电路微分方程解法

合集下载

§6-1 二阶电路的微分方程

§6-1  二阶电路的微分方程
§6-1 二阶电路的微分方程
北京邮电大学电子工程学院 2021年1月
退出 开始
二阶电路的结构形式
第 2

同时含有一个电容元件和一个电感元件的二阶动态 电路有两种最简单的结构形式,即RLC并联电路和 RLC串联电路。我们先从RLC并联电路着手进行研 究,RLC串联电路的特性可根据对偶性得出。
如下图所示RLC并联电路,根据KCL可列出方程:
iL (t)is来自这是一个二阶常系数线性微分方程,如果电容和电 感元件的初始状态不为零,即uC (0 ) 0,iL (0 ) 0 , 则解上述方程将得到电路的全响应。
X
is (t)ε(t)
iR
iL
iC
R
L
C
iR (t) iL (t) iC (t) is (t)
X
二阶电路的微分方程
第 3

iR (t) iL (t) iC (t) is (t)
将元件的VCR带入上式,并以电感电流作为状态变 量,整理后可得:
LC
d2iL (t) dt 2
L R
diL (t) dt

一阶电路的全响应

一阶电路的全响应
i(∞) 10 / 5A 2A
+ 10V
-
3
i(t) (2 2e5t ) A
S2(t=0.2s)
返回 上页 下页
t > 0.2s
i(0.2 ) (2 2e50.2 )A 1.26A
i(0.2 ) 1.26A
2 L / R 1/2s 0.5s
i(∞) 10/2A 5A
i(t) (5 3.74e2(t0.2) ) A
+ 10V
uC (∞) (10 1)V 11V –
+ uC

1A +
u

返回 上页 下页
RC (11) 1s 2s
全响应: uC (t) (11 Ae0.5t )V
1
1 1
uC (t) (11 10e0.5t )V
iC
(t
)
duC dt
5e0.5t A
+ 10V –
+ -uC
1A +
返回 上页 下页
或求出稳态分量 全响应
代入初值有
iL (∞) 24 /12A 2A
iL (t) (2 Ae20t )A
6=2+A
A=4
例4-2 t=0时 ,开关S闭合,求t >0后的iC、uC及电流 源两端的电压(uC(0-)=1V,C=1F)。
解 这是RC电路全响
应问题,有
1
1 1
稳态分量:
iL (t) [6 (2 6)e5t ]A (6 4e5t )A t 0
i1(t) [2 (0 2)e5t ]A (2 2e5t )A
i2 (t) [4 (2 4)e5t ]A (4 2e5t )A
返回 上页 下页

第八章_RLC电路与常微分方程的解法_郑大昉汇编

第八章_RLC电路与常微分方程的解法_郑大昉汇编

R C
2L
(8-30)
若: 1, 称过阻尼; 若: 1, 称临界阻尼; 若: 1, 称阻尼振荡;
其解如图示:
因此对其数值计算的要求也更高.
欧拉方法 上述方程的一般形式:
dQ
dt
f
(Q, I ,t)
dI
dt
g(Q, I ,t)
Q(t0 ) Q0
I (t0 ) I0
对上述RLC充电电路: Q0 0, I0 0
注意:RLC电路中,
f (Qn , In , tn ) In
g (Qn ,
In , tn )
1 L
(Va
Qn C
InR)
(8-48)
(8-49) (8-50) (8-51) (8-52) (8-53) (8-54) (8-55)
本章(第8次)作业
如图示的 RLC电路. 已知:
Va 5伏特, R 2欧姆, C 1法拉, L 4亨利,
t
Q(t0 ) Q0 I (t0 ) I0
dQn01 dt
f
(Qn01,
I
0 n1
,
tn
)
I
0 n1
dI
0 n1
dt
g(Qn01, In01,tn )
1 L
(Va
Qn01 C
In01R)
Q0 n1
,
I
0 n1
, 由欧拉法预测出.
(8-37)
(8-38) (8-39)
改进的欧拉方法 进一步地,改进的欧拉方法为:
In
dIn dt
g(Qn, In,tn )
1 L
(Va
Qn C
InR)
(8-34)
(8-35) (8-36)

