matlab小波函数

合集下载

常用小波函数及Matlab常用指令

常用小波函数及Matlab常用指令
xd=wdencmp('gbl',x,'db3',2,thr,sorh,keepapp)
THR=wbmpen(C,L,SIGMA,ALPHA)使用penalization方法为降噪返回全局门槛THR.
STDC=wnoisest(C,L,S)返回[C,L]在尺度S上的细节系数的标准差估计
[THR,NKEEP]=wdcbm(C,L,ALPHA,M)返回各尺度上的相应门槛,存放于THR向量中,降噪一般将ALPHA设为3
y=upcoef('O',x,'wname',N) 用于一维小波分析,计算向量x向上N步的重构小波系数,N为正整数。如 果O=a,对低频系数进行重构;如果O=d,对高频系数进行重构。
[thr,sorh,keepapp]=ddencmp('den','wv',x)产生信号全局默认阈值,然后利用wdencmp函数进行消除噪 声的处理,thr = sqrt(2*log(n)) * s
THR=thselect(X,TPTR)使用由TPTR指定的算法计算与X相适应的门槛
D=detcoef(c,l,N) 提取N尺度的高频系数。
[nc,nl,ca]=upwlev(c,l,'wname')对小波分解结构[c,l]进行单尺度重构,返回上一尺度的分解结构并提 取最后一尺度的低频分量。
x=wrcoef('type',c,l,'wname',N)对一维信号的分解结构[c,l]用指定的小波函数进行重构,当'type=a' 时对信号的低频部分进行重构,此时N可以为0.当'type=d'时,对信号 的高频部分进行重构,此时N为正整数。

小波变换的matlab实现

小波变换的matlab实现
*
举例: A1=upcoef('a','cA1','db1',1,ls); D1=upcoef('d','cD1','db1',1,ls);
subplot(1,2,1);plot(A1);title('Approximation A1')
subplot(1,2,2);plot(D1);title('Detail D1')
重构原始信号
*
2D图形接口
*
显示
*
小波分析用于信号处理
01
信号的特征提取
信号处理
常用信号的小波分析
GUI进行信号处理
*
正弦波的线性组合
S(t)=sin(2t)+sin(20t)+sin(200t)
*
2019
间断点检测
01
2020
波形未来预测
02
2021
各分信号的频率识别
03
2022
信号从近似到细节的迁移
*
多尺度二维小波
命令:wavedec2
格式: [C, S]=wavedec2(X,N,’wname’) [C, S]=wavedec2(X,N,Lo_D,Hi_D)
*
[C,S] = wavedec2(X,2,'bior3.7'); %图像的多尺度二维小波分解
提取低频系数
命令:appcoef2 格式: 1. A=appcoef2(C,S,’wname’,N) 2. A=appcoef2(C,S,’wname’) 3. A=appcoef2(C,S,Lo_R,Hi_R) 4. A=appcoef2(C,S,Lo_R,Hi_R,N) cA2 = appcoef2(C,S,'bior3.7',2); %从上面的C中提取第二层的低频系数

解读matlab之小波库函数

解读matlab之小波库函数

解读matlab 之小波库函数南京理工大学仪器科学与技术专业 谭彩铭2010-4-2使用的matlab 软件版本为matlab7.11 dwt 函数dwt 函数是单尺度一维小波变换函数。

dwt 函数执行过程中调用了函数conv2,这个函数是运算的关键,需要首先明白conv2函数的执行过程。

要明白conv2函数,需要先明白conv 函数。

对w = conv(u,v)运算 Let m = length(u) and n = length(v). Then w is the vector of length m+n-1 whose kth element is式(1)假设h=[h(1) h(2) h(3) h(4)],x=[x(1) x(2) x(3) x(4) x(5) x(6) x(7)],为更直接地表达y=conv(h,x)的计算过程,作如下示意图。

