(完整版)高考理科-立体几何高考真题(小题)

合集下载

2023年高考数学立体几何真题练习(含答案解析)

2023年高考数学立体几何真题练习(含答案解析)

2023年高考数学立体几何真题练习(含答案解析)1.(2022·北京·高考真题)已知正三棱锥−P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34πB .πC .2πD .3π【答案】B 【解析】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且263BO =⨯=PO 因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,而三角形ABC 内切圆的圆心为O ,半径为2364136=>⨯, 故S 的轨迹圆在三角形ABC 内部,故其面积为π 故选:B2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA −=,E ,F 分别是棱11,BC AC 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A −−的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤【答案】A【解析】如图所示,过点F 作FP AC ⊥于P ,过P 作PM BC ⊥于M ,连接PE ,则EFP α=∠,FEP β=∠,FMP γ=∠, tan 1PE PE FP AB α==≤,tan 1FP AB PE PE β==≥,tan tan FP FPPM PEγβ=≥=, 所以αβγ≤≤, 故选:A .3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD −,F ABC −,F ACE −的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACDV ED Sa a a =⋅⋅=⋅⋅⋅=, ()232111223323ABCV FB Sa a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ==,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFMSEM FM =⋅,AC =, 则33123A EFM C EFM EFMV V V AC S a −−=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确. 故选:CD.4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D −,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒ D .直线1BC 与平面ABCD 所成的角为45︒【答案】ABD【解析】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成的角即为直线1BC与1DA 所成的角,因为四边形11BB C C 为正方形,则1B C ⊥1BC ,故直线1BC 与1DA 所成的角为90︒,A 正确;连接1AC ,因为11A B ⊥平面11BB C C ,1BC ⊂平面11BB C C ,则111A B BC ⊥, 因为1B C ⊥1BC ,1111A B B C B =,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC CA ⊥,故B 正确; 连接11AC ,设1111ACB D O =,连接BO ,因为1BB ⊥平面1111D C B A ,1C O ⊂平面1111D C B A ,则11C O B B ⊥, 因为111C O B D ⊥,1111B D B B B ⋂=,所以1C O ⊥平面11BB D D , 所以1C BO ∠为直线1BC 与平面11BB D D 所成的角,设正方体棱长为1,则1C O =1BC =1111sin 2C O C BO BC ∠==, 所以,直线1BC 与平面11BB D D 所成的角为30,故C 错误;因为1C C ⊥平面ABCD ,所以1C BC ∠为直线1BC 与平面ABCD 所成的角,易得145C BC ∠=,故D 正确. 故选:ABD5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC −的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD 【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则112A P μ⎛⎫=−− ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=− ⎪⎝⎭,()110A P BP μμ⋅=−=,所以0μ=或1μ=.故,H Q 均满足,故C 错误; 对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,0A ⎫⎪⎪⎝⎭,所以01,2AP y ⎛⎫=− ⎪ ⎪⎝⎭,11,122A B ⎛⎫=−− ⎪ ⎪⎝⎭,所以00311104222y y +−=⇒=−,此时P 与N 重合,故D 正确. 故选:BD .6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1DBCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D −的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D −为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =||EP =所以侧面11B C CB 与球面的交线上的点到E因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG , 因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==..。

2023年高考数学----立体几何解答题常考全归类真题练习题(含答案解析)

2023年高考数学----立体几何解答题常考全归类真题练习题(含答案解析)

