轴交于A ,C 两点,直线l 2:y 2=-x -2与坐标轴交于B ,D 两点,两直线的交点为点P . (1)求△APB 的面积;(2)利用图象直接写出下列不等式的解集: ①y 1<y 2; ②y 1<y 2≤0. 解:(1)联立l 1,l 2的表达式, 得⎩⎨⎧ y =2x +1,y =-x -2,解得⎩⎨⎧x =-1,y =-1, ∴点P 的坐标为(-1,-1).又∵A (0,1),B (0,-2),∴S △APB =3×12=32.(2)由图可知,①当x <-1时,y 1<y 2. ②-2≤x <-1时,0<y 2≤y 1.12.“十一”期间,小明一家计划租用新能源汽车自驾游.当前,有甲乙两家租车公司,设租车时间为x h ,租用甲公司的车所需要的费用为y 1元,租用乙公司的车所需要的费用为y 2元,他们的租车的情况如图所示.根据图中信息: (1)直接写出y 1与y 2的函数关系式;{02<-<+kx b ax初中数学.精品文档(2)通过计算说明选择哪家公司更划算. 解:(1)y 1=15x +80(x ≥0), y 2=30x (x ≥0).(2)当y 1=y 2时,x =163,选甲乙一样合算;当y 1<y 2时,x >163,选甲公司合算;当y 1>y 2时,x <163,选乙公司合算.。

一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

考点03 一次函数的图像与性质(解析版)

考点03 一次函数的图像与性质(解析版)

考点三一次函数的图像与性质知识点整合一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数.(4)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.(5)一次函数的一般形式可以转化为含x、y的二元一次方程.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b(k≠0)k>0,b>0一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b(k≠0)k<0,b>0一、二、四y随x的增大而减小k<0,b<0二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.考向一一次函数和正比例函数的定义1.正比例函数是特殊的一次函数.2.正比例函数解析式y=kx(k≠0)的结构特征:①k≠0;②x的次数是1.典例引领二、填空题变式拓展6.已知y 与1x +成正比,当1x =时,2y =.考向二一次函数的图象及性质1.通常画正比例函数y=kx(k≠0)的图象时只需取一点(1,k),然后过原点和这一点画直线.2.当k>0时,函数y=kx(k≠0)的图象从左向右,呈上升趋势;当k<0时,函数y=kx(k≠0)的图象从左向右,呈下降趋势.3.正比例函数y=kx中,|k|越大,直线y=kx越靠近y轴;|k|越小,直线y=kx越靠近x轴.4.一次函数图象的位置和函数值y的增减性完全由b和比例系数k的符号决定.典例引领【答案】A【分析】本题考查的是一次函数的性质.根据一次函数的性质以及图像上点的坐标特征对各选项进行逐一判断即可.【详解】解:A 、当0x =时,2y =,图象必经过点()0,2,故本选项符合题意;B 、∵10k =-<,20b =>,∴图象经过第一、二、四象限,故本选项不符合题意;C 、∵10k =-<,∴y 随x 的增大而减小,故本选项不符合题意;D 、∵y 随x 的增大而减小,当2x =-时,0y =,∴当2x >时,0y <,故本选项不符合题意;故选:A .4.若一次函数21y x =-+的图象经过点()13,y -,()24,y ,则1y 与2y 的大小关系()A .12y y <B .12y y >C .12y y ≤D .12y y ≥【答案】B【分析】本题主要考查了比较一次函数值的大小,根据函数解析式得到y 随x 增大而减小,据此可得答案.【详解】解:∵一次函数解析式为21y x =-+,20-<,∴y 随x 增大而减小,∵一次函数21y x =-+的图象经过点()13,y -,()24,y ,34-<,∴12y y >,故选:B .5.已知一次函数(2)=-+y k x k ,且y 随x 的增大而减小,则k 的取值范围是()A .2k >B .0k <C .2k <D .2k ≤【答案】C【分析】此题主要考查一次函数的性质,根据一次函数的增减性即在y kx b =+中,k >0时y 随x 的增大而增大;k <0时,y 随x 的增大而减小即可求解.【详解】依题意得20k -<,解得2k <故选C .变式拓展三、解答题9.已知一次函数(2)312y k x k =--+.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,求k 的取值范围.【答案】(1)1(2)2k <【分析】(1)将点(0,9)代入一次函数(2)312y k x k =--+,可得关于k 的一元一次方程,求解即可获得答案;(2)根据该函数的增减性,可得20k -<,求解即可获得答案.【详解】(1)解:将点(0,9)代入一次函数(2)312y k x k =--+,可得3129k -+=,解得1k =,∴当1k =时,函数图象经过点(0,9);(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,则有20k -<,解得2k <,∴k 的取值范围为2k <.