超高性能混凝土

超高性能混凝土
超高性能混凝土

概述

超高性能混凝土(UHPC)

比传统的混凝土提供更高的抗压强度和抗拉强度。由于UHPC较高的强度、刚度,

耐久性,使其便于在桥梁上使用。然而,一个缺点是,面板和梁的连接区域一般要有一个较厚的截面来确保适当的剪切连接,这使得甲板上的UHPC不能更薄,更轻。此外,抗剪栓钉剪力连接件嵌入在UHPC板中对强度的影响与传统的混凝土板并不相同。我们通过15个推测试探讨论一个栓钉剪切连接键嵌入在UHPC面板的情况。我们测试了相对栓钉的极限强度极其相对滑移,并选择这些测试参数,以证明一个更薄的板的可行性。我们研究栓钉的长细比,纵横比以及栓钉顶部的覆盖厚度以证实eurocode-4 AASHTO LRFD设计规范中提到的UHPC面板的几何约束的存在。由试验得出,在不用损失栓钉的剪切强度情况下,其纵横比由4减少到3.1。覆盖厚度可以50毫米减少到25毫米而不引起在UHPC裂缝

厚板.然而,在所有情况下,都没有达到6毫米的延展性需求。因此,在UHPC板中栓钉剪力连接件设计应按照弹性设计规范。

1.介绍

超高性能混凝土(UHPC)是一种先进的由高强度基体和纤维组成的复合材料

。与传统的混凝土相比,它提供了优越的抗压强度(>150 MPa)和拉伸强度(>5 MPa)以及更高的弹性模量(>40 GPA)。它通常是由波特兰水泥,硅灰,填料,细集料,高效减水剂,水和钢纤维组成。

UHPC正在越来越广泛地应用到各种民用基础设施。特别是,许多调查发现,由于其较高的强度,刚度和耐久性,它确实适用于桥梁组件,如梁,板和连接

节点。有研究调查了UHPC作为一个面板组件的作用。

saleem等,开发了一个较薄的UHPC板系统以替代一个网格式钢面板。coreslab 结构公司开发的华夫饼形状的UHPC面板,安装在雪松溪、瓦佩洛县,爱荷华的桥上。我们研究了结构的表现,并提出了一个设计这个面板系统的包括连接部分的指南。

通过努力,我们开发了由FRP梁顶加上一层UHPC材料进行组合的组合梁

。陈和埃尔阿查用9.5-mm直径的玻璃纤维增强(GFRP)栓钉连接由空心箱体组成并覆盖了53毫米厚的UHPC层的FRP梁。

Nguyen等人。开发了上覆预制UHPC板的FRP工字梁组成的组合梁

,其中板采用了M16螺栓作为剪力连接器以及环氧树脂材料。UHPC板

50毫米厚,而螺栓嵌入深度为35毫米,导致螺栓顶部只有15毫米。螺柱长细比为2.2。这个顶部的厚度和纵横比不满足设计规范要求的50毫米和比列值4。UHPC桥面板的可以比传统的混凝土桥面有一个更小的横截面。然而,连接了板和钢梁的连接区域厚度应该比传统条件下的厚度要厚,以确保该剪切连接器可以正确安装和嵌入在在面板中,来符合现有的设计规范。例如,以前开发的两个UHPC节点厚度分别为127毫米的厚度(5英寸)和203毫米(8英寸),这

不低于混凝土桥面的厚度。UHPC板最小的厚度为32毫米(1.25英寸),

63.5毫米(2.5英寸),而剪切连接需要一个足够厚的UHPC板;这不利于降低自重和板的厚度。本研究探讨嵌入在不同厚度UHPC板上的螺栓剪力连接件的结构反应,证实了设计规范的有效性。

自1960以来,由于复合结构的结构强度高,其已被广泛应用。这种结构通常由一个钢梁和混凝土板通过适当的剪力连接件,如角、槽钢、双头和穿孔的肋,通过合适的剪力连接件传递剪切力的混凝土桥面。由于其简单和快速的

安装,双头螺栓是最常用的。使用螺柱焊枪和优越的延展性使双头螺栓比其他剪切连接器更方便。ollgaard等人的早期的实验工作对螺栓剪切连接器的静力强度进行了评估。他们发现一种螺栓剪切连接器的静力强度由两个控制

不同的失效机理决定:1.周围的混凝土压碎破坏,这与混凝土的抗压强度相关。

。2.螺杆剪断破坏,这与螺杆的极限抗拉强度有关。这个两种不同的控制机制间较小的值为螺栓的剪切强度设计值。定义剪切连接件的静力强度计算公式

抵抗力因子,,取为0.85。

静力抗剪设计强度公式为

其中分项系数,,为 1.25,纵横比因子,α,取决于螺栓的长细比,取为

不同的规范给予了不同的抗力和分项系数。然而,他们与式子的左边相似。

(1)和(2)考虑混凝土的开裂破碎以及混凝土强度,和弹性模量而不是指其力学性质。(1)和(2)又考虑了螺杆的破坏,同样与混凝土的力学性能无关。混凝土抗压强度低或适中时,混凝土破裂失效为主导因素。当强度高时,螺杆拉断为主要的破坏形式。混凝土抗压强度为30-40兆帕时为两种破坏形式的临界值。

考虑到超高性能混凝土的抗压强度超过150兆帕,螺栓拉断的形式显然总是控制螺柱剪力连接件的静力强度的因素。ollgaard等人,报道他们的试样混凝土强度为18和35兆帕。现有的螺柱剪力连接件设计规范的有效性需要被证实,因为UHPC极大的提高了混凝土强度。

UHPC板必须尽可能薄,以减少重量和施工成本,因而相关的几何约束是另一个重要的问题

。现有设计规范(The AASHTO LRFD andEurocode-4 )的约束导致在板和梁之间的连接区域的UHPC板变厚。在两肋之间,最薄的区域,华夫板的厚度为63.5毫米。而在交接区为200毫米。

萨利姆等人建立了薄板系统,两肋之间厚度为31mm,但连接处为125mm。本研究发现,按照目前的设计规范,剪力连接件嵌入UHPC板时,只需75毫米厚度便能达到稳定要求。

第一个几何约束是螺栓的整体高度和螺杆直径之间的纵横比。规范(The AASHTO LRFD provision 6.10.10.1.4)要求纵横比至少为4至3.第二个约束是螺栓的上覆厚度不应小于50mm且应穿入混凝土板50mm,以防止剪力连接件的纵向劈裂。当桥面板使用常规的直径为17mm的螺栓时,遵循规范(The AASHTO LRFD),板的厚度为四倍螺栓直径加50mm的上覆厚度,即至少118mm厚。所以复合连接件短而粗。

规范(The Eurocode-4 provision 6.6.5.1 )规定连接件表面厚度不应该小于30mm。(The Eurocode-4 provision 6.6.5.2)规定连接件加固厚度要满足混凝土表相邻的加固要求。由UHPC板并不需要加固,也不用满足(The Eurocode-4 )规范给出的上覆厚度的要求。

UHPC材料提供更高的强度和耐久性,因此,板的厚度可以比使用常规混凝土时要薄。然而,由于几何约束,板梁交界处的厚度不能变小,以确保纵向剪切力的传递。

本研究探讨了栓钉剪力连接件对UHPC实心薄板的静力强度和工作有效性,有些因素限制其使用。首先我们要关注的是:UHPC中的螺栓是否提供和在普通混凝土中一样的静力强度。其次就是探讨其几何特性。螺栓的安装受限于几何性质,如长细比和栓钉的上覆厚度。实际上,现行的规范并不允许螺栓用于薄板中。