非线性电路--微分方程数值解法

非线性电路--微分方程数值解法

第八章 序
y ′ = xy 2 dy dy 2 x2 ⇒ = xy 2 ⇒ 2 = xdx ⇒ − = +c dx y 2 y (0) = 1 y y
x =0
2 x2 1 4 − x2 4 = 1 ⇒ c = −2 ⇒ − = −2⇒ = ⇒ y= y 2 y 4 4 − x2
《高等数学》中,微分方程求解,如对一阶微分方程: 高等数学》 微分方程求解,如对一阶微分方程: y′ =f(x,y)是求解解函数y = y(x) ,使满足上述方程。但能够 =f(x,y)是求解解函数 是求解解函数y 使满足上述方程。 求出准确的解析函数y(x)的微分方程是很少的 的微分方程是很少的, 高数》 求出准确的解析函数y(x)的微分方程是很少的,《高数》 中研究微分方程的求解, 分门别类讨论, 中研究微分方程的求解,是分门别类讨论,对不同类型的 微分方程,求解方法不一样,因此,要求解微分方程, 微分方程,求解方法不一样,因此,要求解微分方程,首 先必须认清类型。 先必须认清类型。
n
+ lhk
)
n
f (xn, y
n
) + lh [ f x ( x n , y
n
) +
2
y
n
n
)
= y ′( x
) + lh y ′′ ( x
) + O (h
)
代入( 12) 代入(8-12)式,得:
y n + 1 = y ( x n ) + h ( c 1 + c 2 ) y ′ ( x n ) + c 2 lh 2 y ′′ ( x n ) + O ( h 3 )
龙格-库塔方法的基本思想 用这个观点来研究欧拉公式与改进欧拉公式,可以发现 用这个观点来研究欧拉公式与改进欧拉公式,

电路分析10-4二阶电路微分方程的建立

电路分析10-4二阶电路微分方程的建立

uC
uC (K1 sin dt K2 cosdt)et U0
Ket cos(dt ) t 0
其中:为衰减系数, d为振荡频率。
Ke t
t 衰减振荡
9
电 路 零输入响应的四种形式之四:无阻尼
分析
特征根:S1,2
2
2 0
若 0 即: RLC串联 R 0
RLC并联电路 G 0
令:d 02 2 0 S1,2 jd 一对共轭虚数。
1 C
令左式 t=0, 得:
1 C
0 0
iL
dt
U0
L
d iL dt
R
t 0
iL 0 二阶微分方程
iL
(0)
0
iL (0 ) I0
d iL U0 I0R
dt t0
L
初始条件
1
电 路 建立网络方程
分析
RLC串联电路
初始值为:uC (0 ) U0, iL (0 ) I0
R
由KVL: uC uR uL 0
选 uC 作变量:
iC
uC C
_
iL
iR
G
L
1
L
t 0
uC dt
I0
C
d uC dt
G uC
0
令左式 t=0, 得:
求一次导数,得:
C
d 2uC dt 2
G
d uC dt
1
L
1 L
uC
0
0
0
uC
d二t 阶I0微C分ddu方tC 程t0
G
uC
(0)
0
uC (0 ) U0
d uC I0 U0G
US

rlc电路微分方程例题

rlc电路微分方程例题

rlc电路微分方程例题全文共四篇示例,供读者参考第一篇示例:RLC电路是一种常见的电路类型,由电阻(R)、电感(L)、电容(C)三种元件组成。

在电路中,产生电压和电流的关系可以用微分方程表示。

本文将为大家介绍关于RLC电路的微分方程例题,希望能帮助大家加深对此知识的理解。

假设我们有一个串联RLC电路,电阻的阻值为R欧姆,电感的电感值为L亨利,电容的电容值为C法拉。

当电路中的电压源为E(t)伏特时,可以通过基尔霍夫定律建立电路的微分方程。

根据基尔霍夫定律,在电路中,电压源E(t)等于电阻、电感和电容元件上的电压之和。

电阻上的电压可以表示为IR,电感上的电压可以表示为L(di/dt),电容上的电压可以表示为Q/C,其中Q为电容器上的电荷。

根据电压和电流的关系可以得到以下方程:E(t) = IR + L(di/dt) + Q/CI为电流强度,di/dt为电流的变化率,Q为电容器上的电荷。

我们知道电流等于电荷的导数,即I = dQ/dt,根据此关系可以对方程进行求导整理得到:对上式做微分运算,可以得到RLC电路的微分方程:这个微分方程描述了RLC电路中电荷Q随时间的变化情况。