其中length(y)=7+4-1。

图1对c=conv2(a,b)运算这里,a 和b 为一维或二维矩阵,其计算过程可由下式表示1212121122(,)(,)(1,1)k k c n n a k k b n k n k =+-+-∑∑式(2)The size of c in each dimension is equal to the sum of the corresponding dimensions of the input matrices, minus one. That is, if the size of a is [ma,na] and the size of b is [mb,nb], then the size ofC is [ma+mb-1,na+nb-1].其计算过程可以由下表表示 c(1,:)conv(a(1,:),b(1,:)) c(2,:)conv(a(1,:),b(2,:))+ conv(a(2,:),b(1,:)) c(3,:)conv(a(1,:),b(3,:))+ conv(a(2,:),b(2,:)) +conv(a(3,:),b(1,:)) …………下面研究一下conv2函数中的‘valid’参数的用法。

matlab中wavedec函数

matlab中wavedec函数

matlab中wavedec函数wavedec是matlab中用于小波分解的函数。

它可以将一个向量或矩阵分解成若干个小波系数,用于信号处理、图像处理等领域。

本文将介绍wavedec函数的使用方法和相关应用。

一、函数语法wavedec函数的语法如下:[c,l] = wavedec(x,n,wname)其中,x表示待分解的向量或矩阵;n表示小波分解的级数;wname表示所选用的小波函数名称。

函数输出由两个参数组成,c 为小波系数向量,l为长度向量。

小波系数向量c包含了分解出的各级小波系数,长度向量l则记录了各个分解级别信号的长度。

二、函数参数1. 待分解的向量或矩阵xwavedec函数支持多种类型的输入信号,如向量、矩阵、多维数组等。

对于矩阵和多维数组,wavedec函数会将其转化为向量进行处理。

2. 小波分解的级数n小波分解的级数n越高,分解出的小波系数越多,信号的细节越丰富。

一般来说,n的取值范围为0~log2(N)-1,其中N为输入信号的长度。

当n为0时,表示不进行小波分解,直接输出原始信号。

当n为log2(N)-1时,表示进行最大级别的小波分解,分解出的小波系数最多。

3. 小波函数名称wnamewavedec函数支持多种小波函数的选择,如db1、db2、db3、haar等。

不同的小波函数具有不同的性质,选择合适的小波函数可以得到更好的分解效果。

三、函数示例以下是一个简单的wavedec函数的示例,将一个长度为8的向量进行3级db2小波分解:x = [1 2 3 4 5 6 7 8];[c,l] = wavedec(x,3,'db2');approx = appcoef(c,l,'db2'); % 分解后的近似分量det1 = detcoef(c,l,1); % 分解后的细节分量1det2 = detcoef(c,l,2); % 分解后的细节分量2det3 = detcoef(c,l,3); % 分解后的细节分量3输出结果为:c = [12.9508 -1.7071 -1.7071 -0.2929 -0.2929 -0.2929 -0.29290.7071 0.7071 0.7071...-0.7071 0.7071 -0.7071];l = [1 2 4 8];approx = [4.5000 6.5000];det1 = [-1.4142 -1.4142 -1.4142 -1.4142];det2 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000];det3 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000];在上述示例中,输入向量x为[1 2 3 4 5 6 7 8],分解级别为3,小波函数为db2。

小波变换matlab

小波变换matlab

小波变换是一种在信号和图像处理中广泛应用的工具。

在Matlab 中,你可以使用内置的函数来进行小波变换。

以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。

接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。

最后,我们使用`wave2gray`函数显示小波分解的结果。

这只是使用Matlab进行小波变换的一个基本示例。

实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。

同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。

matlab小波函数

matlab小波函数

Matlab小波函数一、Matlab小波去噪基本原理1、带噪声的信号一般是由含有噪声的高频信号和原始信号所在的低频信号。

利用多层小波,将高频噪声信号从混合信号中分解出来。

2、选择合适的阈值对图像的高频信号进行量化处理3、重构小波图像:依据图像小波分解的低频信号与处理之后的高频信号来重构图像的信息。

二、第二代小波变换1、构造方法特点:(1)继承了第一代小波的多分辨率的特性。

(2)不依赖fourior变换,直接在时域完成小波变换。

(3)变换之后的系数可以是整数。

(4)图像恢复质量与变换是边界采用何种延拓方式无关。

2、优点:算法简单,速度快,适合并行处理。

对存需求量小,便于DSP芯片实现、可用于本位操作运算。

3、提升原理:构造紧支集双正交小波(1)步骤:分裂—预测—更新(2)分解与重构三、matlab小波函数库1、matlab小波通用函数:(1)wavemngr函数【小波管理器(用于小波管理,添加、删除、储存、读取小波)】wavemngr(‘add’,FN,FSN,WT,NUMS,FILE)wavemngr(‘add’,FN,FSN,WT,NUMS,FILE,B)% 添加小波函数,FN为family name,FSN为family short name WT为小波类型:WT=1表示正交小波,=2表示非正交小波,=3表示带尺度函数的小波,=4表示无尺度函数的小波,=5表示无尺度函数的复小波。