【点睛】本题主要考查了求一次函数解析式、根据一次函数的增减性求参数、解一元一次方程和解一元一次不等式等知识,熟练掌握一次函数的图象与性质是解题关键.10.已知2y -与x 成正比,且当2x =-时,8y =.(1)求y 与x 的函数关系式;(2)当x 取什么范围时,4y >-.【答案】(1)32y x =-+(2)2x <【分析】本题考查待定系数法求解析式,一次函数图象及性质.(1)设y 与x 的函数关系式为2y kx -=,再待定系数法求解即可;(2)利用一次函数图象及性质,代入4y =-后即可得到本题答案.【详解】(1)解:设y 与x 的函数关系式为2y kx -=,将当2x =-时,8y =代入2y kx -=中得:822k -=-,即:3k =-,∴32y x =-+;(2)解:∵32y x =-+,∴30k =-<,y 随x 增大而减小,当4y =-时,432x -=-+,即:2x =,∴4y >-时,2x <,综上所述:当2x <时,4y >-.考向三用待定系数法确定一次函数的解析式运用待定系数法求一次函数解析式的步骤可简单记为:一设,二代,三解,四回代.典例引领1.《国务院关于印发全民健身计划(2021-2025年)的通知》文件提出,加大全民健身场地设施供给,建立健全场馆运营管理机制,提升场馆使用效益.某健身中心为答谢新老顾客,举行大型回馈活动,特推出两种“冬季唤醒计划”活动方案.方案1:顾客不购买会员卡,每次健身收费30元.方案2:顾客花200元购买会员卡,每张会员卡仅限本人使用一年,每次健身收费10元.设王彬一年内来此健身中心健身的次数为x (次),选择方案1的费用为1y (元),选择方案2的费用为2y (元).(1)分别写出1y ,2y 与x 之间的函数关系式;(2)在如图的平面直角坐标系中分别画出它们的函数图象;(3)预计王彬一年内能来此健身中心12次,选择哪种方案比较合算?并说明理由.【答案】(1)130y x =,210200y x =+(2)见解析(3)他选择方案二比较合算,理由见解析【分析】(1)本题主要考查了列函数关系式,根据两种方案分别列出函数关系式即可,理解题意是解题的关键;(2)本题主要考查了画函数图像,分别确定两个函数图像上的两个点,然后连接即可;理解函数图像上的点满足函数解析式是解题的关键;(2)本题主要考查了不等式的应用,解不等式3010200x x <+,即可确定来此健身中心12次费用较小的方案.正确求解不等式是解题的关键.【详解】(1)解:根据题意得:130y x =,210200y x =+;所以12y y ,与x 之间的函数表达式分别为130y x =,210200y x =+.(2)解:当0x =时,10y =,2200y =;当4x =时,1120y =,2240y =.据此描点、连线画出函数图像如下:(3)解:王斌择方案二比较合算,理由如下:解不等式3010200x x >+,解得:10x >,所以当10x >时,方案二优惠,因为1210>,王斌择方案二比较合算.2.已知4y +与3x -成正比例,且1x =时,0y =(1)求y 与x 的函数表达式;(2)点(1,2)M m m +在该函数图象上,求点M 的坐标.【答案】(1)22y x =-+(2)点M 的坐标为(1,0)【分析】(1)利用正比例函数的定义,设4y +=(3)k x -,然后把已知的对应值代入求出k 即可;(2)把(1,2)M m m +代入(1)中的解析式得到关于m 的方程,然后解方程即可.【详解】(1)设y 与x 的表达式为4(3)y k x +=-,把1x =时,0y =代入4(3)y k x +=-得24k -=,解得2k =-,由题意,得52024x x ≥⎧⎨-≥⎩,解这个不等式组,得58x ≤≤,因为x 为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆.【点睛】本题考查了列出实际问题中的函数关系式和一元一次不等式组的应用,正确理解题意、列出函数关系式和不等式组是解题的关键.5.习主席在二十大报告中提到“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对甲、乙两个水稻品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩,收获后甲、乙两个品种的售价均为2.8元/千克,且甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元.(1)请求出甲、乙两个品种去年平均亩产量分别是多少;(2)今年,科技小组加大了水稻种植的科研力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加20x 千克和10x 千克.由于甲品种深受市场的欢迎,预计售价将在去年的基础上每千克上涨0.05x 元,而乙品种的售价将在去年的基础上每千克下降0.1x 元.若甲、乙两个品种全部售出后总收入为y 元,请写出y 与x 的关系式;若今年甲、乙两个品种全部售出后总收入比去年增加9500元,水x 的值.【答案】(1)甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克(2)x 的值为5【分析】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据:甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元,即可求解;(2)根据总收入等于甲乙两个品种的收入之和即可列出y 与x 的关系式,进而得到关于x 的方程,解方程即得答案.