第七节 核酸的变性、复性与分子杂交(2012).
分子杂交的概念及基本原理

分子杂交的概念及基本原理主要内容:一、分子杂交的概念二、分子杂交基本原理(一)DNA变性:1、DNA变性的方法2、增色效应3、溶解曲线4、融解温度5、影响Tm值的因素。
(二)复性:退火一、分子杂交的概念:分子杂交(molecular hybridization)指具有一定同源序列的两条核酸单链(DNA或RNA),在一定条件下按碱基互补配对原则经过退火处理,形成异质双链的过程。
利用这一原理,就可以使用已知序列的单链核酸片段作为探针,去查找各种不同来源的基因组DNA分子中的同源基因或同源序列。
二、分子杂交基本原理:(一)DNA变性:DNA变性是指双螺旋之间氢键断裂,双螺旋解开,形成单链无规则线团,因而发生性质改变(如粘度下降,沉降速度增加,浮力上升,紫外吸收增加等)。
1、DNA变性的方法:1)加热;2)改变DNA溶液的pH;3)有机溶剂(如乙醇、尿素、甲酰胺及丙酰胺等)等理化因素。
2、增色效应:DNA在260nm处有最大吸收值,这一特征是由于含有碱基的缘故。
在DNA双螺旋结构模型中碱基藏于内侧,变性时由于双螺旋解开,于是碱基外露,260nm紫外吸收值因而增加,这一现象称为增色效应(hyperchromic effect)。
利用DNA变性后波长260 nm处紫外吸收的变化可追踪变性过程。
3、溶解曲线:如果升高温度使DNA变性,以温度对紫外吸收作图,可得到一条曲线,称为溶解曲线。
4、融解温度:通常人们把50%DNA分子发生变性的温度称为变性温度(即熔解曲线中点对应的温度),由于这一现象和结晶的融解相类似,故又称融点或融解温度(melting temp erature, Tm)。
因此Tm是指消光值上升到最大消光值一半时的温度。
5、影响Tm值的因素:Tm不是一个固定的数值,它与很多因素有关:1) 部因素:pH、离子强度。
随着溶剂内离子强度上升,Tm值也随着增大。
2) 部因素:DNA的碱基比例、DNA的均一性;在相同条件下,DNA内G-C配对含量高,其T m值也高。
核酸分子杂交技术 ppt课件

ppt课件
15
一、常见的核酸探针
(一)基因组DNA探针
基因组DNA探针的制备是将染色体DNA通过超声击断或限制性内 切酶不完全水解,获得许多染色体 DNA的随机片段,选择长度约 15-20kb的DNA片段重组到λ 噬菌体中,经体外包装感染大肠杆菌, 在固体培养基上形成许多噬菌斑。筛选出含目的基因的重组体后, 将目的基因 DNA片段再次亚克隆到大肠杆菌质粒中保存,以便需 要时扩增。 基因组DNA制备还可以通过 PCR扩增基因组DNA的特定片段,然 后将其克隆到大肠杆菌质粒中保存。由于真核基因组含有不编码的 内含子序列,因此,真核基因组 DNA 探针用于检测基因表达时杂 交效率要明显低于cDNA探针。
ppt课件
26
(3) 酶
常用碱性磷酸酶或辣根过氧化物酶对核酸探针进行标记。
ppt课件
27
(4) 荧光素
异硫氰酸荧光素(fluorescein isothiocyanate,FITC),最大吸收波 长为490nm~495nm,最大发射波长为520nm~530nm,呈黄绿色 荧光, 四乙基罗达明:最大吸收波长为570nm,最大发射波长为595~ 600nm,呈橙红色荧光。
ppt课件 11
二、核酸分子杂交的基本原理
根据核酸变性和复性的原理,不同来 源的 DNA 变性后,若这些异源 DNA 之间存在某些相同序列的区域,在退 火条件下则可形成DNA-DNA异源双 链;或将变性的单链 DNA 与 RNA 经 复性处理可以形成DNA-RNA杂合双 链。这种不同来源的单链核酸分子在 合适的条件下,通过碱基互补形成双 链杂交体的过程称为核酸分子杂交 (molecular hybridization)。
分子生物学名词解释(中文)

