纳米科学与微纳制造》复习材料.docx
纳米材料复习范围及要点

纳米材料复习范围及要点1、纳米科技指在纳米尺度(1-100nm)上研究物质的特性和相互作用,同时利用这些特性在这一尺度范围内对原子、分子进行操纵和加工的多学科交叉的科学和技术。
2、研究内容是创造和制备优异性能的纳米材料;设计、制备各种纳米器件和装置;探测和分析纳米区域的性质和现象。
3、最终目的:以原子、分子为起点,去设计制造具有特殊功能的产品,其技术路线可分为“自上而下”(Top Down),“自下而上”(Bottom Up)两种方式。
4、纳米材料:广义地,纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。
5、纳米材料是纳米科技的主要基础,它和纳米电子学、纳米生物学、纳米检测与表征等组成纳米科技最基本的内容,显示出丰富的层次与学科交叉特征。
6、纳米材料研究的主要内容,包括纳米材料制备中的科学技术问题,纳米材料结构表征与评估方法,纳米材料物理化学性质的测试方法,特别是纳米微区分析技术,纳米材料物理化学性质的特殊变化规律和产生机理,纳米材料的应用与使用过程中的老化失效问题等。
7、纳米结构以纳米尺度的物质单元为基础,按一定规律构筑或营造一种新的体系,它包括一维、二维和三维体系。
这些物质单元包括纳米微粒、稳定的团簇或人造超原子(artificial superatoms)、纳米管、纳米棒、纳米丝、纳米带以及纳米尺寸的孔洞。
8、人工纳米结构组装体系: 按人类的意志,利用物理和化学的方法人工地将纳米尺度的物质单元组装、排列构成一维、二维和三维的纳米结构体系,包括纳米有序阵列体系和介孔复合体系等。
这里,人的设计和参与制造起到决定性的作用,就好像人们用自己制造的部件装配成非生命的实体。
9、纳米结构的自组装体系: 指通过弱的和较小方向性的非共价键,如氢键、范德瓦耳斯键和弱的离子键协同作用把原子、离子或分子连接在一起构筑成一个纳米结构或纳米结构的花样。
10、纳米微粒的尺寸远远小于飞机本身发出的红外线波长和雷达发来的电磁波波长,可以大大增加对这些波的透过率和减少对这些波的反射率,使得红外探测器和雷达接受到的反射信号变得微弱,从而达到隐身的作用;纳米微粒的比表面积大,对电磁波有很强的吸收能力,这些又使得红外探测器和雷达接受到得反射信号强度又大打折扣。
纳米科学技术复习提纲

纳米技术复习提纲1.掌握纳米、纳米尺度纳米尺度:1-100nm范围内的几何尺度。
纳米技术:指在纳米尺寸范围内认识和改造自然,研究1-100nm之间的物质组成体系的运动规律和功能特性。
2.掌握纳米材料(定义、含义、分类)纳米材料的定义几何尺寸、组成相或晶粒结构的尺寸控制在1-100纳米范围的具有特殊功能的材料。
两层含义:1.至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;2.尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性。
按结构(维度)分为4类:(1) 0维材料quasi-zero dimensional—三维尺寸为纳米级(100 nm)以下的颗粒状物质。
(2) 1维材料—线径为1—100 nm的纤维(管)。
(3) 2维材料—厚度为1 — 100 nm的薄膜。
(4) 3维纳米材料——纳米相材料。
(5)纳米介孔材料(孔径为纳米级)。
按组成分类:纳米金属、纳米无机非金属、纳米高分子材料、复合纳米材料按晶体状态分类:纳米晶体、纳米非晶体按材料物性分类:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料按应用分类:纳米电子材料、纳米光电子材料、纳米生物医学材料、纳米敏感材料、纳米储能材料3.了解纳米材料的四种特性当物质小到1~100nm (10-9~10-7m)时,由于其巨大的表面及界面效应, 晶界原子达到15-50%,物质的很多性能发生质变, 呈现出许多既不同于宏观物体, 也不同于单个孤立原子的现象。