【详解】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据题意得1002.8100 2.8100644000n m m n -=⎧⎨⨯+⨯=⎩,解得m 11001200n =⎧⎨=⎩.答:甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克.(2)根据题意得:()()()()2.80.0510******* 2.80.1100120010y x x x x =+⨯++-⨯+,整理得1900644000y x =+,∴y 与x 的关系式1900644000y x =+.∵今年甲、乙两个品种全部售出后总收入比去年增加9500元,可得6440095001900644000x +=+,解得5x =.答:x 的值为5.【点睛】本题考查了二元一次方程组的应用,列出实际问题中的函数关系式,正确理解题意、找准相等关系是解题的关键.变式拓展c<时,如图2.②当0综上所述,d的取值范围是t≥时:当x t=时,①当0之间的关系如图所示.(1)求出图中a 、b 、c 的值;(2)在乙出发多少秒后,甲、乙两人相距60米?【答案】(1)8a =,92b =,123c =;(2)乙出发68秒或者108秒后,甲、乙两人相距60米.【分析】(1)由函数图象可以分别求出甲的速度为4米/秒,乙的速度为5米/秒,就可以求出乙追上甲的时间a 的值,b 表示甲跑完全程时甲、乙之间的距离,c 表示乙出发后多少时间,甲走完全程就用甲走完全程的时间−2就可以得出结论;(2)分别求出8秒到100秒和100秒到123秒的解析式,再把60y =代入即可解出x 值.【详解】(1)解:由题意及函数图象可以得出:甲的速度为:824÷=(米/秒),乙的速度为:500÷100=5(米/秒),8548a ÷-=()=(秒);500410292b -⨯==(米),50042123c ÷-==(秒),所以8,92,123a b c ===.(2)设8~100秒和100~123秒的解析式分别为11y k x b =+和22y k x b =+,把()()8010092,、,代入11y k x b =+得11110892100k b k b =+⎧⎨=+⎩解得1118k b =⎧⎨=-⎩,把()()123010092,、,代入22y k x b =+得2222012392100k b k b =+⎧⎨=+⎩解得224492k b =-⎧⎨=⎩,8~100秒解析式:8y x =-,100~123秒的解析式4492y x =-+,当60y =时,则68108x =或者,所以在乙出发68秒或者108秒后,甲、乙两人相距60米∵0<x ≤1000,∴860≤x ≤1000.故答案为:y 1=0.5x ;y 2=0.3x +40;0<x ≤200;200≤x ≤860;860≤x ≤1000.(2)根据题意可得,推出优惠活动后,y 1=0.5a +0.25(x ﹣a )=0.25x +0.25a ,则有,0.257000.250.3700400.258600.250.386040a a ⎧⨯+≥⨯+⎨⨯+≤⨯+⎩解得300≤a ≤332.∴此时a 的取值范围为:300≤a ≤332.【点睛】本题主要考查了一元一次不等式组的应用,明确题意,列出不等式组是解题的关键.考向四一次函数与方程、不等式1.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)中,y =k 时x 的值.2.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)的图象与直线y =k 的交点的横坐标.3.一次函数y =ax +b (a ≠0)与一元一次不等式ax +b >0(或ax +b <0)的关系:ax +b >0的解集⇔y =ax +b 中,y >0时x 的取值范围,即直线y =ax +b 在x 轴上方部分图象对应的x 的取值范围;4.ax +b <0的解集⇔y =ax +b 中,y <0时x 的取值范围,即直线y =ax +b 在x 轴下方部分图象对应的x 的取值范围.5.二元一次方程kx -y +b =0(k ≠0)的解与一次函数y =kx +b (k ≠0)的图象上的点的坐标是一一对应的.6.两个一次函数图象的交点坐标,就是相应二元一次方程组的解,体现了数形结合的思想方法.典例引领1.直线1l :1y kx b =+过点()0,4A 和()1,3D ,直线2l :225y x =-和y 轴交于点B 和直线1l 交于C 点.(1)求两条直线交点C 的坐标及ABC 的面积;(2)x 取何值时,120y y >>.∵()0,4A ,()0,5B -,()3,1C ,∴9AB =,3CN =,∴112793222ABC S AB CN =⋅=⨯⨯= .(2)∵14y x =-+,225y x =-,∴当120y y >>时,4250x x -+>->,解得:532x <<.2.已知直线443y x =-+与x 轴,y 轴分别交于点且把AOB 分成两部分.(1)若AOB 被分成的两部分面积相等,求k 与b ;⎩3.如图,在平面直角坐标系中,直线轴于点C和点D,两条直线交于点(1)求点A的坐标;(2)在直线CD上求点M【答案】(1)点A的坐标为(2)点M的坐标为44⎛∵3ABC MAB S S = ,∴23MBC ABC S S =△△,∵12ABC A S BC y =⋅△,121∵3ABC MAB S S = ,∴43MBC ABC S S =△△,(1)求点C的坐标;(2)求AOB的面积;(3)点D在直线122y x =+求点D的坐标.变式拓展(1)求点A,B,C的坐标.(2)若点P在直线1l上,且(3)根据图象,直接写出当【答案】(1)48, A⎛-(1)直接写出点A的坐标为。