分子生物学名词解释第二章核酸的结构与功能1. DNA的变性与复性(denaturation and renaturation of DNA): 双链DNA(dsDNA)在变性因素(如过酸、过碱、加热、尿素等)影响下,解链成单链DNA(ssDNA)的过程称之为DNA变性。
DNA变性后,生物活性丧失,但一级结构没有改变,所以在一定条件下仍可恢复双螺旋结构。
热变性的DNA经缓慢冷却后,两条互补链可重新恢复天然的双螺旋构象,这一现象称为复性,也称退火。
2.核酸分子杂交(hybridization of nucleic acids):在DNA变性后的复性过程中,将不同来源的DNA单链分子或RNA分子放在同一溶液中,只要在DNA或RNA的单链分子之间存在着一定程度的碱基配对关系,就可以在不同的分子间形成杂化双链,这种现象称为核酸分子杂交。
3.增色效应与减色效应(hyperchromic effect and hypochromic effect): DNA变性时,双螺旋松解,碱基暴露,OD260值增高称之为增色效应;除去变性因素后,单链DNA依碱基配对规律恢复双螺旋结构,OD260值减小称为减色效应。
4.Tm:DNA的变性从开始解链到完全解链,是在一个相当窄的温度范围内完成的。
在这一范围内,紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度。
第八章核苷酸代谢第十章DNA的生物合成(复制)1. 中心法则(the central dogma):DNA的遗传信息转录为RNA,RNA通过翻译指导合成蛋白质。
DNA还通过复制将遗传信息代代相传。
1970年发现RNA能逆转录为DNA,是对中心法则的补充。
2. 基因和基因表达(gene and gene expression):基因是为生物活性产物编码的DNA功能片段,这些产物主要是蛋白质或各种RNA。
通过转录和翻译,将DNA分子上A,T,C,G四种符号所包含的序列信息,转变为蛋白质分子上20种氨基酸的序列信息的过程称为基因表达。
核酸的变性及复性

变性DNA的性质(之二)
溶液旋光性发生改变
变性后整个DNA分子的对称性及分 子局部的构型发生改变,使DNA溶 液的旋光性发生变化
变性DNA的性质(之三)
增色效应或高色效应
( hyperchromic effect ) DNA变性后,DNA 溶液的紫外吸收 作用增强的效应
增色效应(一)
DNA分子在250-280nm 波长具有吸收 紫外光的特性,其吸收峰值在260nm 紫外吸收的结构基础是:DNA分子中碱基 间电子的相互作用 双螺旋结构中,有序堆积的碱基“束缚” 了这种作用 DNA变性后,双链解开,碱基间电子的相 互作用更有利于紫外吸收, 故而产生了增 色效应
Cot曲线
Cot l/2:在标准条件下(一般为0.18mol/L 阳离子浓度,400 核苷酸的片段长度)测得 的复性率达 50% 时的 Cot值 Cot l/2与核苷酸对的复杂性成正比 原核生物核酸分子, Cot l/2可代表基因组 的大小及基因组中核苷酸对的复杂程度 真核生物基因组中,因含有许多不同程度的 重复序列(repetitive sequence ),因此 Cot曲线要比S曲线复杂
核酸的变性和复性
• DNA的变性 • DNA的复性 • 核酸分子杂交
核酸的变性和复性
变性(denaturation) 复性(renaturation)
双链核酸分子的二个重要物理特性
双链DNA、RNA双链区、DNA:
RNA杂交双链(hybrid duplex) 以及其它异源双链核酸分子 (heteroduplex)都具有此性质
正比
溶液中DNA分子越多,相互碰撞结
合“成核”的机会越大
DNA顺序的复杂性
核酸的变性和复性

核酸的变性和复性1.变性的概念在理化因素作用下,核酸的双螺旋区氢键断裂,空间结构破坏,形成单链无规线团状态的过程。
变性的因素有热、酸、碱、乙醇、尿素等。
变性的本质是次级键的变化。