量子尺寸效应、小尺寸效应、表面与界面效应、宏观量子隧道效应、介电限域效应量子尺寸效应:随着粒子中原子数的减少,金属Fermi能级附近的电子能级由连续状态分裂为分立状态,能级的平均间距与粒子中的电子数成反比,在能级间距大于热能、磁能、静电能、光子能量以及超导态的凝聚能时,就会产生与宏观物体不同的所谓量子效应(Quantum Effect),被科学界称做Kubo效应。
《纳米科学与技术导论》复习题(第二版)

《纳米科学与技术导论》复习题(第二版)1、什么是纳米材料?结构材料?答:纳米材料是指材料的几何尺寸达到纳米级尺度水平,并且具有特殊性能的材料。
其主要类型为:纳米颗粒与粉体、碳纳米管和一维纳米材料、纳米薄膜、纳米块材。
纳米结构2、什么是纳米科技?答:纳米科技是指在纳米尺度(1~100nm之间)上研究物质组成体系的运动规律和相互作用,以及在应用中实现特有功能和智能作用的多学科交叉的科学和技术。
3、纳米技术的科学意义。
答:<1>纳米科技将促使人类认知的革命。
<2>纳米科技将引发一场新的工业革命。
<3>纳米科技将影响未来人类的生活方式和思维方式。
4、纳米材料有哪4种维度?举例说明。
答:纳米块体(三维纳米材料)、纳米薄膜(二维纳米材料)、纳米线(一维纳米材料)、量子点(O维纳米材料)。
5、随颗粒的直径的减小,材料的熔点有什么改变?原因是什么?纳米材料的稳定性有什么改变?答:下降。
原因:由于颗粒小,纳米微粒的表面能高,表面原子数多。
这些表面原子近邻配位不全,火星大,纳米粒子融化时所需增加内能小,致熔点急剧下降。
热稳定性变差。
6、电子在纳米材料中的传播特点是什么?答:晶界存在使电子的散射增加,晶界原子更混乱,导致界面热垒升高,电阻增加。
7、什么是巨电导振荡?答:现象描述:用脉冲激光照射微米或毫米金属丝,没有电导变化。
用脉冲激光照射金属丝的纳米窄收缩处,因热效应使收缩处的直径发生变化,从而引起电导的强烈振荡。
8、激子定义是什么?答:电子和空隙通过库伦相互作用力而束缚在一起,形成的电子——空隙对。
9、什么是超顺磁性?答:纳米微粒尺寸小到一定临界值时进入超顺磁状态。
粒子的磁化方向表现为磁的“布朗运动”,粒子集合体的总磁化强度为零,称为超顺磁性。
10、名词解释STM、AFM、SEM、XRF、TEMSTM:扫描隧道显微镜AFM:原子力显微镜XRF:X射线荧光分析SEM:扫描电子显微镜TEM:透射电子显微镜11、简述STM和AFM工作原理及对纳米技术的影响。
纳米材料复习提纲.doc

复习提纲1纳米的概念:纳米(nanometer)是长度的一个单位,简写为nm olnm=10-3 u m=10-6min=10-9mlnm等于10个氢原子一字紧密排起来的长度。
纳米是一个极小达到尺寸,但它又代表人们认识上的一个新层次,从微米进入到纳米。
2宏观和微观:宏观:研究对象尺寸很大,下限有限,上限无限。
微观:指分子、原子及其内部的原子核(夸克、亲子、希格斯-波色子)和电子,微观冇上限而无法定义下限。
3界观体系:界观体系就是宏观和微观Z间的纳米体系。
4纳米材料:是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基木单元构成的材料,即由粒径尺寸介于1 —100nm之间的超细颗粒组成的固体材料。
狭义来讲:纳米材料是有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管和纳米固体材料的总称。
广义:纳米材料是晶粒或晶界等显微构造能达到纳米尺寸水平的材料。
纳米材料是组成相或晶粒在任一维上尺寸小于100nm的材料。