专题06 一次函数图像的五种考法(解析版)(北师大版)

专题06 一次函数图像的五种考法(解析版)(北师大版)

专题06一次函数图像的五种考法类型一、图像的位置关系问题例.直线y kx k =-与直线y kx =-在同一坐标系中的大致图像可能是()A .B .C .D .【答案】A【分析】根据直线y kx k =-与直线y kx =-图像的位置确定k 的正负,若不存在矛盾则符合题意,据此即可解答.【详解】解:A 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以A 选项符合题意;B 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以B 选项不符合题意;C 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以C 选项不符合题意;D 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以D 选项不符合题意.故选A .【点睛】本题主要考查了一次函数的图像:一次函数0y kx b k =+≠()的图像为一条直线,当0k >,图像过第一、三象限;当0k <,图像过第二、四象限;直线与y 轴的交点坐标为()0b ,.【变式训练1】在同一坐标系中,直线1l :()3y k x k =-+和2l :y kx =-的位置可能是()A .B ...【答案】B【分析】根据正比例函数和一次函数的图像与性质,对平面直角坐标系中两函数图像进行讨论即可得出答案.k>,故由一次函数图像与【详解】A、由正比例函数图像可知0,即0点的上方,故选项A不符合题意;....【答案】B【分析】先根据直线1l,得出k然后再判断直线2l的k和b的符号是否与直线.B...【答案】C【分析】根据一次函数的图象性质判断即可;ab>,【详解】∵0同号,A .B .C .D .【答案】A【分析】分别分析四个选项中一次函数和正比例函数m 和n 的符号,即可进行解答.【详解】解:A 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn <,符合题意;B 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn >,不符合题意;C 、由一次函数图象得:0,0m n >>,由正比例函数图象得:0mn <,不符合题意;D 、由一次函数图象得:0,0m n ><,由正比例函数图象得:0mn >,不符合题意;故选:A .【点睛】本题主要考查了一次函数和正比例函数的图象,解题的关键是掌握一次函数和正比例函数图象与系数的关系.类型二、图像与系数的关系则13k≥或3k≤-,故答案为:【点睛】本题考查了一次函数的图象与性质,熟练掌握数形结合思想是解题关键.类型三、图像的平移问题例.将直线y kx b =+向左平移2个单位,再向上平移4个单位,得到直线2y x =,则()A .2k =,8b =-B .2k =-,2b =C .1k =,4b =-D .2k =,4b =【答案】A【分析】根据直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,然后结合得到直线2y x =,即可解出k 和b 的值.【详解】解:直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,得到直线2y x =,2k ∴=,240k b ++=,2k ∴=,8b =-,故选:A .【点睛】本题考查了一次函数图像平移变换,熟练掌握图象左加右减,上加下减的变换规律是解答本题的关键.【变式训练1】对于一次函数24y x =-+,下列结论错误的是().A .函数的图象与x 轴的交点坐标是(0,4)B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数值随自变量的增大而减小【答案】A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 选项:当0y =时,2x =,所以函数的图象与x 轴的交点坐标是(2,0),故A 选项错误;B 选项:函数的图象经过第一、二、四象限,不经过第三象限,故B 选项正确;C 选项:函数的图象向下平移4个单位长度,得到函数244y x =-+-,即2y x =-的图象,故C 选项正确;D 选项:由于20k =-<,所以函数值随x 的增大而减小,故D 选项正确.故选:C【点睛】本题考查一次函数的图象及性质,函数图象平移的法则,熟练运用一次函数的图象及性质进行判断是解题的关键.【变式训练2】把直线3y x =-先向右平移2个单位长度,再向下平移3个单位长度,平移后的新直线与x 轴的交点为()0m ,,则m 的值为()A .3B .1C .1-D .3-【答案】B【分析】由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,计算求解即可.