变性的结果是紫外吸收值明显增加(增色效应),DNA粘度下降,生物学功能部分或全部丧失。
2.DNA的热变性和TmDNA热变性过程中,紫外吸收值增高,有一个特征性曲线称熔解曲线,通常将熔解曲线的中点,即紫外吸收值达到最大值50%时的温度称为解链温度,又叫熔点(Tm)。
DNA 的热变性是爆发式的,像结晶的溶解一样,只在很狭窄的温度范围内完成,一般在70~800C之间。
变性温度与碱基组成、DNA长度及变性条件有关。
GC含量越高,Tm越大;DNA 越长,Tm越大;溶液离子强度增高,Tm增加。
3.DNA的复性与分子杂交变性DNA在适当条件下,两条互补链可重新配对,恢复天然双螺旋构象,这一现象称为复性。
热变性的DNA经缓慢冷却后即可复性,这一过程称为退火(annealing)。
影响复性速度的因素很多,如单链DNA的起始浓度、温度(最适复性温度是比Tm约低250C)、盐浓度、片断长度、序列复杂性等。
分子杂交是以核酸的变性和复性为基础,只要不同来源的核酸分子的核苷酸序列含有可以形成碱基互补配对的片段,就可以形成DNA/DNA,RNA/RNA或DNA/RNA杂化双链,这个现象称为核酸分子杂交(hybridization)。
标记一个来源的核酸(放射性同位素或荧光标记),通过杂交可以检测与其有互补关系的DNA或RNA,这种标记的核酸称为基因探针(gene probe),也就是一段带有检测标记,且顺序已知,与目的基因互补的核酸序列。
基因探针的“集成化”就是基因芯片(gene chip)。
是把已经测序的基因固定在硅片或玻璃片上制成的。
在医疗诊断和科学研究中已被快速地运用。
试论述核酸变性与复性以及分子杂交技术原理在医学领域的应用

试论述核酸变性与复性以及分子杂交技术原理在医学领域的应用以下是我整理的有关于试论述核酸变性与复性以及分子杂交技术原理在医学领域的应用,仅供参考:现代分子生物学是研究生物大分子--核酸及其表达产物蛋白质的结构、功能、遗传、调控、相互关系和相互作用,从分子水平上探讨生命现象的科学,其主要研究对象是核酸(DNA和RNA)和蛋白质。
自从1953年Watson和Crick发现DNA的双螺旋结构以来,分子生物学在短短五十年时间里以超乎想象的速度飞速发展,渗透到医学每一个领域。
可以毫不夸张的说,如果没有分子生物学的应用,人类探索生命活动的行为将会寸步难行。
将分子生物学技术应用到临床检验诊断学,使疾病诊断深入到基因水平,称为基因诊断。
基因诊断技术主要包括核酸分子杂交技术、聚合酶链式反应(PCR)技术、基因多态性分析技术、单链构象多态性(SSCP)分析技术、荧光原位杂交染色体分析(FISH)技术、波谱核型分析(SKY)技术、DNA测序技术、基因芯片技术以及蛋白质组技术等,一些先进的分离和检测技术大大促进了上述技术的完善和发展,如毛细管电泳技术(CE)、液质联用技术(LC/MS/MS)、变性高效液相色谱技术(DHPLC)、非荧光遗传标记分析技术等。
基因诊断在感染性疾病、遗传性疾病、肿瘤性疾病等的诊断中发挥越来越重要的作用。
下面,我们就临床检验诊断中涉及的主要分子生物学技术作一简要介绍。
1、核酸分子杂交技术即基因探针技术。
利用核酸的变性、复性和碱基互补配对的原理,用已知的探针序列检测样本中是否含有与之配对的核苷酸序列的技术。
是临床应用最早的,也是最基础的分子生物学技术,是印迹杂交、基因芯片等技术的基础。
不少探针已经商品化。
2、PCR技术PCR技术是一种特异扩增DNA的体外酶促反应,可以短时间扩增出两段已知序列之间的DNA,用于诊断、鉴定、制备探针及基因工程产品开发等,是一项及其有效和实用的技术。
由于PCR试验存在一定的假阳性和假阴性问题,导致PCR技术在我国临床诊断中的应用曾一度被叫停,近年来由于改进的PCR技术如巢式PCR(nestedPCR)、多重PCR(multiplexPCR)、荧光PCR技术等在较大程度上增加了该技术的敏感性和特异性。
核酸分子杂交技术一、核酸分子杂交的基本原理与分类(可编辑)