也叫超分子材料。
5纳米微粒:是指颗粒尺寸为纳米量级的超微颗粒,尺度大于原子团簇,小于通常的微粉,一般指颗粒度在riOOnm Z间粒了的聚合体,是处于该几何尺寸的各种粒子聚合体的总称。
6幻数效应:构成原子团簇的原子数口按一定规律分布,形成稳定的团簇结构的集合体,称为幻数。
7团簇:是由多个原子组成的小粒子,它们比无机分子大,但比具冇平移对称性的块体材料小,其原了结构(键长、键角和对称性等)和电了结构不同于分子,也不同于块体。
8纳米碳管:纳米碳管(NTs)是管状的纳米级右墨品体。
9什么情况卜•不能够用电阻加热法制备纳米金屈粒了;10光敏剂11沉淀法12溶胶-凝胶法:13化学气相沉积法14气相分解法制备纳米粒子对原料性质的要求及反应15激光诱导气相化学反应原理13微乳液14薄膜15荷叶效应16纳米复合材料17纳米固体材料结构的研究方法18小尺寸效应19二简述1纳米粒子的基本单元结构分类2纳米科技研究的内容3纳米科技诞生的标志4简述世界上何时如何首次实现了单个原子的移动和排列5纳米材料的不同发展阶段研究的侧重点分别是什么6纳米科技的作用7纳米材料在高科技屮的地位8表面效应产生的原因分析9纳米催化剂的作用及优点10高密度纳米磁性记录材料应满足的条件?11纳米隐身材料12 C60的结构13为什么富勒烯的命名存在争议?14 C60发现的重要意义15原了团簇的性质16为什么C60溶液口J以作为光学限幅器17碳有哪些同素异型体?各有什么样的特点?18如何制备出单臂纳米碳管?19单壁纳米碳管的类型及特点20纳米碳管优异的物理性能21气体冷凝法的主要步骤22影响纳米微粒粒径的因素23粉体粒径的控制方法24气相化学反应法(化学气相沉积)25激光制备超细微粒的基木原理26影响溶胶-凝胶法制备纳米薄膜的主要因索冇哪些?27纳米固体材料的结构分类28界面组元的特点29简述纳米材料的结构缺陷30纳米固体材料界面结构的研究方法31纳米材料与宏观材料的区别?32纳米复合材料在,填料与基体的作用三.论述1纳米科技研究对人类发展将产生哪些重要贡献?2为什么对纳米人们会产生有关安全性的争论?3纳米固体材料的特性4量了尺寸效应5原子团簇6机械粉碎法制备纳米粒子存在什么限制?影响机械粉碎极限的主要因素有哪些?7科技成果的滥用和纳米产品的奢侈应用8为什么说纳米科学技术将逐步改变世界?。
(完整word版)纳米材料(选修课考试资料)(word文档良心出品)

第一章1 什么是纳米材料?它与普通材料相比有什么特殊的性质?答:尺寸大小处于1-100 nm含有范围内的物质就是纳米物质,含有纳米结构的材料就是纳米材料。
2 纳米材料的四大效应是什么?答:(1)小尺寸效应(尺寸越小,熔点越低)(2)表面效应(颗粒越小,表面活性越高)(3)量子效应(4)宏观量子隧道效应3 什么是荷叶效应?它的原理是什么?答:荷叶叶面都具有极强的疏水性,洒在叶面上的水会自动聚集成水珠,水珠的滚动把落在叶面上的尘土污泥粘吸滚出叶面,使叶面始终保持干净,这就是著名的"荷叶自洁效应"。
原理:荷叶叶面上存在着非常复杂的多重纳米和微米级的超微结构。
荷叶表面上有许多微小的乳突而每个乳突有许多直径为200纳米左右的突起组成的。
在荷叶叶面上布满着一个挨一个隆起的"小山包",它上面长满绒毛,在"山包"顶又长出一个馒头状的"碉堡"凸顶。
因此,在"山包"间的凹陷部份充满着空气,这样就在紧贴叶面上形成一层极薄,只有纳米级厚的空气层。
这就使得在尺寸上远大于这种结构的灰尘、雨水等降落在叶面上后,隔着一层极薄的空气,只能同叶面上"山包"的凸顶形成几个点接触。
雨点在自身的表面张力作用下形成球状,水球在滚动中吸附灰尘,并滚出叶面,这就是"荷叶效应"能自洁叶面的奥妙所在。