通过解这个微分方程,我们可以得到电荷Q随时间的具体变化规律,从而了解电路中电流的行为。

下面我们通过一个具体的例题来演示如何解决RLC电路的微分方程。

假设一个串联RLC电路中,电阻R = 2欧姆,电感L = 1亨利,电容C = 0.5法拉,电压源为E(t) = 6sin(2t)伏特。

我们需要求解电路中电荷Q随时间的变化情况。

根据上述微分方程,我们有:带入已知的数值,得到:这是一个二阶常系数非齐次线性微分方程。

我们可以通过常数变易法或者拉普拉斯变换等方法进行求解。

在这里,我们选择通过试解法来求解该微分方程。

假设Q(t) = A cos(2t) + B sin(2t)是微分方程的一个特解,代入原方程,整理后可得到:Q(t) = -2.4sin(2t) + 0.224cos(2t) + (6/5)sin(2t)电路中电荷Q随时间的变化规律可表示为:通过上述例题的求解过程,我们可以看到如何使用微分方程求解RLC电路中电荷的变化情况。

微分方程与电路问题的建模与解法

微分方程与电路问题的建模与解法

微分方程与电路问题的建模与解法电路问题是现代科学与工程领域中常见的实际问题之一,而微分方程则是解决这些问题的重要工具之一。

本文将探讨微分方程与电路问题的建模与解法,并通过实例来说明其应用。

一、电路问题的建模电路问题通常涉及电流、电压、电阻等物理量之间的关系。

为了解决这些问题,我们需要将电路中的各个元件进行建模,并建立它们之间的数学关系。

微分方程提供了一种有效的建模方法。

以简单的电路为例,假设一个由电阻R、电感L和电容C组成的串联电路,电源为直流电源V(t)。

我们可以根据基尔霍夫定律建立以下微分方程:L(di/dt) + Ri + q/C = V(t)其中,i是电流,q是电容器的电荷量。

这个微分方程描述了电感、电阻和电容之间的关系。

二、微分方程的解法解决微分方程可以采用不同的方法,如分离变量法、变量代换法、特解法等。

在电路问题中,我们通常使用拉普拉斯变换和复变函数等方法来求解微分方程。

以上述电路问题为例,我们可以通过拉普拉斯变换将微分方程转化为代数方程,进而求解电流i(t)和电荷量q(t)的表达式。

通过求解微分方程,我们可以获得电路中各个物理量随时间的变化规律。

三、实例分析为了更好地理解微分方程与电路问题的应用,我们来看一个实际的例子。

假设有一个由电阻R和电感L组成的串联电路,电源为交流电源V(t) = V0 sin(ωt)。

我们希望求解电路中的电流i(t)。

根据基尔霍夫定律和欧姆定律,我们可以建立以下微分方程:L(di/dt) + Ri = V0 sin(ωt)通过拉普拉斯变换,我们可以将上述微分方程转化为代数方程:(sL + R)I(s) = V0/[(s^2 + ω^2)]其中,I(s)是电流的拉普拉斯变换,s是复变函数。

通过求解代数方程,我们可以得到电流的拉普拉斯变换表达式:I(s) = V0/[(s^2 + ω^2)(sL + R)]然后,我们可以通过拉普拉斯逆变换将I(s)转化为时间域的电流i(t)。