核酸分子杂交技术一、核酸分子杂交的基本原理与分类分子杂交技术与应用分子杂交技术与应用? 分子杂交技术的目的是什么?分子杂交的基本方法有哪些?Southern印迹法有哪些步骤,为了达到什么目的呢为什么叫印迹法呢?一、核酸分子杂交的基本原理与分类一、核酸分子杂交的基本原理与分类(一)核酸分子杂交的基本原理(一)核酸分子杂交的基本原理1、变性(denaturation)1、变性(denaturation)(1)定义:(1)定义: 在一定的条件下,双螺旋之间氢键断裂,双在一定的条件下,双螺旋之间氢键断裂,双螺旋解开,形成无规则线团,双链解链成为单链。
螺旋解开,形成无规则线团,双链解链成为单链。
(2).引起核酸变性的因素(2).引起核酸变性的因素变性剂变性剂酸(尿素)(尿素)碱碱有机溶剂热有机溶剂热(乙醇)(乙醇)(3)、变性后核酸的特点:(3)、变性后核酸的特点:粘度下降粘度下降密度增加密度增加紫外吸收增加紫外吸收增加 2、融解温度(Tm):2、融解温度(Tm):定义:在DNA热变性时,其A 的升高达最定义:在DNA热变性时,其A 的升高达最260260 大值一半时的温度。
大值一半时的温度。
3、复性(退火)3、复性(退火) 变性DNA经过一定处理重新形成双螺旋的过程。
变性DNA 经过一定处理重新形成双螺旋的过程。
影响复性速度的因素: 影响复性速度的因素:DNA浓度 DNA浓度 DNA片段的大小 DNA片段的大小 DNA片段复杂性 DNA片段复杂性合适的复性温度合适的复性温度适当的离子强度适当的离子强度4、杂交4、杂交定义两条来源不同,但具有互补序列的核酸,按两条来源不同,但具有互补序列的核酸,按碱基配对原则复性形成一个杂交体,这个过程即碱基配对原则复性形成一个杂交体,这个过程即分子杂交。
分子杂交。
DNA/DNA的杂交作用:DNA/DNA的杂交作用: 检测特定生物有机体之间的亲源关系检测特定生物有机体之间的亲源关系DND/DNA或RNA/DNA:DND/DNA或RNA/DNA: 揭示核酸片断中某种特定基因的位置。
生物化学习题及答案_核酸

生物化学习题及答案_核酸核酸(一)名词解释1.单核苷酸(mononucleotide)2.磷酸二酯键(phosphodiester bonds)3.不对称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing)5.反密码子(anticodon)6.顺反子(cistron)7.核酸的变性与复性(denaturation、renaturation)8.退火(annealing)9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage)12.发夹结构(hairpin structure))13.DNA的熔解温度(melting temperature Tm14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide)(二)填空题1.DNA双螺旋结构模型就是_________于____年提出的。
2.核酸的基本结构单位就是_____。
3.脱氧核糖核酸在糖环______位置不带羟基。
4.两类核酸在细胞中的分布不同,DNA主要位于____中,RNA主要位于____中。
5.核酸分子中的糖苷键均为_____型糖苷键。
糖环与碱基之间的连键为_____键。
核苷与核苷之间通过_____键连接成多聚体。
6.核酸的特征元素____。
7.碱基与戊糖间就是C-C连接的就是______核苷。
8.DNA中的____嘧啶碱与RNA中的_____嘧啶碱的氢键结合性质就是相似的。
9.DNA中的____嘧啶碱与RNA中的_____嘧啶碱的氢键结合性质就是相似的。
10.DNA双螺旋的两股链的顺序就是______关系。
11.给动物食用3H标记的_______,可使DNA带有放射性,而RNA 不带放射性。