4 神秘的碳家族的成员有那些?各有什么作用?5 常见的润滑材料有那些?第二章1 什么是晶体、晶胞与空间点阵?答:晶体是在三维空间上由原子按一定排列的空间结构重复单元组成的;在空间点阵中选取一个能够代表整体的简单单元,这个单元叫晶胞;把原子作为一个点,把这些点在空间的排列用线连接起来,所形成的网络。
在空间点阵中的每个点周围的原子都是相同的原子。
2 体心立方晶格、面心立方晶格与密排六方晶格各有什么特点?答:体心立方晶格的晶胞是一个立方体,立方体的八个顶角和立方体的中心各有一个原子。
纳米材料复习整理预览版

纳米材料复习整理预览版1、什么是纳米材料?其内涵是什么?(从零、一、二、三维考虑)从广义上讲,纳米材料是指三维空间中至少有一个维度在纳米尺度范围内或由它们作为单元组成的材料。
几十个到几万个原子的纳米颗粒(零维)一维量子线(线、管、棒、电缆)二维量子面(超薄膜,ultrathinfilms)三维纳米固体(体材料,bulkmaterials)2.纳米材料的四大效应是什么?举例说明每种效果。
1.小尺寸效应:指纳米粒子尺寸减小,体积缩小,粒子内的原子数减少而造成的效应。
举例:1小尺寸的铂呈现黑色或者棕黑色,是很多低温氧化催化剂的重要成分,如汽车尾气催化(三○2小尺寸Au/TiO 2具有低温氧化催化活性。
金属超细颗粒对光的反射率是非常有效的催化剂)等。
光吸收显著增加,并产生一个低吸收峰,通常小于1%,在厚度约为几微米时可完全熄灭。
○5磁有序态向磁无序态转变;○6超导相向正常相的转变;○7声子谱发生等离子共振频移;○改变。
(任选其一)2.表面效应:当材料的粒径远大于原子直径时,表面原子可以忽略;然而,当颗粒尺寸逐渐接近原子直径时,表面原子的数量和作用不容忽视,此时颗粒的表面积、表面能和表面结合1粒子能都发生了很大的变化。
人们把由此产生的各种特定效应称为表面效应。
例如:○ 直径减小,表面原子数迅速增加。
原因:颗粒尺寸小,表面积急剧增加。
例如,当粒径为10nm时,比表面积为90m2/g;当粒径为5nm时,比表面积为180m2/g;当粒径减小到2nm时,比表面积大于表面积2,使得表面原子数越来越多,表面能迅速增加。
铜的累积量飙升至450m2/g。
○纳米微粒粒径从100nm→10nm→1nm,cu微粒的比表面积和表面能增加了2个数量级。
3表面原子数增多、原子配位不足及高的表面能,使表面原子具有高的活性,极不稳定,○它很容易与其他原子结合。
例如,金属纳米颗粒会在空气中燃烧,而无机纳米颗粒会吸附气体,并在暴露于空气中时与气体发生反应。
纳米材料基础复习总结

纳米材料基础与应用
2
1.2.2 纳米科技研究内容
• 纳米科技关注物质在纳米尺度上表现出来的新现象与新规律 • 纳米科技:纳米尺度上的新概念、新理论、新原理、新方法与新
用途的一门新型的、多学科交叉的应用型学科。 • 纳米科技的研究内容概述: • (1)纳米科学:探索与发现物质在纳米尺度上所表现出来的各种
纳米陶瓷(nanoceramics),纳米金属 (nanometals),纳米孔材料(nanoporous materials),气凝胶(aerogel),纳米结构阵列 (nanostructured arrays)
纳米复合材料(nanocomposite materials)
纳米材料基础与应用
9
1.3.6 纳米材料的安全性
纳米材料基础与应用
4
• 纳米生物学(Nanobiology) :主要利用纳米科技的思想、工具以及材料 等来研究、解决生物学问题,在分子水平上深入揭示细胞内部各种纳 米尺度单元的结构和功能,以及细胞内部、细胞内外之间以及整个生 物体的物质、能量和信息交换机制。属生物学与物理学、材料学、有 机合成化学以及工程学交叉形成的新兴学科。
3-2 典型固相制备方法
3.2.1 机械法 3.2.2 固相反应法 3.2.3 其他固相法
纳米材料基础与应用
16
高能球磨法制备纳米微粒的特点?