电路微分方程解法

电路微分方程解法
三、响应曲线
下面给出过阻尼、临界阻尼、欠阻尼三种情况下电路方程的响应曲线,可以瞧出,三种情况下的稳态值相同。
另外,我们再给出衰减振荡(欠阻尼)与等幅振荡(零阻尼)情况下的响应曲线示意图。
7
一、定义
所谓“二阶电路的冲激响应”。实际上就是零状态的二阶电路在冲激源的作用下所产生的响应,即为二阶电路在冲激源作用下,建立一个初始状态后产生的零输入响应。
第七章
用二阶线性常微分方程描述的电路称为二阶电路,二阶电路中至少含有两个储能元件——当然含有两个储能元件的电路并不一定为二阶电路,比如两个电容(电感)串(并)联情况。
重点:
1.电路微分方程的建立
2.特征根的重要意义
3.微分方程解的物理意义
难点:
1.电路微分的解及其物理意义
2.不同特征根的讨论计算
7
一、二阶齐次微分方程的通解形式
电容电压虽然为零,但其变化率不为零( , ),电路中的电流从I0逐渐减小,电容在电流的作用下被充电(电压的极性与以前不同),当电感中的电流下降到零的瞬间,能量再度全部存储在电容中,电容电压又达到,只就是极性与开始相反。
之后电容又开始放电,此时电流的方向与上一次电容放电时的电流方向相反,与刚才的过程相同,能量再次从电场能转化为电磁能,直到电容电压的大小与极性与初始情况一致,电路回到初始情况。
由此可见, 与 均为随着时间衰减的指数函数,电路的响应为非振荡响应。其中当电流的变化率为零的时刻 时电流达到最大值。
而:
3.过阻尼时的响应曲线
二、临界阻尼情况
1.临界阻尼的条件
当 ,即 ( )时,特征根 、 为相等的负实数p;此时固有频率为相等的负实数,
2.临界阻尼时的响应
当方程的特征根相同时, ,然后可以按照初值求取待定系数;也可以利用非振荡放电过程的解,令 ,取极限得出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由此可见, 和 均为正弦函数,其幅值不随时间衰减,电路的响应为等幅振荡响应,称为系统的固有频率,当二阶电路的激励为同频率的正弦函数时,称此时电路发生了谐振,其物理意义类似于机械系统的共振。
7
7
一、定义
二阶电路在阶跃激励下的零状态响应,称为阶跃响应。
二、求解的步骤
二阶电路的阶跃响应的求取类似于一阶电路的阶跃响应的求取方法。其步骤为
二、解法
因为已知初始状态的二阶电路的零输入响应的求法在前面的章节中已经有详细的介绍,因此要求解二阶电路的冲激响应,关键在于求出冲激激励所产生的电路初始值。
7
在电路系统中,以电容电压及电感电流为变量,列写出的微分方程称为“状态方程”,其中的电容电压及电感电流初始值即为方程的初始值。状态方程在动态系统的研究中具有十分重要的意义。
三、响应曲线
下面给出过阻尼、临界阻尼、欠阻尼三种情况下电路方程的响应曲线,可以看出,三种情况下的稳态值相同。
另外,我们再给出衰减振荡(欠阻尼)与等幅振荡(零阻尼)情况下的响应曲线示意图。
7
一、定义
所谓“二阶电路的冲激响应”。实际上是零状态的二阶电路在冲激源的作用下所产生的响应,即为二阶电路在冲激源作用下,建立一个初始状态后产生的零输入响应。
第七章
用二阶线性常微分方程描述的电路称为二阶电路,二阶电路中至少含有两个储能元件——当然含有两个储能元件的电路并不一定为二阶电路,比如两个电容(电感)串(并)联情况。
重点:
1.电路微分方程的建立
2.特征根的重要意义
3.微分方程解的物理意义
难点:
1.电Байду номын сангаас微分的解及其物理意义
2.不同特征根的讨论计算
7
一、二阶齐次微分方程的通解形式
非振荡放电过程的解为: ,令 ,取极限,根据罗必塔法则:
由此可见, 和 也为随着时间衰减的指数函数,仍然为非振荡响应。其中
3.临界阻尼时的响应曲线
临界阻尼时响应曲线的变化规律与过阻尼时的情况类似。
三、欠阻尼情况
1.欠阻尼的条件
当 ,即 ( )时,特征根 、 为一对共轭复数,其实部为负数。
2.欠阻尼时的响应
一、过阻尼情况——非振荡放电过程
1.过阻尼的条件
当 ,即 ( )时,特征根 、 为不相等的负实数。
此时固有频率为不相等的负实数,
2.过阻尼时的响应
当特征根为不相等的实数时,方程的解的形式为
其中:
而 , ,且电路的初始条件, ,有


同时

因此,初始条件为:

代入电路方程 中,就可以解出其中的待定系数,得出
上述过程将不断重复,电路中的电压与电流也就形成周而复始的等幅振荡。
可以想象,当存在耗能元件时的情况。一种可能是电阻较小,电路仍然可以形成振荡,但由于能量在电场能与电磁能之间转化时,不断地被电阻元件消耗掉,所以形成的振荡为减幅振荡,即幅度随着时间衰减到零;另一种可能是电阻较大,电容存储的能量在第一次转移时就有大部分被电阻消耗掉,电路中的能量已经不可能在电场能与电磁能之间往返转移,电压、电流将直接衰减到零。
电容电压虽然为零,但其变化率不为零( , ),电路中的电流从I0逐渐减小,电容在电流的作用下被充电(电压的极性与以前不同),当电感中的电流下降到零的瞬间,能量再度全部存储在电容中,电容电压又达到,只是极性与开始相反。
之后电容又开始放电,此时电流的方向与上一次电容放电时的电流方向相反,与刚才的过程相同,能量再次从电场能转化为电磁能,直到电容电压的大小与极性与初始情况一致,电路回到初始情况。
7
二阶电路如下,其中电容电压的初始值为 ,电感电流的初始值为 。
根据该电路列写电路方程为
其电路电流为:
因此: ,
所以,电路方程为:
7
方程 的特征方程为 。特征根为:
其中:
由特征根的性质(不等的实数、相等的实数或共轭的复数)就可以确定通解的具体形式。再据电路的初始条件即可得出通解中的待定系数。
7
分别讨论特征根的情况。
1.计算电路的初始值


2.列写电路微分方程
根据KCL或KVL定理列写将电路方程,将其整理成有关电容电压或电感电流(状态变量)的二阶微分方程。
3.计算电路方程的特解
因为是阶跃响应,所以电路方程的特解为常数A,且A可以根据初始值最后确定为阶跃激励的强度。
4.计算电路方程的通解
而电路方程的通解为齐次方程的解,因此根据其特征方程求得电路方程得特征根为s
由此可见, 和 均为随着时间衰减的指数函数,电路的响应为非振荡响应。其中当电流的变化率为零的时刻 时电流达到最大值。
而:
3.过阻尼时的响应曲线
二、临界阻尼情况
1.临界阻尼的条件
当 ,即 ( )时,特征根 、 为相等的负实数p;此时固有频率为相等的负实数,
2.临界阻尼时的响应
当方程的特征根相同时, ,然后可以按照初值求取待定系数;也可以利用非振荡放电过程的解,令 ,取极限得出。
当s为两个不相等的实数 、 时,
当s为两个相同的实根 时,
当s为两个共轭的复根 、 时, 时, 。实际上,在此情况下(欠阻尼),可以直接设电路方程的通解为 。然后用初始值确定其中的待定系数A与。
5.计算电路的初始值
原电路方程的解即为通解于特解之和,再根据电路的初始条件计算出各个待定系数。
这样即可得出电路方程的解。
令 , ,则微分方程的特征根 , 。
如图所示,设 与 及 之间存在三角关系
即 ,
则 , 。
根据欧拉公式:
可将特征根写为:

因此:
由此可见, 和 均为幅值随着时间按指数规律衰减的振荡函数,电路的响应为衰减振荡响应。
3.欠阻尼时的响应曲线
4.无阻尼的情况
无阻尼情况是欠阻尼的一种特殊情况。当 时, , , ,此时的响应为
,其特征方程为: ,特征根: 。
当特征方程有不同的实根 、 时,
当特征方程有相同的实根 时,
当特征方程有共轭的复根 时,
二、欧拉公式
7
7
在具体研究二阶电路的零输入响应之前,我们以仅仅含电容与电感的理想二阶电路(即R=0,无阻尼情况)来讨论二阶电路的零输入时的电量及能量变化情况。
设电容的初始电压为 ,电感的初始电流为零。在初始时刻,能量全部存储于电容中,电感中没有储能。此时电流为零,电流的变化率不为零( , ),这样电流将不断增大,原来存储在电容中的电能开始转移,电容的电压开始逐渐减小。当电容电压下降到零时,电感电压也为零,此时电流的变化率也就为零,电流达到最大值I0,此时电场能全部转化为电磁能,存储在电感中。
相关文档
最新文档