小波族只有一个小波,则NUMS=“,否则NUMS表示小波参数的字符串FILE表示文件名B=[lb ub]指定小波有效支撑的上下界wavemngr(‘del’,N) %删除小波wavemngr(‘restore’)/ wavemngr(‘restore’,IN2) %保存原始小波OUT1= wavemngr(‘read’) %返回小波族的名称OUT1= wavemngr(‘read’,IN2) %返回所有小波的名称OUT1= wavemngr(‘read_asc’)%读取wavelets.asc文件并返回小波信息(2)scal2frq函数【尺度转换频率】F=scal2frq(A,’wname’,DELTA)%返回由尺度A,小波函数“wname”和采样周期DELTA决定的准频率。

小波变换 函数 matlab

小波变换 函数 matlab

小波变换函数 matlab小波变换是一种信号处理方法,可以将信号分解成不同尺度的频谱成分。

它在许多领域中得到广泛的应用,如图像处理、音频处理、压缩编码等。

在Matlab中,我们可以使用小波变换函数来实现对信号的分析和处理。

我们需要了解小波变换的基本原理。

小波变换利用一组基函数,即小波函数,将信号分解成不同频率和不同时间的成分。

小波函数具有局部性和多尺度性的特点,可以更好地描述非平稳信号。

与傅里叶变换相比,小波变换能够提供更加详细的时间和频率信息。

在Matlab中,可以使用wavelet函数进行小波变换。

首先,我们需要选择合适的小波基函数和尺度。

常用的小波函数有Daubechies、Haar、Symlets等,每种小波函数都有不同的特性。

在选择小波基函数时,需要根据信号的特点和需求进行选择。

然后,我们可以使用wavedec函数对信号进行小波分解。

wavedec 函数将信号分解成不同尺度的频谱成分,并返回每个尺度的系数和小波基函数。

通过调整分解的尺度,可以得到不同精度的频谱信息。

接下来,我们可以使用waverec函数对分解后的信号进行重构。

waverec函数将小波系数和小波基函数作为输入,将信号重构回原始信号。

通过调整重构的尺度,可以得到不同精度的信号重构结果。

除了信号的分解和重构,小波变换还可以用于信号的去噪和压缩编码。

通过对小波系数的处理,可以去除信号中的噪声成分,提高信号的质量。

同时,由于小波变换具有多尺度分析的能力,可以对信号进行压缩编码,减小信号的存储空间。

在Matlab中,除了wavelet函数外,还提供了丰富的小波变换工具箱。

这些工具箱包含了各种小波函数和小波变换算法,可以方便地进行信号的分析和处理。

同时,Matlab还提供了图形界面工具,可以通过可视化界面来进行小波变换的操作和参数调整。

总结起来,小波变换是一种重要的信号处理方法,在Matlab中有着丰富的函数和工具箱支持。

通过小波变换,我们可以分析信号的频谱成分,并进行信号的分解、重构、去噪和压缩编码等操作。

收集和总结MATLAB中涉及到的小波函数

收集和总结MATLAB中涉及到的小波函数

一、收集和总结MA TLAB中涉及到的小波函数1.cwt函数功能:实现一维连续小波变换的函数。

cwt函数语法格式:COEFS=cwt(S, SCALES, 'wname')COEFS=cwt(S, SCALES, 'wname', 'plot')COEFS=cwt(S, SCALES, 'wname', 'PLOTMODE') 2.dwt函数功能:单尺度一维离散小波变换函数语法格式:[cA,cD] = dwt(X,'wname')[cA,cD] = dwt(X,'wname','mode',MODE)[cA,cD] = dwt(X,Lo_D,Hi_D)3.meyer函数功能:Meyer小波函数语法格式:[PHI,PSI,T] = meyer(LB,UB,N)[PHI,T] = meyer(LB,UB,N,'phi')[PSI,T] = meyer(LB,UB,N,'psi')4.plot函数功能:绘制向量或矩阵的图形函数语法格式:plot(Y)plot(X1,Y1,...)plot(X1,Y1,LineSpec,...)5.cgauwavf函数功能:Complex Gaussian小波函数语法格式:[PSI,X] = cgauwavf(LB,UB,N,P)6.iswt函数功能:一维逆SWT(Stationary Wavelet Transform)变换函数语法格式:X = iswt(SWC,'wname')X = iswt(SWA,SWD,'wname')X = iswt(SWC,Lo_R,Hi_R)7.mexihat函数功能:墨西哥帽小波函数语法格式:[PSI,X] = mexihat(LB,UB,N)8.morlet函数功能:Morlet小波函数语法格式:[PSI,X] = morlet(LB,UB,N)9.symwavf函数功能:Symlets小波滤波器函数语法格式:F = symwavf(W)10.upcoef函数功能:一维小波分解系数的直接重构函数语法格式:Y = upcoef(O,X,'wname',N)Y = upcoef(O,X,'wname',N,L)Y = upcoef(O,X,Lo_R,Hi_R,N)Y = upcoef(O,X,Lo_R,Hi_R,N,L)Y = upcoef(O,X,'wname')Y = upcoef(O,X,Lo_R,Hi_R) 11.upwlev函数功能:单尺度一维小波分解的重构函数语法格式:[NC,NL,cA] = upwlev(C,L,'wname')[NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R) 12.wavedec函数功能:单尺度一维小波分解函数语法格式:[C,L] = wavedec(X,N,'wname')[C,L] = wavedec(X,N,Lo_D,Hi_D) 13.wavefun函数功能:小波函数和尺度函数函数语法格式:[PHI,PSI,XVAL] = wavefun('wname',ITER) 14.waverec函数功能:多尺度一维小波重构函数语法格式:X = waverec(C,L,'wname')X = waverec(C,L,Lo_R,Hi_R)15.wpcoef函数功能:计算小波包系数函数语法格式:X = wpcoef(T,N)X = wpcoef(T)16.wpdec函数功能:一维小波包的分解函数语法格式:T = wpdec(X,N,'wname',E,P)T = wpdec(X,N,'wname')17.wpfun函数功能:小波包函数[函数语法格式:WPWS,X] = wpfun('wname',NUM,PREC) [WPWS,X] = wpfun('wname',NUM) 18.wprcoef函数功能:小波包分解系数的重构函数语法格式:X = wprcoef(T,N)19.wprec函数功能:一维小波包分解的重构函数语法格式:X = wprec(T)20.wrcoef函数功能:对一维小波系数进行单支重构函数语法格式:X = wrcoef('type',C,L,'wname',N)X = wrcoef('type',C,L,Lo_R,Hi_R,N)X = wrcoef('type',C,L,'wname')X = wrcoef('type',C,L,Lo_R,Hi_R)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab小波函数一、Matlab小波去噪基本原理1、带噪声的信号一般是由含有噪声的高频信号和原始信号所在的低频信号。

利用多层小波,将高频噪声信号从混合信号中分解出来。

2、选择合适的阈值对图像的高频信号进行量化处理3、重构小波图像:依据图像小波分解的低频信号与处理之后的高频信号来重构图像的信息。

二、第二代小波变换1、构造方法特点:(1)继承了第一代小波的多分辨率的特性。

(2)不依赖fourior变换,直接在时域完成小波变换。

(3)变换之后的系数可以是整数。

(4)图像恢复质量与变换是边界采用何种延拓方式无关。

2、优点:算法简单,速度快,适合并行处理。

对内存需求量小,便于DSP芯片实现、可用于本位操作运算。

3、提升原理:构造紧支集双正交小波(1)步骤:分裂—预测—更新(2)分解与重构三、matlab小波函数库1、matlab小波通用函数:(1)wavemngr函数【小波管理器(用于小波管理,添加、删除、储存、读取小波)】wavemngr(‘add’,FN,FSN,WT,NUMS,FILE)wavemngr(‘add’,FN,FSN,WT,NUMS,FILE,B)% 添加小波函数,FN为family name,FSN为family short name WT为小波类型:WT=1表示正交小波,=2表示非正交小波,=3表示带尺度函数的小波,=4表示无尺度函数的小波,=5表示无尺度函数的复小波。