2023年高考数学----立体几何解答题常考全归类真题练习题(含答案解析)1.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值; (3)求平面1ACD 与平面1CC D 所成二面角的余弦值. 【解析】(1)证明:在直三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,且AC AB ⊥,则1111AC A B ⊥以点1A 为坐标原点,1A A 、11A B 、11AC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,0,0A 、()2,2,0B 、()2,0,2C 、()10,0,0A 、()10,0,2B 、()10,0,2C 、()0,1,0D 、()1,0,0E 、11,,12F ⎛⎫⎪⎝⎭,则10,,12EF ⎛⎫= ⎪⎝⎭, 易知平面ABC 的一个法向量为()1,0,0m =,则0EF m ⋅=,故EF m ⊥,EF ⊄平面ABC ,故//EF 平面ABC .(2)()12,0,0C C =,()10,1,2C D =−,()1,2,0EB =,设平面1CC D 的法向量为()111,,u x y z =,则111112020u C C x u C D y z ⎧⋅==⎪⎨⋅=−=⎪⎩,取12y =,可得()0,2,1u =,4cos ,5EB u EB u EB u⋅<>==⋅. 因此,直线BE 与平面1CC D 夹角的正弦值为45.(3)()12,0,2AC =,()10,1,0A D =, 设平面1ACD 的法向量为()222,,v x y z =,则122122200v AC x z v A D y ⎧⋅=+=⎪⎨⋅==⎪⎩,取21x =,可得()1,0,1v =−,则1cos ,5u v u v u v⋅<>==−=⨯⋅因此,平面1ACD 与平面1CC D 2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【解析】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥; 在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC的中点,所以AC BE ⊥; 又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC EF ⊥,所以1=2AFC S AC EF ⋅△, 当EF BD ⊥时,EF 最小,即AFC △的面积最小. 因为ABD CBD ≌△△,所以2CB AB ==, 又因为60ACB ∠=︒,所以ABC 是等边三角形, 因为E 为AC 的中点,所以1AE EC ==,BE 因为AD CD ⊥,所以112DE AC ==, 在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz −,则()()()1,0,0,,0,0,1A B D ,所以()()1,0,1,AD AB =−=−, 设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=−+=⎪⎨⋅=−+=⎪⎩,取y =()3,3,3n =, 又因为()31,0,0,4C F ⎛⎫− ⎪ ⎪⎝⎭,所以31,4CF ⎛⎫= ⎪ ⎪⎝⎭,所以cos ,21n CF n CF n CF⋅===设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以4sin cos ,7nCF θ==所以CF 与平面ABD3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B −−的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.【解析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H . ∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE ∠=∠=︒,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==∠=∠=∠=∠=︒,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD 和Rt DHA ,EG DH == ∵,DC CF DC CB ⊥⊥,且CF CB C ⋂=,∴DC ⊥平面,BCF BCF ∠是二面角F DC B −−的平面角,则60BCF ∠=, ∴BCF △是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴FN BC ⊥,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN CD ⊥,而BC CD C ⋂=,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD FN AD ∴⊥.(2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz −,设(3,(1,0,3)A B D E,则32M ⎛⎫ ⎪ ⎪⎝⎭,333,,,(2,23,0),(2,22BM AD DE ⎛⎫∴=−=−−=− ⎪ ⎪⎝⎭ 设平面ADE 的法向量为(,,)nx y z =由00n AD n DE ⎧⋅=⎨⋅=⎩,得20230x x z ⎧−−=⎪⎨−+=⎪⎩,取(3,n =−,设直线BM 与平面ADE 所成角为θ,∴3||sin cos ,|||3n BM n BM n BMθ⋅=〈〉====⋅4.(2022·全国·统考高考真题)如图,PO 是三棱锥−P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B −−的正弦值. 【解析】(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥−P ABC 的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC , 所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒, 所以ODA OAD ∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以//OE 平面PAC(2)过点A 作//Az OP ,如图建立平面直角坐标系, 因为3PO =,5AP =,所以4OA =,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB = 所以12AC =,所以()O,()B,()P ,()0,12,0C ,所以32E ⎛⎫ ⎪⎝⎭,则332AE ⎛⎫= ⎪⎝⎭,()43,0,0AB =,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则=3y −,0x =,所以()0,3,2n =−;设平面AEC 的法向量为(),,m a b c =,则33302120m AE a bc m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =−,0b =,所以()3,0,6m =−;所以cos ,13n m n m n m⋅−===设二面角C AE B −−的大小为θ,则43cos cos ,=13n m θ=, 所以11sin 13θ=,即二面角C AE B −−的正弦值为1113.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC −的体积.【解析】(1)由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CDBD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD Ì平面BED , 所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)[方法一]:判别几何关系依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ===由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =. 222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC . 由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅,所以AF CF =,所以EF AC ⊥, 由于12AFCSAC EF =⋅⋅,所以当EF 最短时,三角形AFC 的面积最小 过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得EF =所以13,222DF BF DF ===−=, 所以34BF BD =过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==, 所以34FH =,所以111323324F ABC ABCV SFH −=⋅⋅=⨯⨯=[方法二]:等体积转换AB BC =,60ACB ∠=︒,2AB =ABC ∴∆是边长为2的等边三角形,BE ∴=连接EFADB CDB AF CF EF ACBED EF BD ∆≅∆∴=∴⊥∴∆⊥∆在中,当时,AFC 面积最小222,,2,,BED EF AD CD AD CD AC E AC DE BE BD BE EDBE DE EF BD BD ⊥==∴+=∴⊥⋅⊥∆==为中点DE=1若在中,32113222BEFBF S BF EF ∆∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC −−−∆∴=+=⋅=6.(2022·全国·统考高考真题)在四棱锥P ABCD −中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP ====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【解析】(1)证明:在四边形ABCD 中,作DE AB ⊥于E ,CF AB ⊥于F , 因为//,1,2CD AB AD CD CB AB ====, 所以四边形ABCD 为等腰梯形, 所以12AE BF ==,故DE =BD = 所以222AD BD AB +=, 所以AD BD ⊥,因为PD ⊥平面ABCD ,BD ⊂平面ABCD , 所以PD BD ⊥, 又=PD AD D ⋂, 所以BD ⊥平面PAD , 又因为PA ⊂平面PAD , 所以BD PA ⊥;(2)如图,以点D 为原点建立空间直角坐标系,BD =则()()(1,0,0,,A B P ,则()()(1,0,3,0,3,3,AP BP DP =−=−=,设平面PAB 的法向量(),,n x y z =,则有0{30n AP x n BP ⋅=−=⋅=−=,可取()3,1,1n =, 则5cos ,5n DPn DP n DP ⋅==所以PD 与平面PAB7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】(1)取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B ,而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B ,而,,NK MK K NK MK =⊂平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B ,(2)因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A ,平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A ,因为//NK BC ,故NK ⊥平面11ABB A ,因为AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N =,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−, 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯. 若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面MKN , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =,而12B B MK ==,MB MN =,故1BB M MKN ≅,所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−, 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C −−的正弦值. 【解析】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h , 则111111112211433333A A BC A A ABC A ABC AB BC C C B V S h h V S A A V −−−=⋅===⋅==,解得h =所以点A 到平面1A BC (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =, 且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC , 由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A , 所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩, 可取()1,0,1m =−,设平面BDC 的一个法向量(),,n a b c =,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩, 可取()0,1,1n =−r , 则11cos ,22m nm n m n ⋅===⨯⋅,所以二面角A BD C −−=本课结束。

高考真题立体几何(理科)

高考真题立体几何(理科)

