岩土工程方向专讲义业介绍
岩土工程勘察讲义讲稿

五、工程地质学研究内容、分科及其与其 他学科的关系
(一)研究内容
1.岩土工程地质性质研究 建造于地壳表层的任何建筑物,都离不开岩土体,岩土
体作为建筑物地基或环境。 岩土体成因类型和性质对建筑物的意义重大。 研究地质环境首先研究岩土体
分布规律 成因类型 工程性质 参数测试 不良性质的改良
四、工程地质学的研究对象和任务 •地 质 学
•工程与技术学科
相互渗透、交叉形成的边缘科学
•人类工程活动 •地质环境
地质环境的概念:
指自然环境的一个重要组成部分,与人类生存和发展 有紧密联系的岩石圈的一部分,这部分积极地与水、 气和生物圈相互作用着。上限为岩石圈表面,下限为 人类技术——经济活动引起的物理场、化学场因素变 迁消失的深度。
形成分支学科——工程岩土学
2.工程动力地质作用研究
地球内外动力作用——地质现象 人类工程——经济活动产生的各种作用
这些作用制约着建筑物的稳定造价和正常使用 研究工程动力地质作用地质现象
分布 规模 形成机制 发展演化规律 产生的工程地质问题 工程地质问题的分析评价
防治对策 措施
人类工程活动与地质环境之间,处于相互联系 又相互制约的矛盾之中。
工程地质学的基本任务:
研究地质环境与人类工程活动之
间的关系,使二者矛盾转化和解决。
地质环境对工程建筑的影响
地震——影响区域工程建筑
软土地基——需进行专门地基处理
岩溶——水库渗漏
崩滑泥石流——工程改线
人类工程活动对地质环境的影响
形成分支学科——工程动力地质学
3.工程地质勘察理论和技术方法研究
工程地质学服务于工程建筑,具体实现就是工程地质勘 察。
岩土工程介绍及发展研究方向

岩土工程介绍及发展研究方向展望岩土工程的发展,笔者认为需要综合考虑岩土工程学科特点、工程建设对岩土工程发展的要求,以及相关学科发展对岩土工程的影响。
岩土工程研究的对象是岩体和土体。
岩体在其形成和存在的整个地质历史过程中,经受了各种复杂的地质作用,因而有着复杂的结构和地应力场环境.而不同地区的不同类型的岩体,由于经历的地质作用过程不同,其工程性质往往具有很大的差别。
岩石出露地表后,经过风化作用而形成土,它们或留存在原地,或经过风、水及冰川的剥蚀和搬运作用在异地沉积形成土层。
在各地质时期各地区的风化环境、搬运和沉积的动力学条件均存在差异性,因此土体不仅工程性质复杂而且其性质的区域性和个性很强。
岩石和土的强度特性、变形特性和渗透特性都是通过试验测定。
在室内试验中,原状试样的代表性、取样过程中不可避免的扰动以及初始应力的释放,试验边界条件与地基中实际情况不同等客观原因所带来的误差,使室内试验结果与地基中岩土实际性状发生差异。
在原位试验中,现场测点的代表性、埋设测试元件时对岩土体的扰动,以及测试方法的可靠性等所带来的误差也难以估计。
岩土材料及其试验的上述特性决定了岩土工程学科的特殊性。
岩土工程是一门应用科学,在岩土工程分析时不仅需要运用综合理论知识、室内外测成果、还需要应用工程师的经验,才能获得满意的结果.在展望岩土工程发展时不能不重视岩土工程学科的特殊性以及岩土工程问题分析方法的特点。
土木工程建设中出现的岩土工程问题促进了岩土工程学科的发展。
例如在土木工程建设中最早遇到的是土体稳定问题。
土力学理论上的最早贡献是1773年库伦建立了库伦定律。
随后发展了Rankine(1857)理论和Fellenius(1926)圆弧滑动分析理论.为了分析软粘土地基在荷载作用下沉降随时间发展的过程,Terzaghi(1925)发展了一维固结理论。
回顾我国近50年以来岩土工程的发展,它是紧紧围绕我国土木工程建设中出现的岩土工程问题而发展的。
岩土工程概述