最后一点是UHPC板的混凝土强度远远大于普通混凝土,螺栓在其中的工作特性

是否会和在普通混凝土中一样。

2。实验步骤

在弯曲复合构件中的剪切连接件,抵抗发生在梁和板之间的界面处的相对滑移。测量剪力连接件静强度的最好方法是进行一个分布荷载作用下的抗弯梁试验。然而,为了降低成本和减少时间,通常是用来一个直接推出测试代替。实验测试的过程遵循eurocode-4-1-1设计规范的要求。我们在表1中列出了5个试样组,分别是普通混凝土及UHPC-1至UHPC-IV。每组三个试样A,B,C。测试的关键变量为板厚,栓钉长细比和上覆厚度。普通版用传统混凝土,做参照作用。UHPC-1与普通板有相同的尺寸,但使用UHPC混凝土。普通板和UHPC-1取同样的板厚,厚度与传统混凝土板厚一样,连接件满足规范给出的几何约束,即长细比至少是4,上覆厚度为50mm。UHPC-II和UHPC-III试样取100mm厚的板,UHPC-II的螺栓上覆厚度为35mm,少于现行规范要求。UHPC-III试样满足上覆要求但长细比仅为3.1,其小于规定的比列4。UHPC-IV试样选用了最薄的板,仅为75mm,其上覆厚度和长细比分别为25mm 和3.1,同样不满足要求。我们准备了双面推出试验,四个螺栓焊接在每一面,如图1所示。这些双头螺栓满足AWS.D 1.1的B型要求,即最小屈服强度为350兆帕,最小拉伸强度为450兆帕,他们被螺栓焊接枪焊接在法兰上。在本研究中,我们使用两种直径不同的螺栓,普通板和UHPC-1板使用22mm直径而其他组使用16mm直径,如表1所示。我们根据板厚度选择直径,以满足长细比为4的要求。普通板和UHPC-1板使用厚度为150mm板,而其他组使用更薄的板。我们使用直接张拉及双剪切试验来检测双头螺栓的抗拉和抗剪强度。直接测试的张拉台符合规范(AWS D1.1-2000)的要求。

我们选取中间的第三根螺杆进行试验以确定钢的剪切强度;这个测试是使用一个类似于Anderson和meinheit使用过的装置。

表2提供了超高性能混凝土混合物的成分:包含两种不同的长度的钢纤维,16.5和19.5毫米,取1%的体积混合。设计UHPC压缩强度为180兆帕,而实测的最小强度为200兆帕;测得的最小抗拉强度为18兆帕,测得的弹性模量为4.5乘105 MPa。测得的常规试件组的抗压强度为35兆帕。

用于模拟钢梁的钢型材的宽度,深度,腹板厚度,法兰厚度分别为300、300、10和15 mm。UHPC不能轻易浇筑在垂直方向上,而是在腹板方向进行纵向切割,并浇筑在法兰盘上,以模拟现场浇筑的情况,如图2所示。样品进行蒸汽养护,初始的养护温度为40°C,其后每小时上升10°C,直至达到90°C。蒸汽养护持续3天,养护阶段末期,温度逐渐降低。试验后,用螺栓将试样分离的两面拴在一起,在腹板的切割断面上使用M24高强度螺栓。然后,我们用2000 KN的通用测试机施加载荷到试件上。根据eurocode-4-1-1设计规范,采用循环荷载维持试

样的稳定,破坏型钢与板之间的联系。循环负载值为5%至40%的破坏荷载值,加载速度为0.82 /秒。在循环加载后,通过0.005毫米/秒速度的位移控制,我们对试样进行持续的加载直到破坏。

试试样通过增加在一个在一个的位移控制不断加载速度为0.005毫米/秒,直到故障。我们使用四台位于各板上120毫米处的LVDT传感器测量型钢与桥面之间的相对滑移,如图3所示。为了避免板分离从钢截面上分离,我们将横向支撑杆安装在试样的顶部和底部。我们用2台板外的LVDT传感器监控可能的滑移,如图4所示。

三.测试结果和讨论

3.1。螺栓的拉伸和双剪试验

表3总结了拉伸和剪切试验测得的结果,其中双剪试验所得到的值被划分为两份以获得一个面的抗剪能力。一些钢材抗拉屈服强度,极限强度超过了AWS D1.1-2000规范对应要求的350和450兆帕。图5显示了从抗拉试验中得到的应力应变。在拉伸试验中,我们可以清楚的看到屈服现象。如图6所示,我们在剪切台试验中没有看到明显的屈服现象和得到比例极限值。图7显示了双剪试验中螺栓的典型破坏形式。测得16mm和22mm的剪切强度与实测拉伸强度的比值为0.80和0.82。与公称强度(450 MPa)的比值为0.87和0.85。这个值大于Anderson 和Meinheit的值0.65。出现高比例的原因是双剪试验的试验台没有充分的固定螺栓,使其产生额外的弯矩而不是直接承受剪切荷载。实际上,螺栓承受了弯剪共同作用。我们很难评估两种力各自起到的作用。若想只评估试样的抗剪能力,我们需要很好的在竖直方向上限值螺栓头部的变形。在水平方向上,我们评估弯曲的影响。

3.2 螺栓的极限强度和初始刚度。

从推出测试中获得的最重要的数据是极限负载。我们通过eurocode-4-1-1设计规范给出的步骤分析极限破坏荷载()和相对滑移。同时,规范定义了特征抗力()为减少10%的最小的破坏力。在特征负荷水平下,试样的滑移量()

作为测量的最大滑移。特征滑移能力()作为的最小检测值降低了10%。表4显示了每个试样的详细试验结果。

由于混凝土的破坏模式没有影响控制嵌入在UHPC板中的剪力连接件,根据规范AASHTO LRFD,即使没考虑抗力的因素,我们也将得到的螺栓剪力连接件的极限

强度当作。图8显示了对及相对滑移施加力的曲线。考虑UHPC-I板

的螺栓材料的极限抗拉强度(450兆帕)以及螺杆的直径(22毫米),UHPC-I板被寄希望于达到171KN(原文中就是KN不是MP)的抗拉强度。对于UHPC-II,UHPC-III和UHPC-IV板,考虑螺栓16mm的直径,预计其抗拉强度为90KN。由规范eurocode-4UHPC-1给出的公式,评估得到的极限强度比由AASHTO LRFD设计规范评估的值少20%。在不考虑分项系数的条件下,普通板和UHPC-I板的抗拉强度为137 kN,其他试样为72kN。通过推出试

验,我们得到螺栓特征剪力强度值的比率,并从直接抗拉试验中获得极限抗

拉强度值,这同样满足AASHTO LRFD 规范的要求。eurocode-4设计规范

要求列在表5中。普通板的抗剪强度的值几乎等于由eurocode-4公式计算得到的结果。由此,我们可知试验程序是合理的。首先,除普通板外,连接件的极限强度值没有什么明显变化,这说明板厚不影响连接件的强度。eurocode-4设计规范的方程(2)降低了长细比较小的螺栓的静力强度。但是这不适用于UHPC板。UHPC-II,UHPC-III和UHPC-IV板不满足AASHTO LRFD设计规范规定的上覆厚度的要求,结果也没出现开裂。

连接件的静力强度超过公称强度的2%–13%,与AASHTO LRFD设计规范公式计算的值相符。如果用eurocode-4规范设计,结果保守。所以UHPC板中剪力连接件采用AASHTO LRFD 规范设计。根据强度设计概念,连接件初始刚度假设为无限。在早期加荷阶段,由于混凝土的压碎及螺栓的变形,两者间会产生初始的滑移。如图6所示,取极限荷载的10%和40%得到的相对滑移值求解另一部分的初始刚度。一个螺栓的普通板的平均的刚度为336千牛/毫米,UHPC-I板的最高刚度为762千牛/毫米,而UHPC-III板的刚度为736千牛/毫米,近乎于UHPC-I板的刚度。UHPC-II板和UHPC-IV板各有较小的刚度598千牛/毫米和538千牛/毫米。Oehlers

和Coughlan 通过116个推测试验提出的一个方程计算初始剪切刚度。即

其中螺栓初始刚度从螺栓抗剪强度,直径和混凝土的抗压强度中获得。

应用公式(3)对常规试样组提供了一个68牛顿/毫米的初始刚度,这是明显小于试验结果的。然而,Shim等通过推出测试提出了大直径(25毫米和30毫米)螺栓的初始刚度从200到400千牛/毫米不等。试验显示嵌入在UHPC中的螺栓至少提供60%比传统混凝土中高的刚度。基于UHPC-II板和UHPC-IV板的试验结果,螺栓的上覆厚度可能影响其初始刚度。即更高的上覆厚度产生更高的螺栓刚度。

3.3。长细比

当螺栓使用在薄的桥面板时,长细比是另一个重要的因素。AASHTO LRFD和Eurocode-4设计规范要求长细比至少为4,尽管随后规定在强度减小时,公式允许长细比为3。UHPC板的优越性在于其板可以尽可能的薄。使用螺栓剪力连接件可以减少螺栓的高度,同时可以减小直径以满足长细比的要求。但其需要更多的螺栓,花费大量的施工时间。考虑UHPC板的强度足够的高,实验研究了较小的长细比4.5,4.1,3.1,和3.1。对于UHPC-I至UHPC-IV板试样,取不同长细比,试验并没有显示什么差异。由于自身的高刚度和较高的水泥强度,连接件没有明显的剪切和弯曲变形。Xu和Sugiura 表示,降低混凝土的强度可能会导致相对明显的弯曲变形,以及推动方向上的剪切变形。