12.B型DNA双螺旋的螺距为___,每匝螺旋有___对碱基,每对碱基的转角就是___。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA复性是指当变性DNA的溶液缓慢降温,DNA的 互补链又可重新聚合,形成规则的DNA双螺旋的现 象。(热变性后的复性又称为退火)
3. 核酸的分子杂交
3.1 核酸的分子杂交(hydridization):两个不同来源的互补单链 多聚核苷酸之间的碱基配对过程。(P746) 探针技术,它是指利用标记分子对其它分子的识别性而实现对后 者进行检测的一种技术,我们把标记的分子叫探针(Probe)。 DNA探针 cDNA探针 RNA探针
1.2.3有机溶剂
尿素和甲酰胺
1.3解链温度 or 熔解温度(Tm)或称熔点
1.3.1 定义
DNA的变性从开始到解链完全,是在一个相当窄的温度 内完成的,在这一范围内,紫外光吸收值增加达到最大增加值 的50%时的温度叫做DNA的熔点(Tm)
在实验中,Tm值计算公式:Tm=69.3+0.41(G+C%)小 于20bp的寡核苷酸:Tm=4(G+C)+2(A+T)
3.2 Southern Blotting
酶切DNA
分离DNA
转移DNA
杂交DNA
显影
3.3 Northern Blotting
研究对象是mRNA,探针一般是DNA。 总 RNA 或 mRNA 需在变性条件下电泳(乙二醛、甲 醛)
Northern杂交是用——鉴定——
(中国科学院2003年攻读硕士学位研究生入学试题 《生物化学与分子生物学》卷 )
第二章 核酸
第七节 核酸的变性、复性与分子 杂交
1、核酸的变性
1.1 定义
在某些理化因素的作用下,DNA分子中的碱基堆积力和氢键断裂,空间结 构被破坏,使双链分离,这种现象称为核酸的变性
1.2 引起DNA变性的因素
1.2.1加热(热变性)
DNA变性时,DNA双链发生解离,共轭双键更充分暴露,当DNA溶液温 度升高到接近水的沸点时,DNA在260nm处的吸收光值明显增加,这种关系 叫做DNA的增色效应(hyperchromic effect)。DNA的变性从开始到解链完 全,是在一个相当窄的温度内完成的,在这一范围内,紫外光吸收值增加达 到最大增加值一半时的温度叫做DNA的熔点(melting point Tm)。
小结
1. 核酸的变性 2.引起DNA变性的因素 加热
PH
有机试剂 3.熔点(Tm) 4. 影响DNA的Tm值的因素 G-C含量
介质中离子强度
小结
5. 核酸的复性 6.核酸的杂交 Southern blotting
Northern blotting
7. 核酸的分离 琼脂糖 PAGE
4. 核酸的凝胶电泳 P742
4.1 琼脂糖电泳
用于大片段DNA的分离,精度低,但分离范围广
4.2 PAGE(聚丙烯酰胺凝胶)电泳
用于小片段DNA的分析,精度非常高
4.3 影响核酸凝胶迁移率的因素:
① 核酸分子的大小,迁移率与分子量的对数成反比
② 凝胶浓度
③ DNA的构象,超螺旋最快,线形其次,开环最慢。
浓度 50ug/mL 时,双链 DNA A260=1.00 ,完全 变性(单链)A260= 1.37, 游离碱基、核苷酸 A260=1.60 , 当 A260 增 加 到最大增大值一半时, 即1.185时,对应的温度 即为Tm。
1.2 引起DNA变性的因素
1.2.2 pH
过量酸使A、G、C上的氮原子质子化,不利于氢键形成; 过量碱使G、T上的氮原子去质子化,亦不利于氢键形成
1.3.2 影响DNA的Tm值的因素
①G-C含量与Tm值成正比 测定Tm,可推知G-C含量。 G-C%=(Tm-69.3)×2.44
A B
图A, B Tm值与GC含量的关系
②介质中离子强度
离子强度高,Tm高。
②介质中离子强度
离子强度高,Tm高。
—
—
②介质中离子强度
离子强度高,