G 立体几何G1 空间几何体的结构9.G1[2012·重庆卷] 设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a的取值范围是()A.(0,2) B.(0,3)C.(1,2) D.(1,3)9.A[解析] 如图所示,设AB=a,CD BC=BD=AC=AD=1,则∠ACD=∠BCD=45°,要构造一个四面体,则平面ACD BCD不能重合,当△BCD与△ACD重合时,a=0;当A、B、C、D四点共面,且A、B两点在DC的两侧时,在△ABC中,∠ACB =∠ACD+∠BCD=45°+45°=90°,AB=AC2+BC2=2,所以a的取值范围是(0,2).G2 空间几何体的三视图和直观图13.G2[2012·辽宁卷] 一个几何体的三视图如图1-3所示.则该几何体的表面积为________.图1-313.38[解析] 本小题主要考查三视图的应用和常见几何体表面积的求法.解题的突破口为弄清要求的几何体的形状,以及表面积的构成.由三视图可知,该几何体为一个长方体中挖去一个圆柱构成,几何体的表面积S=长方体表面积+圆柱的侧面积-圆柱的上下底面面积,由三视图知,长方体的长、宽、高为4、3、1,圆柱的底面圆的半径为1,高为1,所以S=2×(4×3+4×1+3×1)+2π×1×1-2×π×12=38.7.G2、G7[2012·北京卷] 1-4所示,该三棱锥的表面积是()-4A.28+6 5 B.30+6 5C.56+12 5 D.60+12 57.B[解析] 本题考查的三棱锥的三视图与表面积公式.由三视图可知,几何体为一个侧面和底面垂直的三棱锥,如图所示,可知S底面=12×5×4=10,S 后=12×5×4=10,S 左=12×6×25=65,S 右=12×4×5=10,所以S 表=10×3+65=30+6 5.12.G2、G7[2012·安徽卷] 某几何体的三视图如图1-3所示,该几何体的表面积是________.图1-312.92 [解析] 本题考查三视图的识别,四棱柱等空间几何体的表面积. 如图根据三视图还原的实物图为底面是直角梯形的直四棱柱,其表面积为 S =12×()2+5×4×2+4×2+5×4+4×4+5×4=92.10.G2[2012·天津卷] 1-2所示(单位:m),则该几何体的体积为________m 3.1-210.18+9π [解析] 本题考查几何体的三视图及体积公式,考查运算求解及空间想象力,容易题.由三视图可得该几何体为一个长方体与两个球的组合体,其体积V =6×3×1+2×43π×⎝⎛⎭⎫323=18+9π.4.G2[2012·福建卷] 一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱4.D [解析] 本题考查简单几何体的三视图,大小、形状的判断以及空间想象能力,球的三视图大小、形状相同.三棱锥的三视图也可能相同,正方体三种视图也相同,只有圆柱不同.6.G2[2012·广东卷] 1( )图1-1A .12πB .45πC .57πD .81π6.C [解析] 根据三视图知该几何体是由圆柱与圆锥构成,圆柱与圆锥的半径R =3,圆锥的高h =4,圆柱的高为5,所以V 组合体=V 圆柱+V 圆锥=π×32×5+13×π×32×4=57π,所以选择C.4.G2[2012·湖北卷] 则该几何体的体积为( )1-2A.8π3 B .3π C.10π3 D .6π 4.B [解析] 根据三视图知几何体的下面是一个圆柱,上面是圆柱的一半,所以V =2π+12×2π=3π.故选B. 3.G2[2012·湖南卷] 某几何体的正视图和侧视图均如图1-1所示,则该几何体的俯视图不可能...是( )图1-1 图 23.D [解析] 本题考查三视图,意在考查考生对三视图的辨析,以及对三视图的理解和掌握.是基础题型. 选项A ,B ,C ,都有可能,选项D 的正视图应该有看不见的虚线,故D 项是不可能的.[易错点] 本题由于对三视图的不了解,易错选C ,三视图中看不见的棱应该用虚线标出.7.G2、G7[2012·课标全国卷] 如图1-2,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )图1-2A .6B .9C .12D .187.B [解析] 由三视图可知,该几何体是三棱锥,其底面是斜边长为6的等腰直角三角形,有一条长为3的侧棱垂直于底面(即三棱锥的高是3),可知底面等腰直角三角形斜边上的高为3,故该几何体的体积是V =13×12×6×3×3=9,故选B.11.G2、G7[2012·浙江卷] 已知某三棱锥的三视图(单位:cm)如图1-3所示,则该三棱锥的体积等于________cm 3.11.1 [解析] 本题考查三棱锥的三视图与体积计算公式,考查学生对数据的运算处理能力和空间想象能力.由三视图可知,几何体为一个三棱锥,则V =13Sh =13×12×1×3×2=1.[点评] 正确的识图是解决三视图问题的关键,同时要注意棱长的长度、关系等.G3 平面的基本性质、空间两条直线18.G3、G5[2012·陕西卷] (1)如图1-6所示,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;图1-6(2)写出上述命题的逆命题,并判断其真假(不需证明).18.解:(1)证法一:如下图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a ·(λb +μn )因为a ⊥b ,所以a·b =0,又因为a ,n ⊥π,所以a·n =0, 故a·c =0,从而a ⊥c .证法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c .∵PO ⊥π,a ,∴直线PO ⊥a , 又a ⊥b ,b 平面P AO ,PO ∩b =P ,∴a ⊥平面P AO ,又c 平面P AO ,∴a ⊥c .(2)逆命题为:a 是平面π(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.G4 空间中的平行关系18.G4、G7、G11[2012·全国卷] 如图1-1,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ; (2)设二面角A -PB -C 为90°18.解:方法一:(1)因为底面ABCD 为菱形,所以BD ⊥AC , 又P A ⊥底面ABCD ,所以PC ⊥BD .设AC ∩BD =F ,连结EF .因为AC =22,P A =2,PE =2EC ,故PC =23,EC =233,FC =2,从而PC FC =6,ACEC = 6.因为PC FC =ACEC,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足. 因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC .又平面P AB ∩平面PBC =PB , 故AG ⊥平面PBC ,AG ⊥BC .BC 与平面P AB 内两条相交直线P A ,AG 都垂直,故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =P A 2+AD 2=2 2.设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,A 、D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.方法二:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz .设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0).于是PC →=(22,0,-2),BE →=⎝⎛⎭⎫23,b ,23,DE →=⎝⎛⎭⎫23,-b ,23,从而PC →·BE →=0,PC →·DE →=0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP →=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP →=0,m ·AB →=0, 即2z =0,且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0,令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b ,2.因为面P AB ⊥面PBC ,故m·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP→=(-2,-2,2),cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°. 18.G4、G5、G11[2012·福建卷] 如图1-3,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.18.解:(1)以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a2,1,0,B 1(a,0,1),故AD 1=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,00使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a 2-a 21+a 24+a2.∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,即3a 221+5a24=32, 解得a =2,即AB 的长为2. 16.G4、G5[2012·江苏卷] 如图1-4,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .16.证明:(1)因为ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC , 又AD ⊂平面ABC ,所以CC 1⊥AD .又因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1.又AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点,所以A 1F ⊥B 1C 1. 因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .又因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1.由(1)知AD ⊥平面BCC 1B 1,所以A 1F ∥AD .又AD ⊂平面ADE ,A 1F ⊄平面ADE ,所以A 1F ∥平面ADE . 18.G4、G11[2012·辽宁卷] 如图1-4,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.18.解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱. 所以M 为AB ′中点.又因为N 为B ′C ′的中点. 所以MN ∥AC ′.又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′. (证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P , 因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN ,因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图1-5所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1).所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧m ·A ′M →=0,m ·MN →=0得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎪⎨⎪⎧n ·NC →=0,n ·MN →=0得⎩⎨⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m ·n =0. 即-3+(-1)×(-1)+λ2=0,解得λ= 2.G5 空间中的垂直关系19.G5、G6、G10、G11[2012·重庆卷] 如图1-2,在直三棱柱ABC -A 1B 1C 1中,AB =4,AC =BC =3,D 为AB 的中点.(1)求点C 到平面A 1ABB 1的距离;(2)若AB 1⊥A 1C ,求二面角A 1-CD -C 的平面角的余弦值.19.解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)解法一:如图,取D 1为A 1B 11DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=2 2. 从而A 1D =AA 21+AD 2=2 3. 所以,在Rt △A 1DD 1中,cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1111易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →,有8-h 2=0,h =2 2. 故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →= (0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1),设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即⎩⎨⎧5y 2=0,22z 2=0,取x 2=1,得n =(1,0,0),所以cos 〈m ,n 〉=m·n|m ||n |=22+1·1=63.所以二面角A 1-CD -C 1的平面角的余弦值为63. 20. G5、G7[2012·浙江卷] 如图1-5所示,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且P A ⊥平面ABCD ,P A =26,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平面角的余弦值.20.解:(1)因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线,所以MN ∥BD .又因为MN ⊄平面ABCD ,所以MN ∥平面ABCD . (2)方法一:连结AC 交BD 于O .以O 为原点,x ,y 轴,建立空间直角坐标系Oxyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得 AC =AB =23,BD =3AB =6.又因为P A ⊥平面ABCD ,所以P A ⊥AC .在Rt △P AC 中,AC =23,P A =26,AQ ⊥PC ,得QC =2,PQ =4. 由此知各点坐标如下,A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0),P (-3,0,26),M ⎝⎛⎭⎫-32,-32, 6,N ⎝⎛⎭⎫-32,32, 6, Q ⎝⎛⎭⎫33,0,263.设m =(x ,y ,z )为平面AMN 的法向量.