【详解】解:由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,解得1m =,故选:B .【点睛】本题考查了一次函数图象的平移,一次函数与坐标轴的交点.解题的关键在于熟练掌握图象平移:左加右减,上加下减.类型四、规律性问题例.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O ,正方形2221A B C C ,…,正方形1n n n n A B C C -,使得点1A ,2A ,3A ,….在直线l 上,点1C ,2C ,3C ,…,在y 轴正半轴上,则点2023B 的坐标为()A .()202220232,21-B .()202320232,2C .()202320242,21-D .()202220232,21+【答案】A【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点11A B 、的坐标,同理可得出2A 、3A 、4A 、5A …及2B 、3B 、4B 、5B …的坐标,根据点的坐标变化可找出变化规律()12,21n n n B --(n 为正整数),依此规律即可得出结论.【详解】解:当0y =时,由10x -=,解得:1x =,∴点1A 的坐标为()1,0,111A B C O 为正方形,()11,1B ∴,同理可得:()22,1A ,()34,3A ,()48,7A ,()516,15A ,…,∴()22,3B ,()34,7B ,()48,15B ,()516,31B ,…,【答案】20222022(21,2)-【分析】先求出1A 、2A 、3A 、4A 的坐标,找出规律,即可得出答案.【详解】解: 直线1y x =+和y 轴交于1A ,1A ∴的坐标()0,1,即11OA =,四边形111C OA B 是正方形,111OC OA ∴==,【答案】()20222,0【分析】根据1A 的坐标和函数解析式,即可求出点34,A A 探究规律利用规律即可解决问题.【详解】∵直线3y x =,点1A 的坐标为∴()11,3B 在11Rt OA B △中,11131,OA A B ==,类型五、增减性问题.B...A .()15,53B .()15,63C .()17,53D 【答案】D【答案】40432【分析】根据已知先求出2OA ,3OA ,33A B ,44A B ,然后分别计算出1S ,2S 【详解】解:∵11OA =,212OA OA =,∴22OA =,∵322OA OA =,∴34OA =,∵432OA OA =,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑵、比例系数__k_≠_0_。
2.一次函数的图象 一次函数y=kx+b(k≠0)的图象与k,b符号的 关系:
k__>_0,b_>__0 k_>__0,b__<_0 k__<_0,b_>__0 k_<__0,b_<__0
3.一次函数的性质
一次函数y=kx+b(k ≠ 0)的性质: ⑴当k>0时,y随x的增大而__增__大_____。 ⑵当k<0时,y随x的增大而___减_小_____。
一、知识要点
1.一次函数的概念
一次函数的概念:如果函数y=k__x_+__b__(k、b为 常数,且k__≠_0___),那么y叫做x的一次函数。
特别地,当b_=__0__时,函数y=_k_x__(k_≠_0__)叫做正比
例函数。
★理解一次函数概念应注意下面两点:
⑴、解析式中自变量x的次数是_1__次,
l1 l2
5 6 X(件)
关键点:两条直线的交点
3、某供电公司为了鼓励居民用电,采用分段计费的方法 来计算电费,月用电x(度)与相应电费y(元)之间的 函数的 图象如图所示。
(1)填空,月用电量为100度时,应交电费 40 元; 1
(2)当x≥100时求y与x之间的函数关系式; Y= 5 x+20 (3)月用电量为260度时,应交电费多少元? 72元
y 2x 4
(2)如图,直线y=-2x+4与y轴的交点A(0,4)与x轴的交点B(2,0) ∴OA=4,OB=2
∴S △AOB =
OA × OB=4
4.一次函数y=ax+b经过点(1,2)、点(-1,6),求:
(3)如果正比例函数y=
2 3
x与该一次函
数的交点P,求P点坐标和两直线与x轴围
成的三角形面积
·
高尚的品德,出众的才华,能够弥补 任何先天与后天的不足。而这两条又是 任何人都可以经过努力能够得到的东西。
— 罗曼·罗兰
一次函数图像信息专题
y
天才= 1%的灵感
y=kx+b
+ 99%的汗水
o
x
1. 能利用图象求一次函数的解析式; 2. 通过图象解有关面积问题; 3. 能借助图象解实际应用等综合类问题。
y 2x 3
(3)由题意得
y 2x 4 解得
y2x 3
∴P( 3 ,1)
2
∴ OB=2 , PM=1
x 3 2
y 1
M
y 2x 4
∴ S△OPB= OB×PM=在实验药效时发现,如果成
人按规定剂量服用,那么每毫克血液中含药量y(微克)随
时间x(时)的变化情况如图所示,当成人按规定剂量服用
效时间是 4
时。
总结、反思
一、通过学习,做一次函数图象题我们应从哪些方面去 0011 0010获1取010图1象101信0息001?0100 1011
1、横、纵轴的实际意义
2、特殊点——起点、终点、交点、拐点的实际意义 3、图象的变化趋势
二、 仔细阅读题意,准确识别图形——达到数与形的真 正结合.