岩土工程概述岩土工程是一门研究土壤、岩石及其工程特性与行为的学科,广泛应用于建筑、地下结构、交通、水利等领域。
本文将对岩土工程的概念及其应用进行概述,并介绍主要的岩土工程方法和技术。
一、岩土工程的定义及应用范围岩土工程是研究土壤、岩石和相关工程材料在各种工程结构中的力学行为和工程性质的一门工程科学。
它包括土工、岩石力学、工程地质和岩土材料等方面的研究内容。
岩土工程广泛应用于土木工程、地震工程、矿山工程、水利工程等各个领域,它的研究内容与工程实践的需要紧密结合,在工程建设中具有重要的应用价值。
二、岩土工程的主要问题和挑战1. 土壤力学问题:土壤的工程性质直接影响着建筑物的承载能力、变形性能以及稳定性。
因此,研究土壤的强度、固结、液化以及侵蚀等问题是岩土工程中的重要课题。
2. 地质灾害问题:山体滑坡、地面沉降、地震等地质灾害对工程结构的安全稳定造成严重威胁。
岩土工程的研究还包括灾害预测、灾害评估和灾害治理等方面,以提高地质灾害的防范和处理能力。
3. 岩石力学问题:岩石在地下工程中的应力、变形及破坏特性对工程的安全有着直接的影响。
岩石力学研究主要集中在岩石强度、岩石稳定性和岩石动力特性等方面。
4. 岩土材料问题:岩土工程中使用的土壤、岩石以及相关工程材料的性质和品质,对工程结构的耐久性、可靠性产生重要影响。
三、岩土工程的研究方法和技术1. 实地调查与取样:在进行岩土工程设计前,需要对工程地点进行实地勘察和调查,根据地质环境确定取样点位,获取土壤和岩石的物理力学性质参数。
2. 室内试验:室内试验是获取岩土材料性质与行为的重要手段,包括土壤试验、岩石试验等。
常见的室内试验有颗粒筛分试验、剪切试验、压缩试验等。
3. 数值模拟与分析:利用计算机软件对岩土工程问题进行数值模拟,可以模拟各种力学、水力、渗流等过程,为工程设计、分析和评估提供依据。
4. 工程实践与监测:在岩土工程建设过程中,监测工程的地下水位变化、土体位移及应力变化等情况,以评估工程结构在实际使用中的安全性。
工程勘察专业类(岩土工程)甲级业务范围

工程勘察专业类(岩土工程)甲级业务范围工程勘察专业类(岩土工程)甲级业务范围在工程勘察领域中,岩土工程是一个非常重要的专业类别。
岩土工程在诸多工程领域中都有广泛的应用,如建筑工程、桥梁工程、公路工程等。
岩土工程的甲级业务范围涉及到很多方面,包括岩土地质勘察、地基与地下水勘察、地震勘察等。
本文将围绕工程勘察专业类(岩土工程)甲级业务范围展开深入探讨,希望能为您全面、深刻地解读这一专业领域。
一、岩土地质勘察作为岩土工程的一项重要内容,岩土地质勘察是指对工程地质地貌环境进行勘察、测量、分析和评价。
岩土地质勘察要求勘察人员对地质构造、地层岩性、地下水情况等进行详细的调查和描述,以评价工程建设中可能遇到的地质灾害和地质环境变化。
在甲级业务范围内,岩土地质勘察是基础而重要的内容之一。
二、地基与地下水勘察地基与地下水勘察是指对工程地基情况和地下水情况进行调查和评价。
这项工作要求勘察人员根据工程需要,结合地质情况和工程地表及地下情况,综合评价地基和地下水的承载能力和稳定性,为工程设计和施工提供可靠数据和技术支持。
在岩土工程的甲级业务范围内,地基与地下水勘察是至关重要的。
三、地震勘察地震勘察是指根据工程地区的地震活动性和地震烈度要求,对工程地质和地基地下水情况进行地震勘察、分析和评估。
地震勘察要求勘察人员对地震活动特点和规律进行深入研究,预测地震对工程可能产生的影响,提出相应的防震对策和建议。
在甲级业务范围内,地震勘察也是必不可少的内容之一。
工程勘察专业类(岩土工程)甲级业务范围涵盖了岩土地质勘察、地基与地下水勘察、地震勘察等多个方面,其重要性不言而喻。
通过深入的勘察工作,可以为工程建设提供可靠的数据和技术支持,保障工程的安全稳定和经济合理。
在未来的工作中,我们需要不断提升自己的专业能力,深入研究岩土工程的各项业务范围,为工程建设贡献自己的力量。
我个人对于岩土工程的理解是,这是一门需要综合运用地质、力学、水文等多个学科知识的工程技术专业。
岩土工程介绍