由AM →=⎝⎛⎭⎫32,-32,6,AN →=⎝⎛⎭⎫32,32,6知⎩⎨⎧32x -32y +6z =0,32x +32y +6z =0.取z =-1,得m =(22,0,-1).设n =(x ,y ,z )为平面QMN 的法向量.由QM →=⎝⎛⎭⎫-536,-32,63,QN →=⎝⎛⎭⎫-536,32,63知 ⎩⎨⎧-536x -32y +63z =0,-536x +32y +63z =0,取z =5,得n =(22,0,5).于是cos 〈m ,n 〉=m·n|m |·|n |=3333.所以二面角A -MN -Q方法二:在菱形ABCD 中,∠BAD =120°,得 AC =AB =BC =CD =DA ,BD =3AB . 又因为P A ⊥平面ABCD ,所以 P A ⊥AB ,P A ⊥AC ,P A ⊥AD . 所以PB =PC =PD . 所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =12PD =AN .取线段MN 的中点E ,连结AE ,EQ ,则 AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角. 由AB =23,P A =26,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =332.在直角△P AC 中,AQ ⊥PC ,得 AQ =22,QC =2,PQ =4.在△PBC 中,cos ∠BPC =PB 2+PC 2-BC 22PB ·PC =56,得MQ =PM 2+PQ 2-2PM ·PQ cos ∠BPC = 5. 在等腰△MQN 中,MQ =NQ =5,MN =3,得QE =MQ 2-ME 2=112.在△AEQ 中,AE =332,QE =112,AQ =22,得cos ∠AEQ =AE 2+QE 2-AQ 22AE ·QE =3333.所以二面角A -MN -Q 的平面角的余弦值为3333.17.G5、G11[2012·天津卷] 如图1-4所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 与棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.17.解:方法一:如图所示,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛⎭⎫-12,12,0,P (0,0,2).(1)易得PC →=(0,1,-2),AD →=(2,0,0),于是PC ·AD =0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1).可取平面P AC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m·n|m|·|n |=16=66,从而sin 〈m ,n 〉=306.所以二面角A -PC -D的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=⎝⎛⎭⎫12,-12,h ,由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →||CD →|=3212+h 2×5=310+20 h 2, 所以,310+20 h 2=cos30°=32,解得h =1010,即AE =1010.方法二:(1)由P A ⊥平面ABCD ,可得P A ⊥AD . 又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面P AC , 又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图所示,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A-PC -D 的平面角在Rt △P AC 中,P A =2,AC =1,由此得AH =25. 由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305.因此sin ∠AHD =AD DH =306.所以二面角A -PC -D 的正弦值为306.(3)如图所示,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBFCD 所成的角.由BF ∥CD ,故∠AFB =∠ADC . 在Rt △DAC 中,CD =5,sin ∠ADC =15, 故sin ∠AFB =15. 在△AFB 中,由BF sin ∠F AB =AB sin ∠AFB ,AB =12,sin ∠F AB =sin135°=22,可得BF =52.由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠F AB ,可得AF =12.设AE =h .在Rt △EAF 中,EF =AE 2+AF 2=h 2+14.在Rt △BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos30°=BE 2+BF 2-EF 22BE ·BF,可解得h =1010.所以AE =1010.14.G5[2012·四川卷] 如图1-4所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与________.14.90° [解析] 因为ABCD -A 1B 1C 1D 1为正方体,故A 1在平面CDD 1C 1上的射影为D 1,即A 1M 在平面CDD 1C 1上的射影为D 1M ,而在正方形CDD 1C 1中,由tan ∠DD 1M =tan ∠CDN =12,可知D 1M ⊥DN ,由三垂线定理可知,A 1M ⊥DN . 16.G4、G5[2012·江苏卷] 如图1-4,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .16.证明:(1)因为ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC , 又AD ⊂平面ABC ,所以CC 1⊥AD .又因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1.又AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点,所以A 1F ⊥B 1C 1. 因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .又因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1.由(1)知AD ⊥平面BCC 1B 1,所以A 1F ∥AD .又AD ⊂平面ADE ,A 1F ⊄平面ADE ,所以A 1F ∥平面ADE . 18.G5、G10、G11[2012·湖南卷] 如图1-6,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.18.解:解法1:(1)如下图(1),连结AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE 、AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BFPB,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD , 所以四边形BCDG 是平行四边形.故GD =BC =3. 于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.解法2:如上图(2),以A x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)由题设和(1)知,CD →,P A →分别是平面P AE ,平面ABCD 的法向量.而PB 与平面P AE所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈P A →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪P A →·PB→|P A →|·|PB →|. 由(1)知,CD →=(-4,2,0),P A →=(0,0,-h ), 又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.18.G5、G11[2012·广东卷] 如图1-5所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面P AC ;(2)若P A =1,AD =2,求二面角B -PC -A 的正切值.18.证明:(1)⎭⎪⎬⎪⎫PC ⊥平面BDE BD ⊂平面BDE ⇒PC ⊥BD .⎭⎪⎬⎪⎫P A ⊥平面ABCD BD ⊂平面ABCD ⇒P A ⊥BD .∵P A ∩PC =P ,P A ⊂平面P AC ,PC ⊂平面P AC , ∴BD ⊥平面P AC .(2)法一:如图所示,记BD 与.由PC ⊥平面BDE ,BE ⊂平面∴PC ⊥BE ,PC ⊥EF .即∠BEF 为二面角B -PC -A 的平面角. 由(1)可得BD ⊥AC ,所以矩形ABCD 为正方形,AB =AD =2, AC =BD =22,FC =BF = 2.在Rt △P AC 中,P A =1,PC =P A 2+AC 2=3, 即二面角B -PC -A 的正切值为3.法二:以A 为原点,AB →、AD →、AP →的方向分别作为x 、y 、z 轴的正方向建立空间直角坐标系,如图所示.设AB =b ,则: A (0,0,0),B (b,0,0), C (b,2,0),D (0,2,0), P (0,0,1).于是PC →=(b,2,-1),DB →=(b ,-2,0).因为PC ⊥DB ,所以PC →·DB →=b 2-4=0,从而b =2.结合(1)可得DB →=(2,-2,0)是平面APC 的法向量. 现设n =(x ,y ,z )是平面BPC 的法向量,则n ⊥BC →,n ⊥PC →,即n ·BC →=0,n ·PC →=0.因为BC →=(0,2,0),PC →=(2,2,-1), 所以2y =0,2x -z =0.取x =1,则z =2,n =(1,0,2).令θ=〈n ,DB →〉,则cos θ=n ·DB →|n ||DB →|=25·22=110,sin θ=310,tan θ=3.由图可得二面角B -PC -A 的正切值为3. 16.G5、G7、G9、G10[2012·北京卷] 如图1-9(1),在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图1-8(2).(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点与平面A 1BE 垂直?说明理由.1-916.解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC ,所以DE ⊥A 1D ,DE ⊥CD , 所以DE ⊥平面A 1DC , 所以DE ⊥A 1C . 又因为A 1C ⊥CD ,所以A 1C ⊥平面BCDE .(2)如右图,以C 为坐标原点,建立空间直角坐标系C -xyz , 则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0). 设平面A 1BE 的法向量为n =(x ,y ,z ),则 n ·A 1B →=0,n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0),所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3, 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ,因为CM →=(0,1,3),所以sin θ=|cos(n ,CM →)|=⎪⎪⎪⎪⎪⎪n ·CM →|n ||CM |=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ),则 m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),所以⎩⎨⎧2y -23z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =⎝⎛⎭⎫2,p ,p3.平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直. 6.A2、G5[2012·安徽卷] 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.A [解析] 本题考查线面关系的判断,证明,充要条件的判断.由题知命题是条件命题为“α⊥β”,命题“a ⊥b ”为结论命题,当α⊥β时,由线面垂直的性质定理可得a ⊥b ,所以条件具有充分性;但当a ⊥b 时,如果a ∥m ,就得不出α⊥β,所以条件不具有必要性,故条件是结论的充分不必要条件.18.G4、G5、G11[2012·福建卷] 如图1-3,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.18.解:(1)以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a2,1,0,B 1(a,0,1),故AD 1=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,00使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a 2-a 21+a 24+a 2.∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,即3a221+5a 24=32, 解得a =2,即AB 的长为2. 18.G5、G10、G11[2012·安徽卷] 平面图形ABB 1A 1C 1CBB 1C 1C是矩形,BC =2,BB 1=4,AB =AC =2,A 1B 1=A 1C 1= 5.图1-4现将该平面图形分别沿BC 和B 1C 1折叠,使△ABC 与△A 1B 1C 1所在平面都与平面BB 1C 1C 垂直,再分别连接A 1A ,A 1B ,A 1C ,得到如图1-4(2)所示的空间图形.对此空间图形解答下列问题.(1)证明:AA1⊥BC ; (2)求AA 1的长;(3)求二面角A -BC -A 1的余弦值.18.解:(向量法):(1)证明:取BC B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD . 由BB 1C 1C 为矩形知, DD 1⊥B 1C 1,因为平面BB 1C 1C ⊥平面A 1B 1C 1, 所以DD 1⊥平面A 1B 1C 1, 又由A 1B 1=A 1C 1知, A 1D 1⊥B 1C 1.故以D 1为坐标原点,可建立如图所示的空间直角坐标系D 1-xyz . 由题设,可得A 1D 1=2,AD =1.由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C ,于是AD ∥A 1D 1. 所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4). 故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0,因此AA 1→⊥BC →,即AA 1⊥BC .