3.3 典型气相制备方法
3.3.1低压气体中蒸发法 3.3.2 低真空溅射法 3.3.3 流动液面上真空蒸镀法 3.3.4 爆炸丝法 3.3.5化学气相沉积法
相关知识 扫描隧道显微镜、富勒烯、巨磁阻效应 美国NNI计划、中国《纳米科技发展纲要》
2024纳米材料与技术期末考试复习

《纳米材料与技术》期末复习第一章:纳米科学技术的发展历史——1、1959年12月,美国物理学家费曼在加州理工学院召开的美物理学会会议上作了一次富有想象力的演说“最底层大有发展空间”,费曼的幻想点燃纳米科技之火。
2、1981年比尼格与罗勒尔独创了看得见原子的扫描隧道显微镜(STM)。
3、1989年在美国加州的IBM试验内,依格勒博士采纳低温、超高真空条件下的STM操纵着一个个氙原子,实现了人类另一个幻想——干脆操纵单个原子。
4、1991年,日本的饭岛澄男教授在电弧法制备C60时,发觉氩气直流电弧放电后的阴极碳棒上发觉了管状结构的碳原子簇,直径约几纳米,长约几微米碳纳米管。
5、1990年在美国东海岸的巴尔的摩召开其次届国际STM会议的期间,召开了第一届国际纳米科学技术会议,该会议标记纳米科学技术的诞生。
其次章:1、纳米材料的分类:按功能分为半导体纳米材料、光敏型纳米材料、增加型纳米材料和磁性纳米材料;按属性分为金属纳米材料、氧化物纳米材料、硫化物纳米材料、碳(硅)化合物纳米材料、氮(磷)等化合物纳米材料、含氧酸盐纳米材料、复合纳米材料。
按形态分为纳米点、纳米线、纳米纤维和纳米块状材料。
2、纳米材料的四个基本效应:小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应。
1)量子尺寸效应与纳米材料性质a.导电的金属在制成超微粒子时就可以变成半导体或绝缘体;绝缘体氧化物相反。
b.磁化率的大小与颗粒中电子是奇数还是偶数有关。
c.比热亦会发生反常变更,与颗粒中电子是奇数还是偶数有关。
d.光谱线会产生向短波长方向的移动。
e.催化活性与原子数目有奇数的联系,多一个原子活性高,少一个原子活性很低。
2)小尺寸效应的主要影响:a.金属纳米相材料的电阻增大与临界尺寸现象(电子平均自由程)动量b.宽频带强汲取性质(光波波长)c.激子增加汲取现象(激子半径)d.磁有序态向磁无序态的转变(超顺磁性)(各向异性能)e.超导相向正常相的转变(超导相干长度)f.磁性纳米颗粒的高矫顽力(单畴临界尺寸)3)表面效应及其影响:表面化学反应活性(可参加反应)、催化活性、纳米材料的(不)稳定性、铁磁质的居里温度降低、熔点降低、烧结温度降低、晶化温度降低、纳米材料的超塑性和超延展性、介电材料的高介电常数(界面极化)、汲取光谱的红移现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《纳米科学与微纳制造》复习材料1、纳米材料有哪些危害性?答:纳米技术对生物的危害性:1)在常态下对动植物体友好的金,在纳米态下则有剧毒;2)小于 100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存;3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。
2、什么是纳米材料、纳米结构?答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1nm~100nm范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。
纳米材料有两层含义:其一,至少在某一维方向,尺度小于 100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于 100nm ,如纳米晶合金中的晶粒 ;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。
纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。
3、什么是纳米科技?答:纳米科技是研究在1-100nm 内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。
4、什么是纳米技术的科学意义?答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望。