岩土工程 ( geotechnical engineering )
岩土工程体制 是建筑工程中的勘察、设计、施工三个 方面作为一个统一体,将土力学、岩石力 学、工程地质和基础工程等组合在一个有机 结合的统一体内,共同以土体和岩体作为科 研和工程实践的对象,指导工程实践。
岩土工程(Geotechnical Engineering)
土 木 工 程
(Civil Engineering)
专业介绍
一、专业基本情况
1、
培养目标
本专业培养掌握土木工程学科的基本理 论和基本知识,具备从事土木工程的项目规 划、设计、研究开发、施工及管理的能力, 能在房屋建筑、地下建筑、隧道、道路、桥 梁、矿井等的设计、研究、施工、教育、管 理、投资、开发部门从事技术或管理工作的 高级工程技术人才。
1.岩土工程勘察: 根据建设工程的要求,查明、分析、评价建设 场地的地质、环境特征和岩土工程条件,编制勘 察文件的活动。 2.岩土工程测试: 采用专门的测试仪器与方法,对工程建设涉及 的岩土体及与岩土相关的结构体(桩、复合地基、 支挡结构等)进行测试、试验与检验,为工程勘 察、设计及基础施工提供评价数据。主要分为:
从岩土体本身而言,基于工程影响范围内 岩土体边界条件的不确定性,岩土材料性质的 可变性、力学性质既取决于应力历史也取决于 当前的应力水平,以及岩土工程性质还会随时 间变化和受外部环境的影响等多种因素,以致 要获得与工程相关的岩土的准确分析资料和设 计参数往往难度很大,其复杂性亦反映了岩土 工程的重要性。
②边坡与基坑工程:
重点研究基坑开挖(包括基坑降水)对邻 近既有建筑和环境的影响,基坑支护结构的设 计计算理论和方法,基坑支护结构的优化设计 和可靠度分析技术,边坡稳定分析理论以及新 型支护技术的开发应用等。
岩土工程师课程

岩土工程师课程岩土工程师课程是指培养学生具备岩土工程设计、施工、管理和研究等方面的专业知识和能力的课程。
这个领域涉及到岩土材料的物理力学性质、岩土结构力学、基础工程、地下水动力学等多个方面,是一个综合性强、应用范围广的专业领域。
岩土工程师课程的主要内容包括以下几个方面:1. 岩土材料力学:包括岩石和土壤的物理性质、力学特性以及它们在不同环境下的变形和破坏机理等内容。
2. 岩土结构力学:主要涉及到各种类型的地基和边坡结构,包括地下洞室、隧道、桥梁等,以及它们在不同环境下的受力特性和稳定性分析。
3. 岩土工程设计:该部分主要介绍了基础工程设计,如浅基础、深基础等,以及各种类型的边坡支护设计,如挡墙、钢筋网片等。
4. 岩土施工技术:该部分主要介绍了各种岩土工程施工技术,如爆破、钻孔灌注桩、地下连续墙等,以及各种类型的边坡支护施工技术。
5. 岩土工程管理:该部分主要介绍了岩土工程项目的管理和组织,包括人员管理、物资采购、质量控制等。
6. 岩土地质学:该部分主要介绍了地球物理学、地球化学、构造地质学和古生物学等方面的知识,以及它们在岩土工程中的应用。
7. 地下水动力学:该部分主要介绍了地下水流动规律和水文地质特征,以及它们在岩土工程中的应用。
8. 岩土工程实验:该部分主要介绍了各种类型的岩土实验,如标准试验、现场试验等,以及实验数据处理和分析方法。
9. 岩土环境保护:该部分主要介绍了岩土环境污染防治和治理技术,包括污染源控制、治理技术和监测方法等。
除此之外,还有一些相关的课程如数值计算方法、计算机辅助设计、岩土工程案例分析等。
岩土工程师课程的学习对于未来从事岩土工程设计、施工和管理的人员具有重要意义。
在学习过程中,学生需要具备扎实的基础理论知识和实践经验,同时还需要掌握一定的计算机应用技能和数据处理能力。
此外,还需要注重培养学生的创新思维和团队协作能力,以适应未来岩土工程领域不断变化的需求。
总之,岩土工程师课程是一个涉及多个领域、综合性强、应用范围广泛的专业课程。
岩土工程课件