(2)因为AA 1→=(0,3,-4),所以||AA 1→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA →=(0,-1,0),DA 1→=(0,2,-4),所以cos 〈DA →,DA 1→〉=-21×22+(-4)2=-55.即二面角A -BC -A 1的余弦值为-55.(综合法)(1)证明:取BC ,B 1C 11A 1D 1,DD 1,AD ,A 1D . 由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1,由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG . 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G .由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角. 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得sin ∠D 1DA 1=55,cos ∠ADA 1=cos ⎝⎛⎭⎫π2+∠D 1DA 1=-55. 即二面角A -BC -A 1的余弦值为-55.19.G5、G11[2012·课标全国卷] 如图1-5,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.19.解:(1)证明:由题设知,三棱柱的侧面为矩形. 由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21, 所以DC 1⊥DC .而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD . BC ⊂平面BCD ,故DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA →的方向为x 轴的正方向,|CA →|为单位长,建立如图所示的空间直角坐标系C -xyz .由题意知A 1(1,0,2),B (0,1,0),D 1则A 1D →=(0,0,-1),BD →=(1,-1,1),DC 1→=(-1,0,1). 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则⎩⎪⎨⎪⎧n ·BD →=0,n ·A 1D →=0,即⎩⎪⎨⎪⎧x -y +z =0,z =0.可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·DC 1→=0.可得m =(1,2,1).从而cos 〈n ,m 〉=n ·m |n |·|m |=32.故二面角A 1-BD -C 1的大小为30°. 18.G5、G11[2012·山东卷] 在如图1-5所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.18.解:(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°, 所以∠ADC =∠BCD =120°. 又CB =CD , 所以∠CDB =30°, 因此∠ADB =90°,AD ⊥BD , 又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED , 所以BD ⊥平面AED . (2)解法一:取BD 的中点G ,连接CG ,FG , 由于CB =CD ,因此CG ⊥BD ,又FC ⊥平面ABCD ,BD ⊂平面ABCD , 所以FC ⊥BD ,由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG , 故BD ⊥FG ,所以∠FGC 为二面角F -BD -C 的平面角.在等腰三角形BCD 中,由于∠因此CG =12CB .又CB =CF ,所以GF =CG 2+CF 2=5CG ,故cos ∠FGC =55,因此二面角F -BD -C 的余弦值为55.解法二:由(1)知AD ⊥BD ,所以AC ⊥BC . 又FC ⊥平面ABCD ,因此CA ,CB ,CF 两两垂直,以C 为坐标原点,分别以CA ,CB ,CF所在的直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系, 不妨设CB =1.则C (0,0,0),B (0,1,0),D ⎝⎛⎭⎫32,-12,0,F (0,0,1).因此BD →=⎝⎛⎭⎫32,-32,0,BF →=(0,-1,1).设平面BDF 的一个法向量为m =(x ,y ,z ),则m ·BD →=0,m ·BF →=0, 所以x =3y =3z ,取z =1,则m =(3,1,1).由于CF →=(0,0,1)是平面BDC 的一个法向量,则cos 〈m ,CF →〉=m ·CF →|m ||CF →|=15=55,所以二面角F -BD -C 的余弦值为55.18.G3、G5[2012·陕西卷] (1)如图1-6所示,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;图1-6(2)写出上述命题的逆命题,并判断其真假(不需证明).18.解:(1)证法一:如下图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a ·(λb +μn )因为a ⊥b ,所以a·b =0,又因为a ,n ⊥π,所以a·n =0, 故a·c =0,从而a ⊥c .证法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c .∵PO ⊥π,a ,∴直线PO ⊥a , 又a ⊥b ,b 平面P AO ,PO ∩b =P ,∴a ⊥平面P AO ,又c 平面P AO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.10.G5、G7[2012·浙江卷] 已知矩形ABCD ,AB =1,BC = 2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直10.B [解析] 本题主要考查空间几何体的判定与分析问题.考查空间想象能力和动手操作能力.对于AB ⊥CD ,因为BC ⊥CD ,由线面垂直的判定可得CD ⊥平面ACB ,则有CD ⊥AC ,而AB =CD =1,BC =AD =2,可得AC =1,那么存在AC 这样的位置,使得AB ⊥CD 成立,故应选B.[点评] 解决折叠问题时,可以先通过实际操作,找到可行性后再加以合理判断与分析.实际解决此类问题时可以通过草稿纸加以折叠分析后直接判断.G6 三垂线定理19.G5、G6、G10、G11[2012·重庆卷] 如图1-2,在直三棱柱ABC -A 1B 1C 1中,AB=4,AC =BC =3,D 为AB 的中点.(1)求点C 到平面A 1ABB 1的距离;(2)若AB 1⊥A 1C ,求二面角A 1-CD -C 的平面角的余弦值.19.解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)解法一:如图,取D 1为A 1B 11DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=2 2. 从而A 1D =AA 21+AD 2=2 3. 所以,在Rt △A 1DD 1中,cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1111易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →,有8-h 2=0,h =2 2. 故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →= (0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1),设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即⎩⎨⎧5y 2=0,22z 2=0,取x 2=1,得n =(1,0,0),所以cos 〈m ,n 〉=m·n|m ||n |=22+1·1=63.所以二面角A 1-CD -C 1的平面角的余弦值为63.G7 棱柱与棱锥14.G7[2012·上海卷] 如图1-2所示,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2,若AD =2c ,且AB +BD =AC +CD =2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是________.图1-214.23c a 2-c 2-1 [解析] 以空间四面体为载体,考查几何体的体积和代数式的最值问题,以及转化思想,解此题的关键是求出侧面三角形ABD 的高的最大值.作BE 垂直AD 于E ,连接CE ,则CE 也垂直AD ,且BE =CE ,所以四面体ABCD 的体积V =13S △BCE ·AD =23c BE 2-1,在三角形ABD 中,AB +BD =2a ,AD =2c ,所以AD 边上的高BE 等于以AD 为焦点,长轴为2a 的椭圆上的点到x 轴的距离,其最大值刚好在点在短轴端点的时候得到,即BE ≤a 2-c 2,所以V =23c BE 2-1≤23c a 2-c 2-1.8.G7[2012·上海卷] 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.8.33π [解析] 考查扇形的弧长和面积公式,以及圆锥的体积公式,关键是求出圆锥的半径和高.由已知可得圆锥的母线长l =2,底面圆的周长2πr =πl =2π,所以底面半径r =1,由此得圆锥的高h =l 2-r 2=3,由圆锥的体积公式得V =13πr 2h =33π.14.G7[2012·山东卷] 如图1-3所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段 AA 1,B 1C -EDF 的体积为________.14.16[解析] 本题考查棱锥的体积公式,考查空间想象力与转化能力,中档题.VD 1-EDF =VF -DD 1E =13×12×1×1×1=16.11.G7[2012·课标全国卷] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.2211.A [解析] 设三角形ABC 的中心为M ,球心为O ,则OM ⊥平面ABC ,且OM =1-⎝⎛⎭⎫332=63.所以此棱锥的高h =2OM =263.所以此棱锥的体积V =13×12×1×32×263=26.故选A.7.G7[2012·江苏卷] 如图1-2,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 37.6 [解析] 本题考查四棱锥体积的求解以及对长方体性质的运用. 解题突破口为寻找四棱锥的高.连AC 交BD 于点O ,因四边形ABCD 为正方形,故AO 为四棱锥A -BB 1D 1D 的高,从而V =13×2×32×322=6.11.G2、G7[2012·浙江卷] 已知某三棱锥的三视图(单位:cm)如图1-3所示,则该三棱锥的体积等于________cm 3.11.1 [解析] 本题考查三棱锥的三视图与体积计算公式,考查学生对数据的运算处理能力和空间想象能力.由三视图可知,几何体为一个三棱锥,则V =13Sh =13×12×1×3×2=1.[点评] 正确的识图是解决三视图问题的关键,同时要注意棱长的长度、关系等. 20. G5、G7[2012·浙江卷] 如图1-5所示,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且P A ⊥平面ABCD ,P A =26,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平面角的余弦值.20.解:(1)因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线,所以MN ∥BD .又因为MN ⊄平面ABCD ,所以MN ∥平面ABCD . (2)方法一:连结AC 交BD 于O .以O 为原点,x ,y 轴,建立空间直角坐标系Oxyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得 AC =AB =23,BD =3AB =6.又因为P A ⊥平面ABCD ,所以P A ⊥AC .在Rt △P AC 中,AC =23,P A =26,AQ ⊥PC ,得QC =2,PQ =4. 由此知各点坐标如下,A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0),P (-3,0,26),M ⎝⎛⎭⎫-32,-32, 6,N ⎝⎛⎭⎫-32,32, 6, Q ⎝⎛⎭⎫33,0,263.设m =(x ,y ,z )为平面AMN 的法向量.由AM →=⎝⎛⎭⎫32,-32,6,AN →=⎝⎛⎭⎫32,32,6知⎩⎨⎧32x -32y +6z =0,32x +32y +6z =0.取z =-1,得m =(22,0,-1).设n =(x ,y ,z )为平面QMN 的法向量.由QM →=⎝⎛⎭⎫-536,-32,63,QN →=⎝⎛⎭⎫-536,32,63知 ⎩⎨⎧-536x -32y +63z =0,-536x +32y +63z =0,取z =5,得n =(22,0,5).于是cos 〈m ,n 〉=m·n|m |·|n |=3333.所以二面角A -MN -Q 方法二:在菱形ABCD 中,∠BAD =120°,得 AC =AB =BC =CD =DA ,BD =3AB . 又因为P A ⊥平面ABCD ,所以 P A ⊥AB ,P A ⊥AC ,P A ⊥AD . 所以PB =PC =PD . 所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =12PD =AN .取线段MN 的中点E ,连结AE ,EQ ,则 AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角. 由AB =23,P A =26,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =332.在直角△P AC 中,AQ ⊥PC ,得 AQ =22,QC =2,PQ =4.在△PBC 中,cos ∠BPC =PB 2+PC 2-BC 22PB ·PC =56,得MQ =PM 2+PQ 2-2PM ·PQ cos ∠BPC = 5.在等腰△MQN 中,MQ =NQ =5,MN =3,得QE =MQ 2-ME 2=112.在△AEQ 中,AE =332,QE =112,AQ =22,得cos ∠AEQ =AE 2+QE 2-AQ 22AE ·QE =3333.所以二面角A -MN -Q 的平面角的余弦值为3333.10.G5、G7[2012·浙江卷] 已知矩形ABCD ,AB =1,BC = 2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直10.B [解析] 本题主要考查空间几何体的判定与分析问题.考查空间想象能力和动手操作能力.对于AB ⊥CD ,因为BC ⊥CD ,由线面垂直的判定可得CD ⊥平面ACB ,则有CD ⊥AC ,。