在焊接区上,螺栓横截面的断裂显示了清晰的轮廓。轮廓说明了剪切破坏是螺栓破坏的主因。因此,试验中连接件3.1的长细比被允许在损失了一点强度的UHPC

板上使用。

3.4在双头螺栓头上的覆盖厚度

AASHTO LRFD 需要双头螺栓上的覆盖层厚度为50毫米(2英寸)以上。这使得它很难在薄的UHPC的桥面上实现,考虑超高性能混凝土的力学性能,这可能是过于保守的解决方案。UHPC-II板和UHPC-IV板的上覆厚度分别为35毫米和25毫米。其静力强度分别高于UHPC-III板12%和7%。尽管这两组试样都显示出了延性的问题,但是上覆厚度为50mm的UHPC-III板,也显示了这样的问题。因此,我们认为延性问题与上覆厚度因素无关。测试结果表明,在桥面板处,浅覆盖的标本不发生强度降低,开裂和表明剥落的情况。由于浅覆盖,初始刚度有一定的降低。但是,它仍然远远大于一个传统的混凝土板。因而,对于UHPC板,螺栓上覆厚度的最小值的规定应被放宽至25mm。

3.5延性

两种方案已被用于螺栓剪切连接器的静力设计:弹性和强度设计。弹性设计在一个可变的区域,此区域对于梁端的高剪切区来说较窄,对于梁中心的高剪切区来说较宽。一方面,强度设计理论假定所有的螺栓保持其极限强度直到整体的极限破坏。这固定了区域而没有考虑梁的纵向问题。现在,更多的设计规范基于强度假设理论,这使得我们必须考虑延性以确保假

设的适用性。不同的结构有不同的延性要求。eurocode-4设计规范要求相对滑移值至少

为6mm,作为延性要求的准则。表4显示,除了UHPC-I-A和C,绝大多数数试样都不满足延性。hegger等人也得出了同样的结论,在高强度混凝土中,连接件的滑移只有5.7mm。因此,我们需要找到另一种方法来提高连接件的延性。对于特定的结构,精确的复合分析有利于提供一个小于6mm的延性需求。此情况下,连接件可以运用于UHPC板上的特定区域。

为了解决延性问题,连接件的设计可以基于弹性理论而不是塑性理论。导致螺栓产生可变区域的弹性理论,使得抗剪区变小,在跨中提供较大的抗剪区但抵抗较少的剪力。相对的,塑性理论,使得固定区域分布在整个跨度上,这基于螺栓的提供的延性能力。实验显示,抗剪螺栓并没有满足延性的要求,这使得塑性理论不适用。因此,除非解决延性问题,否则UHPC 的连接件设计不能使用塑性理论及恒定的纵向区理论。所以,弹性理论和可变纵向区理论应被采用。

4。结论

本研究探讨结构的性能和UHPC桥面螺栓剪力连接件的有效性

从测试程序可以得出以下结论:

1)钢的失效影响嵌入在UHPC连接器中的双头螺柱的静力剪切强度

这表明,强度是受螺栓直径和螺栓材料的极限强度的影响,而不是现行规范中提到的混凝土的强度影响。

2)测试程序显示:嵌入在UHPC剪力连接件的实际静力强度大于由

AASHTO LRFD设计规范给出的公式的计算得到的值,相差2%–13%。因此,AASHTO LFRD设计规范用于评价UHPC板中抗剪螺栓的极限强度。eurocode-4设计规范的计算结果有27%–42%的多余值,这可能会导致一个相对保守的结果。

3)在现有设计规范中螺栓的长细比是至少4

实验证明:长细比可以低至3.1,因为它对螺栓的剪力连接件的结构性能没有太大的影响。

4)在AASHTO LRFD设计规范中,螺栓头上的覆盖厚度是有最低限度的,为50毫米。

试验证明了:上覆厚度甚至低至25毫米时,不会导致UHPC板的开裂和表面剥落也不会影响剪力连接件的静力强度。

5)根据eurocode-4设计规范要求,螺栓剪力连接件应有至少6mm的相对滑移值以保证螺栓的延性性能。测试结果表明,栓钉剪力连接件的相对滑移为3.8毫米和5.3毫米,不满足所需的6毫米的延展性需求。因此,我们采取栓钉剪力连接件嵌入到薄的UHPC板中的方法,来解决此延展性问题。否则使用弹性理论,这样会产生变动的螺栓区域。

6)在板梁的交接处,一种使用直径为16毫米,高度为50毫米的螺栓连接件的复合结构的UHPC桥面可薄至75毫米。

浅谈高性能混凝土在建筑工程中的应用技术

浅谈高性能混凝土在建筑工程中的应用技术 【摘要】高性能混凝土是近期混凝土技术发展的主要方向,高性能混凝土是具有某些性能要求的匀质混凝土,必须采用严格的施工工艺,采用优质材料配制,便于浇捣、不离析、力学性能稳定、早期强度高、具有韧性和体积稳定性等性能的耐久的混凝土,特别适用于高层建筑、桥梁以及暴露在严酷环境中的建筑结构。 【关键词】高性能;混凝土;建筑工程;应用;设计 1 高性能混凝土的定义 高性能混凝土是一种新型的高技术混凝土,是在大幅度提高常规混凝土性能的基础上,采用现代混凝土技术,选用优质原材料,在妥善的质量控制下制成的。除采用优质水泥、集料和水外,配制高性能混凝土还必须采用低水胶比和掺加足量的矿物细掺料与高效外加剂。 高性能混凝土以耐久性设计优先而不以强度设计优先。片面强调混凝土的高强度有可能影响混凝土耐久性能的提高。采用低水胶比和掺加足量的矿物细掺料与高效外加剂等等技术措施是提高混凝土耐久性能的重要手段。要求混凝土具有全面的高性能是不科学的。高性能混凝土的基本性能首先是硬化混凝土的耐久性能和塑性混凝土的工作性能,其次是为了满足人们的特殊需要的某个或某些特殊性能。如:用于水下浇注的混凝土需要的免振捣自密实不分散性能,用于地下车库的混凝土需要的表面耐磨性能等等。 2 高性能混凝土在现代工程中的应用 高性能混凝土技术正在世界各地成功地用于很多离岸结构物和长大跨桥梁的建造,Langley等人叙述了几种加拿大一长大跨桥梁所用的拌合物。它们用于主梁、墩部和墩基,硅粉混合水泥用量为450 Kg/m3,水153L/ m3,引气剂160mL/ m3和高效减水剂3L/ m3。其坍落度大约在200mm;含气量6.1%;1d、3d、28d 抗压强度分别为35、52和82 MPa;基础和其他大块混凝土的混合水泥用量为307 Kg/m3,粉煤灰133 Kg/m3,用水量接近,但引气剂和高效减水剂掺量大幅度减小,坍落度约在185mm;含气量7%;1d、3d、28d和90d抗压强度分别为10、20、50和76 MPa。根据加拿大和美国的透水性与氯离子快速渗透标准方法实验结果表明:两部分混凝土都呈现非常低的渗透性。对高性能混凝土结构的施工,需要非常强调加强现场实验室试验和质量验收。 高性能混凝土发展的另一领域是高性能轻混凝土,相对于钢材,普通混凝土的强度/自重比很低,掺有高效减水剂的高强混凝土则大大提高了该比例;用有大量微孔的轻骨料代替部分普通骨料,就能进一步提高这个比例。由于骨料的质量不同,密度为2000 Kg/m3、抗压强度在70~80 MPa的高性能轻混凝土在一些国家已经商品化并用于构件生产。在澳大利亚、加拿大、日本、挪威和美国,高性能轻混凝土已用于固定式和漂浮式钻井平台;因为水泥浆和骨料之间的界面粘结强度高,它可以不透水,所以在侵蚀环境中能够很耐久。 采用掺10~15%硅粉甚至更高的混合水泥配制的超塑化混凝土,具有优良的粘附力,因此适用于湿喷的喷射混凝土进行结构修补,这也是高性能混凝土的应用领域之一. 2.1 高性能混凝土在高层建筑中的应用。 高性能混凝土(>40MPa)首先用于30层以上高层建筑物的钢筋混凝土结构,