1 三.函数图象能直观、形象地反映两个变量之间的关系, 要 善于捕捉图象中的所有信息,并能够熟练地把它转 42 化成解决实际问题的线索。
付出定有回报,努力就有收获。 同学们扬起你们理想的风帆,带上你们的智慧, 迈向明天------
1.旅客乘车按规定可随身携带一定重量的行李,如果超 过规定,则需购行李票,该行李费y(元y)(元,) 行李重量 x(kg)的一次函数,如图所示。
O
(B) 8
8 (D)




t量



t
范 围
2、如图中,l1反映了某公司产品的销售额与销 售量的关系,l2反映了该公司产品的销售成本与 销售量的关系,根据图象判断该公司盈利时销
售量为( B )
Y(元)
(A)小于4件
500
(B)大于4件
400
300
(C)等于4件
200
100
(D)大于或等于4件 O 1 2 3 4
(1)小明全家在旅游景点游玩了多长时间?4小时
S
180
120
0 8 10
14 15
t
(2)求出返程途中S与时间T的函数关系式,小明全家到
家是什么时间? 17小时
y=-60t+1020
(3)若出发的汽车油箱中的存油15L。该汽车的油箱 总容量是35L,汽车每行驶1KM耗油0.1L.请你就‘’ 何时加油和加油量‘’给小明家提一个合理化的建议 (加油用时忽略不计)
后:(1)服药后 2 时,血液中含药量最高,达每毫
升 6 微克,接着逐步衰减;
(2)服药后5时,血液中含药量为每毫升 3
微克;
(3)当x≤2时,y与x之间的
函数关系式是 Y=3x ;
(4)当x≥2时y与x之间的函
数关系式是 Y=-x+8 ;
(5)如果每毫升血液中含药
量3微克或3微克以上时,治
疗疾病最有效,那么这个有
Y(元)
60 40 20
O
100 200
X(度)
4.一次函数y=ax+b经过点(1,2)、点(-1,6),求:
(1)这个一次函数的解析式; (2)直线与两坐标轴围成的面积;
解:(1)把点(1,2)和点(-1,6)代入
y=ax+b得:
2=a+ b 解得 6=-a+b
a=-2 b=4
∴一次函数的解析式:y=-2x+4
练习:一次函数y=kx+b的图象如图, 请尽可能多的说出你知道的结论.
y
1
o1 1
x
2
1、拖拉机开始工作时,油箱中有油40升,如
果每小时耗油5升,那么工作时,油箱中的余油
量Q(升)与工作时间t(小时)之间的函数关
系用图象可表示为( C )
40 Q
Q 40
o
Q 40
8t
(A)
O
8t
(C)
O Q 40
10 ---------------求:(1)y与x之间的函数关系式; 5 -------------
-------------
(2)旅客最多可免费携带多少 O
行李的重量。 解:(1)设一次函数关系式为y=kx+b(k≠0)
把x=60,y=5和x=90,y=10代入得
60 90 x(k
g)
5=60k+b 10=90k+b
k=-16 b=-5
∴一次函数关系式为y=-16 x-5(x≥30)
(2)当y=0时,x=30
∴旅客最多可免费携带的行李重量是30kg 。
十一黄金周的某一天,小明一家人上午八点自驾车从家出发 到距离180千米的某旅游景点玩,该汽车离开家的距离S与 时间T的关系可以如图所示。根据图像提供的信息,回答
相关文档
最新文档