高考数学近三年真题立体几何(理科专用)

高考数学近三年真题立体几何(理科专用)

三年专题 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3B .1.2×109m 3C .1.4×109m 3D .1.6×109m 32.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,B B '与C C '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差A A C C ''- 1.732≈)( )A .346B .373C .446D .4735.【2021年甲卷理科】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1A CBC A C B C ⊥==,则三棱锥O A B C-的体积为( )A 12B 12C 4D 46.【2021年新高考1的母线长为( )A .2B .C .4D .7.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .201+B .2C .563D 38.【2020年新课标1卷理科】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 4B 2C 4D 29.【2020年新课标1卷理科】已知,,A B C 为球O 的球面上的三个点,⊙1O 为A B C的外接圆,若⊙1O 的面积为4π,1A BB C A C O O ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π10.【2020年新课标2卷理科】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H11.【2020年新课标2卷理科】已知△ABC 4的等边三角形,且其顶点都在球O的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 212.【2020年新课标3卷理科】下图为某几何体的三视图,则该几何体的表面积是( )A.B .C .D .13.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°14.【2022年新高考1卷】已知正方体ABCD −A 1B 1C 1D 1,则( ) A .直线BC 1与DA 1所成的角为90° B .直线BC 1与CA 1所成的角为90° C .直线BC 1与平面BB 1D 1D 所成的角为45°D .直线BC 1与平面ABCD 所成的角为45°15.【2022年新高考2卷】如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A .V 3=2V 2B .V 3=V 1C .V 3=V 1+V 2D .2V 3=3V 116.【2021年新高考1卷】在正三棱柱111A B CA B C -中,11A BA A ==,点P 满足1B P BC B B λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1A B P△的周长为定值B .当1μ=时,三棱锥1P A B C-的体积为定值C .当12λ=时,有且仅有一个点P ,使得1AP B P⊥D .当12μ=时,有且仅有一个点P ,使得1AB ⊥平面1A BP17.【2021年新高考2卷】如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足M NO P⊥的是( )A .B .C .D .18.【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.19.【2020年新高考1卷(山东卷)】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD=60°.以1D BCC 1B 1的交线长为________.20.【2020年新高考2卷(海南卷)】已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________三年专题立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.2.【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.3.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 5.【2021年甲卷理科】已知直三棱柱111A B C A B C -中,侧面11A AB B为正方形,2A BB C ==,E ,F 分别为A C 和1C C 的中点,D 为棱11AB 上的点.11B FA B ⊥(1)证明:B F D E⊥;(2)当1BD为何值时,面11B BC C与面D F E 所成的二面角的正弦值最小?6.【2021年乙卷理科】如图,四棱锥P A B C D==,P D D C-的底面是矩形,P D⊥底面A B C D,1M为B C的中点,且P B A M⊥.(1)求B C;(2)求二面角A P M B--的正弦值.7.【2021年新高考1卷】如图,在三棱锥A B C D-中,平面A B D⊥平面B C D,A B A D=,O为B D的中点.(1)证明:O A C D⊥;(2)若OCD是边长为1的等边三角形,点E在棱A D上,2--=,且二面角E B C DD E E A的大小为45︒,求三棱锥A B C D-的体积.8.【2021年新高考2卷】在四棱锥Q A B C D-中,底面A B C D是正方形,若====.A D Q D Q A Q C2,3(1)证明:平面Q A D ⊥平面A B C D ; (2)求二面角BQ D A--的平面角的余弦值.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,A E 为底面直径,A EA D=.A B C是底面的内接正三角形,P 为D O 上一点,6P OO=.(1)证明:P A ⊥平面P B C ;(2)求二面角BP C E--的余弦值.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AM N 所成角的正弦值.11.【2020年新课标3卷理科】如图,在长方体1111A B C D A B C D -中,点,E F 分别在棱11,D DB B 上,且12D EE D =,12B FF B =.(1)证明:点1C 在平面A E F 内;(2)若2A B=,1A D=,13A A=,求二面角1AE F A --的正弦值.12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 13.【2020年新高考2卷(海南卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.。