《高性能混凝土应用技术指南》20140513

《高性能混凝土应用技术指南》 (征求意见稿) 指南编制组 2014年5月

目录 1 总则 (1) 2 名词解释 (10) 3 性能要求 (12) 3.1 拌合物性能要求 (12) 3.2 力学性能要求 (15) 3.3 耐久性能 (16) 4 结构设计要求 (41) 4.1 基本要求 (41) 4.2 主要设计参数取值 (41) 4.3 耐久性设计 (43) 4.4 设计计算及验算 (45) 4.5 配置高性能混凝土构构件的构造要求 (48) 5 原材料控制要求 (55) 5.1 水泥 (55) 5.2 矿物掺合料 (60) 5.3 细骨料 (80) 5.4 粗骨料 (91) 5.5 外加剂 (100) 5.6 水 (120) 5.7 纤维 (122) 6 配合比设计 (127) 6.1 普通混凝土配合比设计 (127) 6.2 特制品混凝土配合比设计 (142) 7生产与施工技术措施 (157) 7.1 生产设备设施要求 (157) 7.2 绿色生产控制要求 (159) 7.3 原材料进场与贮存 (165) 7.4 计量 (167)

7.5 搅拌 (168) 7.6 运输 (169) 7.7浇筑 (170) 7.8养护 (173) 8 检验、评定与验收 (175) 8.1 检验 (175) 8.2评定 (181) 8.3验收 (182)

1 总则 1.0.1 编制目的 本指南的编制目的主要有以下4个方面: (1)指导高性能混凝土的推广应用,提升混凝土行业技术水平,确保工程质量; (2)延长建筑物使用寿命,降低工程全寿命周期的综合成本; (3)促进资源科学合理化利用以及节能减排,发展资源节约型和环境友好型混凝土材料; (4)淘汰落后的混凝土生产方式及其产能,推动混凝土及建筑业的产业结构调整与升级。 1.0.1 讲解说明 吴中伟院士在《高性能混凝土》一书中阐述:―高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,它以耐久性作为设计的主要指标。针对不同用途的要求,高性能混凝土对下列性能有重点地予以保证:耐久性、工作性、适用性、强度、体积稳定性、经济型。‖―高性能混凝土不仅是对传统混凝土的重大突破,而且在节能、节料、工程经济、劳动保护以及环境等方面都具有重要意义,是一种环保型、集约型的新材料,可称为―绿色混凝土‖,它将为建筑自动化准备条件‖。 混凝土是当今最大宗的建筑材料,也是最大宗的结构材料,一直是支撑我国建设发展的关键性材料之一。目前我国混凝土年产量已经超过40亿m3,是世界上混凝土产量和用量最大的国家。但是,我国混凝土质量却存在许多问题,例如在原材料方面:混凝土原材料中的细骨料质量下降,主要是由于河砂已经不能支撑建设所需混凝土规模的需求,河砂逐步匮乏,供应混凝土用的河砂变细,含泥量、杂质和石子含量大,质量越来越差,虽然机制砂取代河砂是大势所趋,但是,由于机制砂生产装备落后,导致混凝土用机制砂的石粉含量高,粒型和级配差,质量很差,再者,我国混凝土用砂主要是个体生产,又都是小生产,并无人管理,基本处于失控状态,所以,混凝土用砂的质量不能保证,直接影响了混凝土质量;混凝土原材料中的矿物掺合料质量下降,主要也是由于优质的粉煤灰和矿渣粉等矿物掺合料供不应求,于是出现造假、掺假、以次充好、降低质量水平、乱掺等现象,应用者掺用矿物掺合料的目的主要是降低成本,很少考虑技术要求,为了追求经济利益,往往过掺价低质差的矿物掺合料,直接影响了混凝土质量。又如在混凝土施工方面:由于施工人员主要是农民工,缺乏专业技术知识及其相应的培训,不仅操作水平差,而且会违规操作:在浇筑混凝土时加水,浇筑混凝土后缺乏养护等等,导致混凝土发生事故或质量问题。上述方面只是影响混凝土质量的部分问题,实际上还有许多其它影响混凝土质量的重要问题,推广应用高性能混凝土对解决混凝土质量的重要问题具有实际意义,也是是编制本指南的重要目的。 以往建筑重视混凝土强度,随着混凝土技术和科学理念的进步,混凝土耐久性逐步得到重视,尤其在西方发达国家。混凝土耐久性的提高,将延长建筑物的使用寿命,减少建筑物

超高性能混凝土(UHPC)简介及应用

超高性能混凝土(UHPC)简介及应用 超高性能混凝土(UHPC)最早是由法国一家名叫布依格的承包商公司于上个世纪90年代被作为活性粉末混凝土被引入使用的。自此之后,法国、日本、马来西亚、韩国及其他很多国家采用该材料将其应用于桥梁等工程领域,并取得了积极有效的重要进展。法国于2001年第一次采用超高性能混凝土(UHPC)材料建造了铁路桥梁,其中梁的截面为由5个双T梁截面构成的π形状所构成。 在美国,由美国高速公路管理局(FHWA)及地方高校的资助下,许多州的交通运输部门都在开发研究超高性能混凝土(UHPC)在桥梁工程中的应用。特别值得一提的是,过去十年来,弗吉尼亚州已经采用超高性能混凝土(UHPC)生产了工字型梁,爱德华州已经采用超高性能混凝土(UHPC)进行了两座桥的建造,其中一座是用的超高性能混凝土(UHPC)梁、另一座用的是超高性能混凝土(UHPC)桥面板。实际上,美国一些公司已经开始在市场上进行成袋打包并销售超高性能混凝土(UHPC)了。然而,由于这些成袋打包的超高性能混凝土(UHPC)价格非常昂贵,它只能被局限应用于弗吉尼亚州及爱德华州那些有美国高速公路管理局(FHWA)资助资金的示范性项目中,并且还主要是应用于预制混凝土构件之间的连接接缝区域,使用范围非常有限。 为了提升或促进超高性能混凝土(UHPC)在美国中的应用,需要满足两个基本的条件:1)相对于打包成袋的超高性能混凝土(UHPC)拌合料价格为23500元/ m3,超高性能混凝土(UHPC)的原材料价格须被控制并减少到不足1000美元/码(折合人民币为9400元/m3)才

行;2)亟需开发一种新的结构体系出来,其中该结构体系能充分利用超高性能混凝土(UHPC)的材料特性,从而使其结构构件的自重可以减少降低至少50%而同时还能满足强度、刚度及耐久性等要求。美国PCI致力于通过挖掘和整合相关资源来满足这两个条件,主要是通过资助一个由许多个人公司(Wiss, Janney, Elstner)及相关高校(诸如内布拉斯加林肯大学、北卡莱罗纳州立大学、俄亥俄州州立大学)发起的一个实施课题项目。 目前该课题项目的第一个阶段已经完成结束,相关的报告内容也已公布给PCI生产商成员会员。两个既定的目标即超高性能混凝土(UHPC)的原材料成本低廉且结构构件性能优化都得到了很好的满足。当这个课题项目的目标得以实现的时候,可以预见,基于其较低的成本价格,超高性能混凝土(UHPC)的相关产品是相当具有竞争力的。已经做了一些足尺比例的桥梁构件和房屋构件试件并且做了相关的试验研究。大多数构件产品破坏时其承载力都显著高于其所需要的承载力。而且,相对于传统的混凝土而言,该材料是类似于陶瓷的,为零孔隙率且可具有上百年乃至几百年的使用寿命。该PCI项目的第二阶段目前正在进行,包括足尺结构构件及整体结构的试验,目的是为了检验、细化、验证该课题项目第一阶段所起草制订的相关设计准则。 超高性能混凝土(UHPC)的主要组成成份为波兰水泥、附加水泥基材料、细砂、纤维增强复合材料、高比例减水剂等,见图1所示。

高性能混凝土的应用和发展

网络教育学院 本科生毕业论文(设计) 题目:高性能混凝土的发展和应用 学习中心:重庆奥鹏学习中心 层次:专科起点本科 专业:土木工程 年级: 2013 年春季 学号: 学生: 指导教师:张园园 完成日期: 2014 年 3 月 3 日