5、纳米材料有哪 4 种维度?举例说明答:零维:团簇、量子点、纳米粒子一维:纳米线、量子线、纳米管、纳米棒二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格三维:纳米块体6、名词解释:STM、 AFM、 SEM、 TEM答:STM (scanning tunneling microscope)扫描隧道显微镜AFM(Atomic Force Microscope)原子力显微镜SEM(scanning electron microscope)扫描电子显微镜TEM(Transmission Electron Microscope)透射电子显微镜XRF(X Ray Fluorescence)X 射线荧光光谱分析7、扫描隧道显微镜和原子力显微镜的工作原理扫描隧道显微镜:在样品与探针之间加上小的探测电压,调节样品与探针间距,控制系统使针尖靠近样品表面,当针尖原子与样品表面原子距离≤10?时,由于隧道效应,探针和样品表面之间产生电子隧穿,在样品的表面针尖之间有一纳安级电流通过,电流强度对探针和样品表面间的距离非常敏感,距离变化1? ,电流就变化一个数量级左右。
移动探针或样品,使探针在样品上扫描。
原子力显微镜:将一个对微弱力极敏感的弹性微悬臂一端固定另一端的针尖与样品表面轻8‐10‐6N ) 时,微悬臂会发生轻接触,当针尖尖端原子与样品表面间存在极微弱的作用力( 10‐微小的弹性形变,针尖和样品之间的作用力与距离有强烈的依赖关系(遵循胡克定律)8、纳米科技的分类?纳米科技从研究内容上可以分为三个方面:?①纳米材料 , 是指材料的几何尺寸达到纳米级尺度 , 并且具有特殊性能的材料。
是纳米科技发展的物质基础。
?②纳米器件,就是指从纳米尺度上,设计和制造功能器件。
纳米器件的研制和应用水平是进入纳米时代的重要标志。
?③纳米尺度的检测和表征。
9、请叙述什么是小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应。
小尺寸效应:当纳米粒子的尺寸与光波波长、德布罗意波长、超导态的相干长度或与磁场穿透深度相当或更小时,晶体周期性边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近的原子密度减小,导致声、光、电、磁、热力学等特性出现异常的现象。
表面效应:纳米超微粒子的表面原子数与总原子数之比随着纳米粒子尺寸的减小而大幅度地增加,纳米粒子的表面原子所处的位场环境及结合能与内部原子有所不同存在许多悬空键,配位严重不足,具有不饱和性质,粒子的表面能及表面张力也随着增加,从而引起纳米粒子性能的变化。
因而极易与其它原子结合而趋于稳定。
?量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级。
当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化的效应。
?宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。
纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应。
?10、与常规材料相比,纳米微粒的熔点、烧结温度和比热发生什么变化,并分别解释原因?熔点和开始烧结温度比常规粉体的低得多,比热容增加。
?熔点下降的原因:由于颗粒小,纳米微粒的表面能高、表面原子数多,这些表面原子近邻配位不全,活性大 ( 为原子运动提供动力) ,纳米粒子熔化时所需增加的内能小,这就使得纳米微粒熔点急剧下降。
?烧结温度降低原因:纳米微粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结过程中高的界面能成为原子运动的驱动力,有利于界面附近的原子扩散,有利于界面中的孔洞收缩,空位团的埋没因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低?比热容增加:纳米结构材料的界面结构原子杂乱分布,晶界体积百分数大(比常规块体),因而纳米材料熵对比热的贡献比常规材料高很多需要更多的能量来给表面原子的振动或组态混乱提供背景,使温度上升趋势减慢。
?11、激子的定义是什么?答:在光跃迁过程中,被激发到导带中的电子和在价带中的空穴由于库仑相互作用,将形成一个束缚态,称为激子。
通常可分为万尼尔(Wannier )激子和弗伦克尔(Frenkel )激子,前者电子和空穴分布在较大的空间范围,库仑束缚较弱,电子“感受”到的是平均晶格势与空穴的库仑静电势,这种激子主要是半导体中;后者电子和空穴束缚在体元胞范围内,库仑作用较强,这种激子主要是在绝缘体中。