(完整版)高考立体几何大题及答案(理)

(完整版)高考立体几何大题及答案(理)
由 得2AD= ,解得AD= 。
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为 与平面BCD所成的角。
因ADEF为正方形,AD= ,故EH=1,又EC= =2,
(II)设线段 、 的中点分别为 、 ,
求证: ∥
(III)求二面角 的大小。
10.如题(18)图,在五面体 中, ∥ , , ,四边形 为平行四边形, 平面 , .求:
(Ⅰ)直线 到平面 的距离;
(Ⅱ)二面角 的平面角的正切值.
11.如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅱ)设平面BCD的法向量 则
又 =(-1,1,0),
=(-1,0,c),故
令x=1,则y=1,z= , =(1,1, ).
又平面 的法向量 =(0,1,0)
由二面角 为60°知, =60°,
故 °,求得
于是 ,

°
所以 与平面 所成的角为30°
3、(Ⅰ)证明:连接 ,在 中, 分别是 的中点,所以 ,又 ,所以 ,又 平面ACD,DC 平面ACD,所以 平面ACD
(1)证明:PA⊥BD;
(2)设PD=AD,求二面角A-PB-C的余弦值.
12(本小题满分12分)
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB CD,AC BD,垂足为H,
PH是四棱锥的高,E为AD中点
(1)证明:PE BC
(2)若 APB= ADB=60°,求直线PA与平面PEH所成角的正弦值

历年高考立体几何真题+答案

历年高考立体几何真题+答案

历年高考真题1、2003(理科)(本题满分12分)已知平行六面体ABCD —A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB=4,AD=2.若B 1D ⊥BC ,直线B 1D 与平面ABCD 所成的角等于30°,求平行六面体ABCD —A 1B 1C 1D 1的体积..[解]连结BD ,因为B 1B ⊥平面ABCD ,B 1D ⊥BC ,所以BC ⊥BD.在△BCD 中,BC=2,CD=4,所以BD=32.又因为直线B 1D 与平面ABCD 所成的角等于30°,所以 ∠B 1DB=30°,于是BB 1=31BD=2.故平行六面体ABCD —A 1B 1C 1D 1的体积为S ABCD ·BB 1=38. 2.2005(理科)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60. (1)证明:BC PA ⊥;(2)求底面中心O 到侧面的距离.[证明](1)取BC 边的中点D ,连接AD 、PD ,则BC AD ⊥,BC PD ⊥,故⊥BC 平面APD . BCPA ⊥[解](2)如图, 由(1)可知平面⊥PBC 平面APD ,则PDA ∠面所成二面角的平面角.过点O 作E PD OE ,⊥为垂足,则OE 就是点O 到侧面的距离. 设OE 为h ,由题意可知点O 在AD 上,∴ 60=∠PDO ,h OP 2=.h BC h OD 4,32=∴=,∴ 2234)4(43h h S ABC ==∆, ∵ 3233823431372h h h =⋅⋅=,∴ 3=h . 即底面中心O 到侧面的距离为3.3、2006(理科)(本题满分 14分)本题共有 2个小题,第 1小题满分 5分,第 2小题满分满分 9分。