内容摘要 随着新型高效减水剂的发明与应用、矿物超细粉的回收与加丁、纤维材料的发展以及新型水泥基材料的发明,混凝土技术有了重大突破,尤其是高性能混凝土(HPC)目前,HPC已经广泛地应用于世界各地的莺特大工程中。在HPC配制中,要特别注意采用合理的配合比,同时指出混凝土在不同龄期的强度均明显高于设计基准强度。]高性能混凝土是一种具有高强度、高耐久性与高工作性的混凝土,混凝土中的水泥石只有凝胶孔无毛细孔,具有高的抗渗性和耐久性。HPC组成材料中必须具有矿物质超细粉和高效减水剂。同时介绍了高性能混凝土在具体工程中的应用。 关键词:高性能混凝土;发展;应用

目录 内容摘要 (1) 引言 (3) 绪论 (4) l、高性能混凝土的定义 ....................................................... 错误!未定义书签。 1.1分析国内高性能混凝土的现状 .............................. 错误!未定义书签。 1.2、高性能混凝土的主要发展动向 ........................... 错误!未定义书签。 2 典型高性能混凝土的特点及工程应用 (4) 2.1 典型高性能混凝土的特点 ................................... 错误!未定义书签。 2.1.1 超高强混凝土的特点 .............................. 错误!未定义书签。 2.1.2 绿色高性能混凝土的特点 ........................ 错误!未定义书签。 2.1.3 机敏型高性能混凝土的特点 (5) 2.1.4 普通混凝土的高性能化 (5) 2.2 高性能混凝土的工程应用 (5) 2.2.1 高性能混凝土的原材料及配合比 (6) 2.2.2 绿色高性能混凝土的工程应用范围 (6) 2.2.3 机敏性能混凝土的工程应用范围 .............. 错误!未定义书签。 3 新型绿色高性能混凝土的研究及工程应用 (7) 3.1 高性能混凝土绿色化的途径 (7) 3.2 绿色高性能混凝土的发展展望 ........................... 错误!未定义书签。 4 工程实例分析 (8) 5 结论与展望 (10) 参考文献 (11)

高性能混凝土的应用

题目:高性能混凝土在建设工程中的应用 内容提要:本文阐述了高性能混凝土的定义及特点,并通过对高性能混凝土的原材料、配合比的分析,指出了其在建筑工程中的应用和发展趋势,在使用过程中的存在的问题及解决途径。 主题词:主题词:高性能混凝土原材料配合比应用 正文内容 1 高性能混凝土的定义和特点 高性能混凝土是指在大幅度提高常规混凝土性能的基础上采用现代先进的预拌混凝土技术,选用优质原材料,除水泥、水、集料外,必须掺加足够数量的活性细掺料和高性能外加剂,经过科学配方以及提高浇筑、捣实的方法来提高混凝土的长期力学性能、初期强度、刚度和体积稳定性以及延长其在恶劣环境下的使用寿命的一种新型高技术混凝土。 高性能混凝土往往被人们与高强度混凝土联系起来,其实质高性能混凝土不仅仅是高强度,而且具有相当高的刚度、弹性模量和耐久性。这种混凝土在凝结硬化过程中,水化热低,内部缺陷少;硬化后,体积稳定,收缩变形小,结构密实,抗渗、抗冻、抗碳化等耐久性高。 2 高性能混凝土在建设工程中的应用 高性能混凝土广泛用于长大跨径结构和特殊条件结构,因为其具有易于浇注、捣实而不离析、高超的、能长期保持的力学性能,在恶劣的使用条件下寿命长、强度高、高流动性与优异的耐久性,高性能混凝土对延长构筑物的使用寿命和获得更好的经济效益方面发挥着举足轻重的作用。 青岛地区海洋环境是混凝土结构所处的恶劣的外部环境之一,普通混凝土的耐久性根本无法满足很长的使用年限。用于海水环境的混凝土,其性能上,应具有高耐久性(抗渗、抗冻、抗碳化、抗碱骨料反应,耐磨等),尤其具有高的抗氯离子渗透性,以减少海水中氯化物对钢筋的锈蚀作用;良好的施工性(大流动,可灌性、可泵性、均匀性等);良好的力学性能,早期后期强度均高;良好的尺寸稳定性;合理的适用性与经济性等。能够具备这些要求的,非高性能混凝土莫属。 3 高性能混凝土的原材料和配合比 高性能混凝土的原材料,除了常规的水泥、粗集料、细集料、水四种材料外,必须使用化学外加剂和矿物细掺料,一共是六种必不可少的材料,而且后两种材料可以是一种也可以是多种复合,这在选材上就要求与水泥具有良好的相容

高性能混凝土特性及应用

一般认为,高性能混凝土是指具有高强度、高工作性、高耐久性的混凝土,这种混凝土的拌合物具有大流动性和可泵性,不离析,而且可塑时间可根据工程需要来调整,便于浇筑密实。高性能混凝土在凝结硬化过程中,水化热低,内部缺陷少;硬化后,体积稳定,收缩变形小,结构密实,抗渗、抗冻、抗碳化等耐久性能高。 基于高性能混凝土的优良性能,工程上应用高性能混凝土时,即使无严格的技术保证措施,也能获得密实的混凝土。特别是一些结构细部或形状复杂的结构,无需捣鼓,混凝土即能自动填充密实,不会因漏振或振捣不充分而造成结构的可靠性下降。 在土木工程,尤其是建筑工程中,高层建筑和超高层建筑必将占据更加重要的地位。高层建筑建设必然产生越来越高的泵送高度,高性能混凝土在这一点上相对于传统混凝土具有极大的优势,优越的可泵性保证了施工质量和速度,有极为可观的经济价值。而且高性能混凝土的高强度为高层建筑提供了安全保障。因为强度提高,构件截面尺寸得以大幅减小,结构自重亦可减轻。施工时,劳工人员劳动量和施工能耗将大大降低,建筑物有效使用面积增加,抗震能力会得到提高。 混凝土由于长期暴露在有害气体中或埋置于地下、设置于海滩或海水中,必然受到各种有害介质侵蚀,引起结构破坏,高性能混凝土因耐久性大幅度提高无疑能使结构的寿命延长,日常的结构维修费用也得以大幅降低,因此,可取的巨大经济效益和社会效益。其次,延长材料使用寿命,可保护自然资源,避免资源浪费,降低能源消耗,取得一定的生态效益。 但需要指出的是,高性能混凝土的特性是针对具体应用和环境而开发的,特别是流动性不可以作为高性能混凝土的指标,需根据工程特点注意拌合物的工作性。而且高性能混凝土制备技术应该注意克服追求高早强的倾向,这一点对混凝土的体积稳定性意义重大。高性能混凝土在发展中应当注重强度和耐久性的提高,但对于一项工程来说,混凝土体积的稳定性和均质性是最终目标。 综合来讲,高性能混凝土是在不断发展的,总体上是一种将大量优点集中于一身的新型材料。正因其优越的工作性能和良好的经济效益,高性能混凝土的用途是在不断扩大的,在许多工程中得以推广应用。基于混凝土作为主要建筑材料大量使用的现实,对于高性能混凝土的未来前景展望应保持乐观。

高性能混凝土的研究与发展现状

高性能混凝土的研究与发展现状 学生姓名: 指导教师: 专业年级: 完稿时间: XX大学

高性能混凝土的研究与发展现状 摘要 随着科学技术的进步,现代建筑不断向高层、大跨、地下、海洋方向发展。高强混凝土由于具有耐久性好、强度高、变形小等优点,能适应现代工程结构向大 跨、重载、高耸发展和承受恶劣环境条件的需要,同时还能减小构件截面、增大使用 面积、降低工程造价,因此得到了越来越广泛的应用,并取得了明显的技术经济效益。 关键词:高性能混凝土性能发展应用前景 装 订 线

目录 一高性能混凝土的发展方向 (1) 1.1轻混凝土 (1) 1.2绿色高性能混凝土 (1) 1.3超高性能混凝土 (1) 1.4智能混凝土 (1) 二高性能混凝土的性能 (1) 2.1耐久性 (1) 2.2工作性 (1) 2.3力学性能 (1) 2.4体积稳定性 (1) 2.5经济性 (2) 三高性能混凝土质量与施工控制 (2) 3.1高性能混凝土原材料及其选用 (2) 3.2配合比设计控制要点 (3) 四高强高性能混凝土的应用与施工控制 (3) 4.1高强高性能混凝土的应用 (3) 4.2高性能混凝土的施工控制 (4) 五高性能混凝土的特点 (4)