载,.因此,极限承载力可近似由式(4—44)和式(4—49)
叠加得
pu
cNc
qNq
1 2
bN
pu
cNc
qNq
1 2
bN
式中 Nc , Nq , N ——承载力系数,分别查表或由以下各 式确定:
Nq
exp
tan
tan
2
45
2
Nc Nq 1 cot
Nr 2 Nq 1 tan
黄土(loessal soil):
公式表示,对于无粘性土, f 之间关系则是通过原
点的一条直线。
【例题3-1】一组饱和粘性土 试样在三轴仪中进行固结不
排水试验,整理试验结果得有效内摩擦角'
=24°,c'=80kPa。其中对一个试样施加的周
围压力3 =200kPa,试样破坏时的主应力差 1 - 3 =280kPa,测得的孔隙水压力
在荷载作用下,透水性大的饱和无粘性土,其压缩过 程在短时间内就可以结束。相反,粘性土的透水性低,饱 和粘性土中的水分只能慢慢排出,因此其压缩稳定所需的 时间要比砂土长得多。土的压缩随时间而增长的过程,称 为土的固结,对于饱和粘性土来说,土的固结问题是十分 重要的。
土的固结
天然土层在历史上所经受过的包括自重压力和其他荷 载作用形成的最大竖向有效固结压力,称为先期(前期) 固结压力,常用pc表示。
f tan
以后又提出了适合 粘性土的更普遍的形式
f c tan
由库伦公式可以看出,无粘性土的抗剪强度与剪切面 上的法向应力成正比,其本质是由于颗粒之间的滑动摩擦 以及”凹凸面间的镶嵌作用所产生的摩阻力,其大小决定 于颗粒表面的粗糙度、密实度、土颗粒的大小以及颗粒级 配等因素。粘性土的抗剪强度由两部分组成:
岩土工程简介演示

建筑设计中的岩土工程
地基工程
确保建筑物稳定安全,防止地基沉降和滑坡等地质灾害。
土压力与挡土墙设计
合理设计挡土墙,确保土壤稳定,防止土体塌方。
地下工程
设计合理的地下室、地下管线等,确保地下空间的安全利用。
路桥工程中的岩土工程
路基设计
01
确保道路路基的稳定性,防止路基变形、沉降和滑坡。
桥墩与桥台基础设计
岩土工程简介演示
汇报人: 2023-11-16
目 录
• 岩土工程概述 • 岩土工程基础知识 • 岩土工程应用领域 • 岩土工程技术与方法 • 岩土工程实践案例 • 岩土工程发展趋势与挑战
01 岩土工程概述
岩土工程定义
定义
岩土工程是研究和利用土体、岩体等地质体,进行各类工程 建设的一门综合性技术科学。
生态岩土工程
环境岩土工程的发展还推动了生态岩土工程的兴起,通过 模拟自然环境和生态系统,实现工程与自然环境的和谐共 生。
灾害防治与环境修复
环境岩土工程在防治自然灾害、修复污染环境等方面发挥 重要作用,通过岩土工程手段预防和减轻自然灾害对环境 的影响。
岩土工程数字化与信息化
数字化技术
随着数字化技术的不断进步,岩土工程在勘察设计、施工和监测等 各个环节广泛应用数字化技术,提高了工作效率和准确性。
案例三:水库大坝岩土工程应用
大坝坝型选择
根据水库的地理位置、地形地貌、水文气 象等条件,选择合适的大坝坝型,如重力
坝、拱坝等。
岩土工程勘察
对大坝建设场地进行详细的地质勘察,获 取地质结构、水文地质条件、不良地质现 象等信息。
大坝稳定性分析
基于岩土工程勘察结果,对大坝进行稳定 性分析,评估大坝在各种工况下的安全性