小波族只有一个小波,则NUMS=“,否则NUMS表示小波参数的字符串FILE表示文件名B=[lb ub]指定小波有效支撑的上下界wavemngr(‘del’,N) %删除小波wavemngr(‘restore’)/ wavemngr(‘restore’,IN2) %保存原始小波OUT1= wavemngr(‘read’) %返回小波族的名称OUT1= wavemngr(‘read’,IN2) %返回所有小波的名称OUT1= wavemngr(‘read_asc’)%读取wavelets.asc文件并返回小波信息(2)scal2frq函数【尺度转换频率】F=scal2frq(A,’wname’,DELTA)%返回由尺度A,小波函数“wname”和采样周期DELTA决定的准频率。

(3)orthfilt函数【正交小波滤波器组】[Lo_D,Hi_D,Lo_R,Hi_R]=orthfilt(W)%计算与小波函数对应的尺度滤波器相关的4个滤波器Lo_D—分解低通滤波器Hi_D—分解高通滤波器Lo_R—重构低通滤波器Hi_R—重构高通滤波器(4)wmaxlev函数【小波分解的最大尺度】L=wmaxlev(S,’wname’)%返回信号或者图像的最大分解尺度,可以帮助避免分解是超过这个值。

(5)biorfilt函数【双正交小波滤波器组】[Lo_D,Hi_D,Lo_R,Hi_R]= biorfilt (DF,RF)[Lo_D1,Hi_D1,Lo_R1,Hi_R1,Lo_D2,Hi_D2,Lo_R2,Hi_R2]=biorfilt(DF,RF,’8’)%DF—分解滤波器,RF—重构滤波器。

(6)intwave函数【积分小波函数】[INTEG,XVAL]=intwave(‘wname’,PREC)[INTEG,XVAL]=intwave(‘wname’,PREC,PFLAG)[INTEG,XVAL]=intwave(‘wname’)%计算小波函数在区间(<xval)上的积分INTEG(7)qmf函数【镜像二次滤波器】Y=qmf(X,p)/ Y=qmf(X)(等价于Y=qmf(X,0))%p为偶数时,函数改变向量x中偶数位置的元素符号;p为奇数时,函数改变向量x中奇数位置的元素符号;(8)dyadup函数【二维插值】Y=dyadup(X,evenodd)%evenodd为偶数,则进行偶插值;为奇数则进行奇插值。

Y=dyadup(X) %偶插值Y=dyadup(X,evenodd,’type’)Y=dyadup(X,’type’,evenodd)%X为一个矩阵,’type’=’c’,则插入列;’type’=’r’,则插入行;’type’=’m’,则插入行和列。

(9)wavefun函数【小波和尺度函数】[phi,psi,xval]=wavefun(‘wname’,iter)%对于正交小波,返回尺度函数和小波函数;(适用meyer小波)[phi1,psi1,phi2,psi2,xval]=wavefun(‘wname’,iter)%对于双正交小波,返回分别用于分解和重构的尺度和小波函数;[psi,xval]=wavefun(‘wname’,iter)%适用没有尺度函数的小波,如morlet、mexican hat,Gaussianderivatives和复小波。

[…]=wavefun(‘wname’,A,B)%A,B为正整数,并画图。

(10)wavefun2函数【二维小波和尺度函数】返回尺度函数与3个小波函数,它们是一位小波函数与尺度函数的矢量积。

[s,w1,w2,w3,xyval]=wavefun2(‘wname’,iter)%尺度函数s是phi与psi的矢量积。

小波函数w1,w2,w3分别是(phi,psi),(phi,phi),(psi,psi)的矢量积。

xyval是(xval,yval)的矢量积得到的网格,iter表示重复计算次数。

[s,w1,w2,w3,xyval]=wavefun2(‘wname’,iter,’plot’)[s,w1,w2,w3,xyval]=wavefun2(‘wname’,iter,A,B)%AB为正整数,计算小波函数和尺度函数的近似值并画图。

(11)wfilters函数【小波滤波器】[Lo_D,Hi_D,Lo_R,Hi_R]= wfilters (‘wname’)%计算正交小波或双正交小波wname相关4个滤波器[F1,F2]= wfilters(‘wname’,’type’)‘T ype’=’d’,返回分解滤波器‘T ype’=’r’,返回重构滤波器‘T ype’=’l’,返回低通滤波器‘T ype’=’h’,返回高通滤波器(12)centfrq函数【计算小波中心频率】freq=centfrq=(‘wname’)%得到wname小波的中心频率。

freq=centfrq=(‘wname’,iter)%iter是被wavefun函数调用的次数。

[freq,xval,recfreq]=centfrq=(‘wname’,iter,’plot’)%返回基于2^iter点网格xval上近似的recfreq,计算相关中心频率,并画出小波函数和recfreq。