5.1高耐久性能 (4) 5.2高工作性能 (5) 5.3高稳定性能 (5) 六高性能混凝土的发展前景 (5) 参考文献 (6)

一高性能混凝土的发展方向 1.1轻混凝土是指表观密度小于1950kg/m3的混凝土。可分为轻集料混凝土、多孔混凝土和无砂大孔混凝土三类。 1.2绿色高性能混凝土水泥混凝土是当代最大宗的人造材料,对资源、能源的消耗和对环境的破坏十分巨大,与可持续发展的要求背道而驰。绿色高性能混凝土研究和应用较多的是粉煤灰混凝土,粉煤灰混凝土与基准混凝土相比,大大提高了新拌混凝土的工作性能,明显降低混凝土硬化阶段的水化热,提高混凝土强度特别是后期强度而且,节约水泥,减少环境污染,成为绿色高性能混凝土的代表性材料。 1.3超高性能混凝土如活性粉末混凝土,其特点是高强度,抗压强度高达300MPa,且具有高密实性,已在军事、核电站等特殊工程中成功应用。 1.4智能混凝土是在混凝土原有的组分基础上复合智能型组分,使混凝土材料具有自感知、自适应、自修复特性的多功能材料,对环境变化具有感知和控制的功能。随着损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的出现,为智能混凝土的研究、发展和智能混凝土结构的研究应用奠定了基础。 二高性能混凝土的性能 2.1耐久性。高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 2.2工作性。坍落度是评价混凝土工作性的主要指标,HPC的坍落度控制功能好,在振捣的过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。同时,由于高性能混凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。 2.3力学性能。由于混凝土是一种非均质材料,强度受诸多因素的影响,水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,高性能混凝土中的高效减水剂对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量。在高性能混凝土中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度。 2.4体积稳定性。高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。

高性能混凝土应用探讨

高性能混凝土应用探讨 发表时间:2018-12-28T14:18:08.833Z 来源:《建筑学研究前沿》2018年第28期作者:周志张红兴[导读] 高性能混凝土:采用常规材料和工艺生产,具有混凝土结构要求的各项力学性能,且具有高耐久。 中国能源建设集团天津电力建设有限公司天津 300012 摘要:随着我国国民经济水平增高,基础建设的加快,高层、超高层和大跨度结构工程的出现,对高强度、高性能混凝土提出了更高的要求。采用高强度、高性能混凝土,具有明显的社会效益和经济效益。它以耐久性作为设计的主要指标,针对不同用途要求,对耐久性(抗渗、抗氯离子渗透性能)、工作性、适用性、强度、体积稳定性和经济适用性予以重点要求。 关键词:高性能混凝土;技术要求;设计;改进 一、高性能混凝土介绍 高性能混凝土:采用常规材料和工艺生产,具有混凝土结构要求的各项力学性能,且具有高耐久、高工作性和高体积稳定的混凝土。 1、高性能混凝土用满足的技术要求: 1)水胶比不大于0.38; 2)56d龄期的6h总导电量小于1000C; 3)300次冻融循环后相对动弹性模量大于80%; 4)胶凝材料抗硫酸盐腐蚀试验的试件15周膨胀率小于0.4%,混凝土最大水胶比不大于0.45; 5)混凝土中可溶性碱总含量小于3.0kg/m3。 2、高性能混凝土优点: 与普通混凝土相比,高性能混凝土具有如下优点: 1)具有一定的强度和高抗渗、抗冻和抗腐蚀能力; 2)具有良好的工作性,较高的流动性,在施工过程中不易分层、离析,有较高的密实性能;3)寿命长,抗自然环境能力强,安全系数高。 概括起来说,高性能混凝土就是能更好地满足结构功能要求和施工工艺要求的混凝土,能最大限度地延长混凝土结构的使用年限,降低工程造价。 二、设计要求 PX泵房结构设计使用年限为50年。 根据《混凝土结构耐久性设计规范》(GB/T50476-2008),PX泵房为地下钢筋混凝土结构,海水氯化物环境,PX泵房混凝土根据环境作用等级划分如下: 1)水下区:在绝对标高-3.370m(国家85高程)以下,采用纤维防水混凝土,混凝土强度等级C45,最大水胶比0.40,抗渗等级S10,抗氯离子侵入性指标(28d龄期氯离子扩散系数)DRCM≤9(10-12m2/s)。2)水位变动区:在绝对标高-3.370m~+5.210m(国家85高程)之间,共8.580m高度范围内,采用纤维防水混凝土,混凝土强度等级C50,最大水胶比0.36,抗渗等级S10,采用附加防腐措施,抗氯离子侵入性指标(28d龄期氯离子扩散系数)DRCM≤5(10-12m2/s)。水位变动区的标高必要时可根据现场施工分区进行微小调整。 3)水位变动区钢筋混凝土附加防腐方案:PX泵房在水位变动区高度范围内混凝土中掺加阻锈剂+混凝土表面硅烷浸渍处理(处理范围包含鼓网腔室、蜗壳泵下进水流道); 4)大气区:在绝对标高+5.210m(国家85高程)以上,包括泵房侧墙、+9.500m层楼板及室外设备间、楼梯间等,采用纤维防水混凝土,混凝土强度等级C45,最大水胶比0.40,抗渗等级S8,抗氯离子侵入性指标(28d龄期氯离子扩散系数)DRCM≤6(10-12m2/s)。5)水泥是强度等级不低于42.5MPa的普通硅酸盐水泥,不得将不同品种(或强度等级)的水泥混合使用。要求使用低水化热的水泥,水泥细度(比表面积)大于2500cm2/g,小于3500cm2/g,宜采用C2S含量相对较高的水泥。6)C45混凝土单位体积胶凝材料用量360~450(kg/m3),C50混凝土单位体积胶凝材料用量360~480(kg/m3)。混凝土中氯离子的最大含量(单位体积混凝土中氯离子与胶凝材料的重量比)不超过0.1%,混凝土中最大碱含量(Na2O当量)为3.0kg/m3,所采用水泥中铝酸三钙含量不宜超过8%。 三、改进分析 根据技术规格书要求的配比和现有配比相比较,我方建议用河砂做初步试验,因为自产砂石的用水量要比河砂高约6%,在规定的胶凝材料范围内,很难达到现规定的水灰比。现只有降低水用量,降低水泥用量,提高水灰比,才能满足PX联合泵房钢筋混凝土技术规格书中抗氯离子侵入性指标。现用C45纤维混凝土强度平均为62.8MPa,但是已高出技术上线要求50kg胶凝材料,如按要求降低胶凝材料而不改变其它材料,强度很难满足标准。 根据现有材料我试验室计划调整砂率,降低水用量,从而降低水灰比,调整外加剂掺量,调到最佳参数,使混凝土配比得到一个最优、最大减水率。对砂石再次清洗,使之含泥量、泥块含量和需水量降到最底,从而降低水的用量和水泥的用量。参考文献 [1]GB50204-2015 混凝土结构工程施工质量验收规范. [2]CECS 207-2006 高性能混凝土应用技术规程,中国工程建设标准化协会. [3]JGJ/T385-2015 高性能混凝土评价标准.

《高性能混凝土技术发展与应用初探》......... (1)

高性能混凝土探 专业: 姓名: 学号: 指导教师: 2016年6月

高性能混凝土技术发展与应用初探 摘要 高性能混凝土的发展和运用;摘要;随着我国改革开放和现代化进程的加快,我国的建设规;高性能混凝土(HighPerformanceCo;本文主要介绍了高性能混凝土发展的现状,阐明了高性;关键词:高性能混凝土;运用;发展;1高性能混凝土介绍;1.1高性能混凝土含义;1990年5月在马里兰州,由美国NIST和ACI;清华大学教授廉慧珍认为:高新能混凝土不是混凝土 高性能混凝土的发展和运用 摘要 随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注。在众多的土木工程建设中,混凝土的应用面之广,使用次数之多是很少见的。尤其中近年来,一种较新的混凝土技术正在快速发展并且运用到许多实际工程项目中,那就是高性能混凝土。 高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。