12、试解释磁性纳米颗粒尺寸小到一定临界值时出现超顺磁性的原因超顺磁状态的起源可归为以下原因:?A 当颗粒尺寸小于单畴临界尺寸,随尺寸减小,磁各向异性能( 磁畴方向 ) 减小到与热运动能可相比拟,在热扰动作用下,磁化方向就不再固定在一个易磁化方向,易磁化方向作无规律的变化,结果导致超顺磁性的出现; ?B 不同种类的纳米磁性微粒显现超顺磁性的临界尺寸是不相同的;?13、试述纳米材料的光致发光不同于常规材料的原因?1)由于颗粒很小,出现量子限域效应,界面结构的无序性使激子、特别是表面激子很容易形成,因此容易产生激子发光带;?2)界面体积大,存在大量的缺陷,从而使能隙中产生许多附加能级;?3)平移周期被破坏, 在 K 空间常规材料中电子跃迁的选择定则可能不适用晶体场不对称4)杂质能级‐‐‐杂质发光带处于较低能量位置,发光带比较宽?14、什么是“自上而下”和“自下而上”?“自上而下”:是指通过微加工或固态技术, 不断在尺寸上将人类创造的功能产品微型化。
?“自下而上”:是指以原子分子为基本单元, 根据人们的意愿进行设计和组装, 从而构筑成具有特定功能的产品,这种技术路线将减少对原材料的需求, 降低环境污染。
?15、气相法制备纳米微粒的分类??气相法制备纳米微粒包括:化学气相反应法:气相分解法,气相合成法,气-固反应法物理气相法:气体冷凝法,氢电弧等离子体法,溅射法,真空沉积法,加热蒸发法,混合等离子体法。
16、液相法制备纳米微粒的分类?液相法制备纳米微粒分为:沉淀法,水热法,溶胶凝胶法,冷冻干燥法,喷雾法17、试述气体冷凝法制备纳米微粒的基本原理?定义 : 此种制备方法是在低压的氩、氦等惰性气体中加热金属,使其蒸发后形成超微粒(1~1000nm)或纳米微粒。
原理:整个过程是在超高真空室内进行, 通过分子涡轮使其达到0.1KPa上的真空度,然后充入低压 ( 约2KPa)的净惰性气体(He或Ar,纯度为~99.9996% ) ,欲蒸的物质( 例如,金属,CaF 2,NaCl , FeF等离子化合物、过渡族金属氮化物及易升华的氧化物等) 置于坩埚内,通过钨电阻加热器或石墨加热器等加热装置逐渐加热蒸发,产生原物质烟雾,由于惰性气体的对流,烟雾向上移动,并接近充液氦的冷却棒( 冷阱, 77K) 在蒸发过程中,原物质发出的原子与惰性气体原子碰撞而迅速损失能量而冷却,在原物质的蒸气中造成很高的局域过饱和,导致均匀的成核过程,在接近冷却棒的过程中,原物质的蒸气首先形成原子簇,然后形成单个纳米微粒在接近冷却棒表面的区域内,单个纳米微粒聚合长大,最后在冷却棒表面上积累起来用聚四氟乙烯刮刀刻下并收集起来获得纳米粉。
18、溶胶凝胶法制备纳米微粒的基本原理将金属醇盐或无机盐经水解 , 然后使溶质聚合凝胶化,再将凝胶干燥、煅烧除去有机成分,最后得到无机材料。
19、名词解释CVD、 PVD、 PLD、 MBE、 PECVD答: CVD( Chemical Vapor Deposition)化学气相沉积法PVD( Physical Vapor Deposition)物理气相沉积法PLD( Pulsed Laser Deposition)脉冲激光沉积法MBE( Molecular Beam Epitaxy)分子束外延PECVD( plasma enhanced chemical vapor deposition)等离子体增强化学气相沉积法20.纳米科技的定义:在1~ 100nm尺度范围内,研究物质(包括原子、分子的操纵)的特性和相互作用,以及利用这些特性的多学科交叉的科学与技术。
21.如何识别真假纳米技术识别真假纳米技术主要有两个标准:( 1)材料的显微结构尺寸是否小于100nm;(2)材料和器件是否具有不同于常规材料的、新颖的和重大改进的物理、化学或生物学特性和功能。
22.原子力显微镜在纳米加工时有哪几种工作模式?①接触模式:微悬臂探针紧压样品表面,检测时与样品保持接触,作用力(斥力)通过微悬臂的变形进行测量。
该模式下,针尖与样品表面相接触,分辨率高,但成像时针尖对样品的作用力较大,适合表面结构稳定的样品。
②轻敲模式:用处于共振状态、上下振荡的微悬臂探针对样品表面进行扫描,样品表面起伏使微悬臂探针的振幅产生相应变化,从而得到样品的表面形貌。
该模式下,扫描成像时针尖对样品进行“敲击”,两者间只有瞬间接触,能有效克服接触模式下因针尖的作用力,尤其是横向力引起的样品损伤,适合于柔软或吸附样品的检测。