(13)dyaddown函数【二元抽取】Y=dyaddown(X,evenodd)%从向量X中每隔一个元素抽取一个元素组成的向量Y,evenodd为奇数的时候,进行奇抽取;偶数的时候为偶抽取。

Y=dyaddown(X) %默认evenodd为0Y=dyaddown(X,evenodd,’type’)Y=dyaddown(X,’type’,evenodd)%X为一个矩阵,’type’=’c’,则抽取列;’type’=’r’,则抽取行;’type’=’m’,则抽取行和列。

2、小波函数(1)fbspwavf函数【频率B样条小波】[psi,x]=fbspwavf(lb,ub,n,m,fb,fc)%返回M阶频率B样条小波(m=>1),带宽FB,中心频率FC;Psi定义在N点均匀分布的区间[lb,ub]。

(2)dbwavf函数【Daubechies小波滤波器】F=dbwavf(W)%返回与所指定的Daubechies小波的尺度滤波器。

[psi,x]= cmorwavf (lb,ub,n,fb,fc)%返回复morlet小波,带宽FB,中心频率FC;Psi定义在N点均匀分布的区间[lb,ub]。

(4)mexihat函数【mexican hat小波】[psi,x]=mexihat(lb,ub,n)%返回有效支撑为[lb,ub],N点均匀分布网格上的mexican hat小波,输出变量为网格X上计算得到的小波函数psi。

(5)coifletf函数【coifletf小波滤波器】p=coifletf(W)%返回由W指定的coifletf小波尺度滤波器,其中W=’coifN’,N取值可以是1-5。

(6)meyeraux函数【Meyer小波辅助函数】Y=meyeraux(X)%返回meyer小波使用的辅助函数在向量获矩阵X上的各点值。

(7)morlet函数【morlet小波】[psi,x]=morlet(lb,ub,n)%返回morlet小波在N点均匀分布的支撑[lb,ub]的值,输出变量为网格X上计算得到的小波函数psi。

(8)symaux函数【计算symlet小波】W=symaux(N,sumw) %N阶symlet尺度滤波器。

W=symaux(N)(9)symwavf函数【symlet小波滤波器】F=symwavf(W)%返回由字符串W定义的symlet小波相关的尺度滤波器。

(10)Biorwavf函数【双正交样条小波滤波器】[rf,df]=biorwavf(W)%返回与指定双正交小波W相交联的两个尺度滤波器。

Rf是重构滤波器,df是分解滤波器。

(11)cgauwavf函数【复高斯小波】[psi,x]=morlet(lb,ub,n,p)%定义在区间[lb,ub]上的N点均匀分布的网格上,返回P次复高斯函数。

(12)dbaux函数【计算Daubechies小波滤波器】W=dbaux(n,sumw) %返回N阶Daubechies尺度滤波器W=dbaux(n) %等价于W=dbaux(n,1)(13)gauswavf函数【gaussian小波】[psi,x]=gausswavf(lb,ub,n,p)%定义在区间[lb,ub]上的N点均匀分布的网格上,返回P次复高斯函数。

(不同于11中的复高斯函数)(14)rbiowavf函数【反双正交样条滤波器】[rf,df]=rbiorwavf(W)%返回由字符串W定义的和双正交小波相关的两个尺度滤波器。

[psi,x]= shanwavf (lb,ub,n,fb,fc)%返回复shannon小波,带宽FB,中心频率FC;Psi定义在N点均匀分布的区间[lb,ub]。

(16)meyer函数【meyer小波】[phi,psi,t]=meyer(lb,ub,n)%返回有效支撑为[lb,ub],N点均匀分布网格上的估计得到的meyer尺度与小波函数。

N必须为2的整次幂。

[phi,t]=meyer(lb,ub,n,’phi’)[psi,t]=meyer(lb,ub,n,’psi’)四、小波变换的Matlab实现4.1一维连续小波1、计算步骤:(1)选定一个小波,并与处在分析时段部分的信号相比较。

相关文档
最新文档