本文主要介绍了高性能混凝土发展的现状,阐明了高性能混凝土与施工的关系,列举了高性能混凝土的运用成果,并对其发展趋势作出展望。随着我国建筑向高层化、大型化、现代化的发展,HPC必将成为新世纪的重要建筑工程材料。 关键词:高性能混凝土;运用;发展 1 高性能混凝土介绍 1.1 高性能混凝土含义 1990年5月在马里兰州,由美国NIST和ACI主办的讨论会上,高性能混凝土(HPC)定义为具有所要求的性能和匀质性的混凝土。这些性能包括:易于浇注、捣实而不离析;高超的、能长期保持的力学性能;早期强度高、韧性高和体积稳定性好;在恶劣的使用条件下寿命长。即HPC要求高强度、高流动性与优异的耐久性。我国《高性能混凝土应用技术规程》 (CECS207-2006)中提到:高性能混凝土是具有混凝土结构所要求的各项力学性能,且具有高工作性、高耐久性和高体积稳定性的混凝土。 清华大学教授廉慧珍认为:高新能混凝土不是混凝土的一个品种,而是达到工程结构耐久性的质量要求和目标,是满足不同工程要求的性能和具有匀质性的混凝土。 我国《高性能混凝土应用技术规程》 (CECS207-2006)还提到:处于多种劣化因素综合作用下的混凝土结构宜采用高性能混凝土。根据混凝土结构所处的环境条件,高性能混凝土应满足下列一种或几种技术要求: (1)水胶比WC?0.38; (2)56d龄期的6h总导电量小于1000C;

高性能混凝土的应用实例

高性能混凝土的应用实例 1.商住楼 北京第五住宅公司承接的南线阁商住楼~基础平面尺寸32m*40m~厚度1.5m~局部达到3.0m~设计混凝土强度C50~抗渗等级S8~属于大体积混凝土。混凝土配合比设计时不仅要考虑混凝土强度~而且需要考虑大体积混凝土的水化热和抗渗性能。混凝土所用水泥强度等级高~水泥用量大会造成水泥水化块并释放大量水化热~混凝土浇筑厚度大~浇筑速度快~会使水化热散失较慢而蓄积~混凝土中心温度会越来越高形成于混凝土表面温差较大产生裂缝。为达到设计强度和降低混凝土水化热~选用高标号水泥和与水泥相容性较好的复合高效减水剂~在保证混凝土水胶比的前提下~降低混凝土用水量和水泥用量~同时掺入矿物掺和料取代部分水泥用量~掺入矿物料后减少了水泥用量~而水胶比不变或减小~提高了混凝土的和易性~降低了混凝土的水化热~保证了混凝土强度和抗渗性能。 2. 东海大桥 东海大桥是我国第一次在海上建造的特大桥梁~采用高性能混凝土来抵抗海水的侵蚀。要想低于海水中的氯离子对混凝土的侵蚀~就得提高混凝土的密实性~杜绝和减少混凝土裂缝。在配合比设计是首先优选级配良好的集料~使得集料混合后的空隙率最小~然后考虑掺加超细硅粉来填充混凝土中的孔隙~通过掺加粉煤灰或其他矿物料来提高混凝土的体积稳定性~减少混凝土裂缝。掺入高效减水剂~降低混凝土用水量~减少混凝土固化后的水孔隙~使混凝土具有良好的密实性和体积稳定性。 3. 苗岭一号高架桥 江苏连云港港区苗岭一号高架桥地处连云港集装箱码头前~与黄海毗邻~海边时常刮风且风力较大~容易引起混凝土干缩裂缝。该桥桥面调平层设计厚度6cm~

设计强度C50.当地地产两种石子~一种是片麻岩~石子压碎值达到11%,一种是玄武石~压碎值为6%左右~根据设计厚度选用5~16粒级的玄武岩为粗集料。为了保证混凝土的强度和降低水泥用水量~选用P.0 52.5水泥。在保持一定水胶比不变的前提下~用优质?级粉煤灰等量取代10%水泥~采用高效减水剂来降低混凝土用水量。为防止海洋性气候引起混凝土裂缝~按每方混凝土掺加1kg的聚丙烯纤维。在混凝土中加入聚丙烯纤维后~混凝土的流动性较差~坍落度减小。为提高混凝土的流动性~适当掺加引气剂~掺入引气剂的混凝土含气量不得超过规范要求。最终混凝土坍落度满足设计的120mm~140mm要求~而且可泵性良好~混凝土流动性、粘聚性均得到很好的效果,混凝土浇筑后不但强度满足设计要求~混凝土采用了覆盖和养护措施~表面基本无干缩裂缝。 4.苏通大桥桥塔 苏通大桥位于江苏省东部的南通市和苏州(常熟)市之间~西距江阴大桥82公里~东距长江入海口108公里~是交通部规划的国家高速公路沈阳至海口通道和江苏省公路主骨架的重要组成部分。苏通大桥工程规模浩大~其主跨跨径达到1088米~是世界最大跨径的斜拉桥,其主塔高达300.4米~为世界最高的桥塔。为解决主塔混凝土的浇筑问题~指挥部专门成立课题研究组。科研组经过多次试验~最终采用添加高效减水剂和掺加优质粉煤灰的方法大大提高了混凝土的可泵性~使主塔顺利浇筑完成

关于高性能混凝土的认识

关于高性能混凝土的认识 班级:10级铁工一班 姓名:张霄 学号:20106752 教师:唐秀军 2011年11月26日

关于高性能混凝土的认识 一、高性能混凝土的性能研究和应用分析 (一)高性能混凝土的概念 高性能混凝土是近20余年发展起来的一种新型混凝土。欧洲混凝土学会和国际预应力混凝土协会将HPC定义为水胶比低于0.40的混凝土;在日本,将高流态的自密实混凝土(即免振混凝土)称为HPC;中国土木工程学会高强与高性能混凝土委员会将HPC定义为以耐久性和可持续发展为基本要求并适合工业化生产与施工的混凝土。虽然在不同的国家,不同的学者或工程技术人员,对HPC的理解有所不同。比如美国学者更强调高强度和尺寸稳定性,欧洲学者更注重耐久性,而日本学者偏重于高工作性。但是他们的基本点都是高耐久性,这方面的认识是一致的。 (二)高性能混凝土的性能 与普通混凝土相比,高性能混凝土具有如下独特的性能: 1.耐久性。高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 2.工作性。坍落度是评价混凝土工作性的主要指标,HPC的坍落度控制功能好,在振捣的过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。同时,由于高性能混凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。 3.力学性能。由于混凝土是一种非均质材料,强度受诸多因素的影响,水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,高性能混凝土中的高效减水剂对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量。在高性能混凝土中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度。 4.体积稳定性。高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。 5.经济性。高性能混凝土较高的强度、良好的耐久性和工艺性都能使其具有良好的经济性。高性能混凝土良好的耐久性可以减少结构的维修费用,延长结构

UHPC超高性能混凝土

UHPC超高性能混凝土 产品简介: UHPC超高性能混凝土是一种超高强、韧性、高耐久性的特种工程材料,在国防工程、海洋工程、核工业、特种保安和防护工程、以及市政工程领域有良好的应用前景。经试验证明,其抗折强度是普通C50混凝土的3倍,缩变下降50%,经历700次冻融循环后仍然完好无损,被称为永不开裂”的混凝土。 产品特点: 1、U HPC现已用于海洋石油平台的钢结构的外保护层,可大大提高水位变动区的支柱的使用寿命。 2、U HPC的早期度发展快,后期度极高,用于补强和修补工程中可替代钢材和昂贵的有机聚合物,既可保持混土体系的整体性,还可降低成本。 3、U HPC强度高,抗冲击性能好,可用于国防工程的防护结构,也可用于需要高承载力的特殊结构。 4、U HPC的高密实性与良好的工作性能,使其与模板相接触的表面具有很高的光洁度,夕卜界的有害介质很难侵入到UHPC中去,而UHPC中的着色剂等组分也不易向外析出,利用这一特点可把UHPC用作建筑物的外装饰材料。 适用范围: 1、利用UHPC强度高的性质,可以减小结构构件尺寸,获得更多的使用空间。利用UHPC 可以建造跨度更长、净空更大的桥梁;可以减小高层建筑中底层柱子截面尺寸,得到更多的使用面积。 2、利用UHPC高抗拉强度、耐腐蚀的性质可以制作输油、输气管道以替代造价较高的大口径厚壁钢管,显著提高管道耐久性、降低成本。 3、利用UHPC的高抗渗性,制造中低放射性核废料储存整体容器。 4、用于军事与安保领域,制造抗爆炸、抗冲击装置。 5、现场抢修、结构加固等。

性能指标:

& 昆明市佰意建筑材料制造有限公司 施工工艺: 1、配合比 粉料:钢纤维:水=100:1~3: 9 2、搅拌 投入粉料到搅拌机,加水搅拌3?4分钟(物料达到胶体状态),加入钢纤维继续搅拌(当钢纤维用量较大时,通常不超过3%,可以逐渐或分次加入),待钢纤维分散后均匀后进行浇筑,并振动成形,最后进行养护。 注:搅拌应使用专用uhpc混凝土立式行星式搅拌机搅拌

高性能砼研发与应用论文

高性能砼的研发与应用 摘要:高性能砼具有高耐久性、高工作性、高强度和高体积稳定性等许多特性,被认为是目前全世界性能最为全面的砼,至今已在桥梁、高层建筑、海港建筑等工程普遍使用。 论文主要介绍高性能砼发展的历史背景及目前国内外的研究现状,阐述高性能砼的特性,列举高性能砼在国内外研究应用中的重要成果,并对其发展趋势作出展望。 关键词:高性能砼;耐久性;体积稳定性 abstract: the high performance concrete with high durability, high workability, high strength and high volume stability of many characteristics, thought to be the most comprehensive performance of concrete around the world, has been in the bridge, high building, harbor construction projects commonly used. thesis mainly describes the history of the development of high performance concrete background and the research situation at home and abroad, this paper expounds the characteristics of high-performance concrete, the high-performance concrete list at home and abroad in the applications of research achievements, and its development tendency. keywords: high performance concrete; durability; volume

高性能混凝土的研究与发展现状1

开题报告 高性能混凝土是在现代高强混凝土的基础上发展起来的。使用新型的高效减水剂和矿物掺和料,是使混凝土达到高性能的主要技术措施,前者能降低混凝土的水胶比,增大坍落度,控制坍落度损失,提高混凝土的密实性和工作性;后者能填充胶凝材料的孔隙,参与胶凝材料的水化,除提高混凝土的密实度外,还改善混凝土的界面结构,提高混凝土的强度和耐久性。粉煤灰高性能混凝土将粉煤灰作为矿物掺和料,既改善了混凝土的技术性能,同时又充分利用了工业废料,有效地节约了资源和能源,减少了环境污染,符合绿色高性能混凝土的发展方向,促进了混凝土技术的健康发展。 高性能混凝土的定义最早在美国提出。1990年5月在美国马里兰州,由美国国家标准与工艺研究院(NIST)和美国混凝土学会(ACI)主办的讨论会上,将HPC定义为具有所要求的性能和匀质性的混凝土。这些性能主要包括:易于浇注捣实而不离析,力学性能好,早期强度高,韧性好,体积稳定性好,在恶劣条件下使用寿命长等。 高性能混凝土概念的提出至今只有十多年的时间,但是由于国际上广泛认识到高性能混凝土具有高工作性、高耐久性和高强度等特性,用其替代传统的混凝土以及建造在严酷环境中的特殊结构物,具有显著的经济效益和技术先进性,因此高性能混凝土的开发和应用得到了各国的很大重视,并且取得了巨大成果。美国、日本、法国、加拿大等国已将高性能混凝土作为跨世纪的新材料,投入了大量的人力、物力和财力进行研究和开发,至今已在不少重要工程中使用。高性能混凝土适应了当今科学技术和生产发展的要求,可以提高混凝土结构的使用寿命,大量利用工业废渣,减少资源耗费和环境污染,便于施工,节约能源,己被各国普遍认为是今后混凝土技术的发展方向,是混凝土可持续发展的出路所在。 从1996年开始,我国国家计委、国家科技部先后2次设立科技攻关项目,进行高性能混凝土的创新研究,由中国建筑材料科学研究院、清华大学、同济大学、中国水利水电科学研究院等几十所科研单位、高等院校承担了“高性能混凝土的综合研究和应用”及“新型高性能混凝土及其耐久性的研究”的研究课题,

完整word版,高性能混凝土

高性能混凝土技术(应用推广) 河北省高速公路石安改扩建筹建处马洪忠 2013年12月沧州

高性能混凝土技术应用推广 一高性能混凝土简介 1 定义 对于高性能混凝土的定义,不同国家、不同学者由于各自认识、实践、应用范围和目的要求存在差异,对高性能混凝土有着不同的定义和解释。 我国著名混凝土专家、中国工程院院士吴中伟教授在其与廉慧珍教授合著的《高性能混凝土》中总结了国外学者的观点,结合中国实际情况,提出以下定义:高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,它以耐久性作为设计的主要指标。针对不同用途要求,对下列性能有重点地予以保证:耐久性、工作性、适用性、强度、体积稳定性、经济性。为此,高性能混凝土在配制上的特点是低水胶比,选用优质原材料,并除水泥、水、集料外,必须掺加足够数量的矿物掺和料和高效外加剂。 这一定义目前已被我国工程界广泛接受。 2 高性能混凝土的优点 与普通混凝土相比,高性能混凝土具有如下优点: (1)具有一定的强度和高抗渗能力,但不一定具有高强度,中、低强度亦可。 (2)具有良好的工作性,混凝土拌和物具有较高的流动性,混凝土在成型过程中不分层、不离析,易充满模型;泵送混凝土、自密实混凝土还具有良好的可泵性、自密实性能。(3)使用寿命要长,对于一些特殊工程的特殊部位,控制结构设计的并不是混凝土的强度,而是其耐久性。能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 (4)具有较高的体积稳定性,即混凝土在硬化早期具有较低的水化热,硬化后期具有较小的收缩变形。 因此可以说,高性能混凝土可以为社会各个方面、各个层次的人员带来无穷的好处:◆对业主或用户——因耐久性好,工程安全使用期延长,可减少维修费,保证安全,这实际上是最大的经济效益。 ◆对社会——降低能耗、料耗,利用工业废渣、减少噪声污染,对环境有利,并消除不安全感。

超高性能混凝土在桥梁工程中的应用

超高性能混凝土在桥梁工程中的应用 摘要同普通混凝土与高性能混凝土相比较,超高性能混凝土则具备油价优良的力学性能与耐久性。虽然其发展的时间并不长,但已经在众多土木工程中得到了广泛的应用。笔者将简要阐述超高性能混凝土在桥梁工程应用中的良好特性,并对其在桥梁工程应用中的实际情况进行分析。 关键词超高性能;混凝土;桥梁工程 超高性能混凝土(UHPC)指的是一种全新的超高性能材料,主要用于水泥基工程,在1993年由法国的BOUYGUES公司研制而成,最初的名字称为活性粉末混凝土(RPC)。UHPC相对于普通的水泥基混凝土材料而言,有着更加优良的抗拉抗压强度、阻裂性、耐磨性、耐腐蚀性、耐磨性等等[1]。 1 超高性能混凝土在桥梁应用中的优良特质 通过表1中所列出的数据对比可以清晰地看出,UHPC有着非常多的优良特性,在桥梁建设中的应用显得非常适用,特别是预应力桥梁,具体表现如下: 由于UHPC材料的抗压强度和弹性模量都非常高,所以在实际应用当中,不仅能够让桥梁结构保持较大的承载能力,还能避免整体构架发生重大变形。 UHPC材料的抗折强度非常高,同时其也具备优良的延展性,这就确保了应用在桥梁结构中时,能够承受较大的拉力和弯折,即使桥梁结构发生开裂,UHPC 材料也能发挥其强大的抗拉能力。 UHPC材料具备优良的变形性能与断裂韧性,这一特性确保了整个桥梁构架有着非常好的吸收能量的能力,大大提高了桥梁构架的整体抗震能力。 UHPC材料有着较小的收缩和徐变变形特性,这一特性在预应力结构应用中的作用显得尤为突出,其有效地解决了现阶段大跨度预应力混凝土桥梁主要存在的问题,即由于预应力损失所造成的挠度过大的问题,大大降低了预应力的损耗。 UHPC材料具备优良的耐久性,其能够有效抵挡氯离子腐蚀、冻融破坏以及碳化磨损等,保障了在桥梁结构在复杂的外部环境当中,仍旧能够有效地抵挡各种腐蚀,保证了桥梁结构的使用寿命周期得到延长。 综上所述可知,在桥梁工程中应用UHPC材料,能够节省材料、缩小结构截面面积与构架重量、提升结构的整体跨度,同时也就让桥梁结构内部的钢筋布设变得更为简单,降低了工程难度,节省大量的人力财力,还能提升整体结构的安全性、耐久性和使用寿命[1]。 2 超高性能混凝土在桥梁工程中的应用

相关文档
最新文档