在三棱柱 ABC —A1B1C1 中,∠ABC=90°,AB=BC=1。

(完整)高中数学《立体几何》大题及答案解析.doc

(完整)高中数学《立体几何》大题及答案解析.doc

高中数学《立体几何》大题及答案解析( 理)1.( 2009 全国卷Ⅰ)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD2 ,DCo SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。

(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。

2.( 2009 全国卷Ⅱ)如图,直三棱柱DE ⊥平面 BCC 1(Ⅰ)证明: AB=AC 的角的大小ABC-A 1B1C1中, AB ⊥ AC,D 、E 分别为 AA 1、 B1C 的中点,(Ⅱ)设二面角A-BD-C 为 60°,求 B 1C 与平面 BCD 所成A 1 C1B1D EACB3. ( 2009浙江卷)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120o, P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.4.( 2009 北京卷)如图,四棱锥P ABCD 的底面是正方形,PD 底面 ABCD ,点E在棱PB上.(Ⅰ)求证:平面AEC 平面 PDB ;(Ⅱ)当 PD2AB 且E为PB的中点时,求 AE 与平面 PDB 所成的角的大小.5.( 2009 江西卷)如图,在四棱锥P ABCD 中,底面 ABCD 是矩形, PA平面ABCD,PA AD 4 , AB 2 .以 BD 的中点 O 为球心、 BD 为直径的球面交PD 于点 M .(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.PMA DOBC6(. 2009 四川卷)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ ABE 是等腰直角三角形,AB AE , FA FE , AEF 45 (I)求证: EF 平面 BCE ;( II )设线段 CD 、 AE 的中点分别为 P 、 M ,求证: PM ∥平面BCE ( III )求二面角 F BD A 的大小。

立体几何高考题及答案

立体几何高考题及答案

立体几何高考题及答案【篇一:新课标近三年立体几何高考题(解析版)】ss=txt>1、(2011.8.)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为(D)2、(2011.18.)(本小题满分12分)如图,四棱锥p?abcd中,底面abcd为平行四边形,?dab?60?,ab?2ad,pd?底面abcd.(i)证明:pa?bd;(ii)设pd=ad=1,求棱锥d-pbc的高.解:(Ⅰ)因为?dab?60?,ab?2ad,由余弦定理得bd?从而bd2+ad2= ab2,故bd?ad又pd?底面abcd,可得bd?pd所以bd?平面pad. 故 pa?bd故bc?平面pbd,bc?de。

则de?平面pbc。

由题设知,pd=1,则bd=,pb=2,即棱锥d—pbc的高为. 24、(2012.19)(本小题满分12分)12的中点(I)证明:平面bdc1⊥平面bdc(Ⅱ)平面bdc1分此棱柱为两部分,求这两部分体积的比。

(Ⅰ)由题设知bc⊥cc1,bc⊥ac,cc1?ac?c,∴bc?面acc1a1, 又∵dc1?面acc1a1,0∴dc1?bc,由题设知?a1dc1??adc?45,∴?cdc1=90,即dc1?dc,又∵dc?bc?c,∴dc1⊥面bdc,∵dc1?面bdc1,∴面bdc⊥面bdc1;(Ⅱ)设棱锥b?dacc1的体积为v1,ac=1,由题意得,v1=?由三棱柱abc?a1b1c1的体积v=1,∴(v?v1):v1=1:1,∴平面bdc1分此棱柱为两部分体积之比为1:1.5、(2013课标全国Ⅰ,文11)某几何体的三视图如图所示,则该几何体的体积为( d ).6.(2013课标全国Ⅰ,文15)已知h是球o的直径ab上一点,ah∶0111?2?1?1=, 232(1)证明:ab⊥a1c;(2)若ab=cb=2,a1c,求三棱柱abc-a1b1c1的体积.(1)证明:取ab的中点o,连结oc,oa1,a1b. 因为ca=cb,所以oc⊥ab.故△aa1b为等边三角形,所以oa1⊥ab.因为oc∩oa1=o,所以 ab⊥平面oa1c.又a1c?平面oa1c,故ab⊥a1c.(2)解:由题设知△abc与△aa1b都是边长为2的等边三角形,所以oc=oa1又a1ca1c=oc+oa12, 22故oa1⊥oc.因为oc∩ab=o,所以oa1⊥平面abc,oa1为三棱柱abc-a1b1c1的高.又△abc的面积s△abcx解:(1)f′(x)=e(ax+a+b)-2x-4.由已知得f(0)=4,f′(0)=4.故b=4,a+b=8.从而a=4,b=4.x2(2)由(1)知,f(x)=4e(x+1)-x-4x,【篇二:2015年高考题立体几何汇编】lass=txt>1.(15北京理科)设?,?是两个不同的平面,m是直线且m??.“m∥?”是“?∥?”的a.充分而不必要条件 c.充分必要条件【答案】b 【解析】b.必要而不充分条件 d.既不充分也不必要条件?是两个不同的平面,试题分析:因为?,若“m∥?”,则平面?、?m是直线且m??.可能相交也可能平行,不能推出?//?,反过来若?//?,m“m∥?”是“?∥?”的必要而不充分条件.考点:1.空间直线与平面的位置关系;2.充要条件.2.(15北京理科)某三棱锥的三视图如图所示,则该三棱锥的表面积是侧(左)视图??,则有m∥?,则俯视图a.2? b.4 c.2? d.5 【答案】c 【解析】试题分析:根据三视图恢复成三棱锥p-abc,其中pc?平面abc,取ab棱的中点d,d连接cd、pd,有pad=bd=1,pc=1,?abcd,ab?,底面abc为等腰三角形底边ab上的高cd为2,pd?s?abc?11?2?2?2,,s?pab??2??22ac?bc?,s?pac?s?pbc?1??1?,三棱锥表面积s表??2. 22考点:1.三视图;2.三棱锥的表面积.3.(15北京理科)如图,在四棱锥a?efcb中,△aef为等边三角形,平面aef?平面efcb,ef∥bc,bc?4,ef?2a,?ebc??fcb?60?,o为ef的中点. (Ⅰ) 求证:ao?be;(Ⅱ) 求二面角f?ae?b的余弦值;(Ⅲ) 若be?平面aoc,求a的值. afceb【答案】(1)证明见解析,(2)?【解析】4,(3)a?3试题分析:证明线线垂直可寻求线面垂直,利用题目提供的面面垂直平面aef?平面efcb,借助性质定理证明ao?平面efcb,进而得出线线垂直,第二步建立空间直角坐标系,写出相关点的坐标,平面aef的法向量易得,只需求平面aeb的法向量,设平面aeb的法向量,利用线线垂直,数量积为零,列方程求出法向量,再根据二面角公式求出法向量的余弦值;第三步由于ao?be,要想be?平面aoc,只需be?oc,利用向量be、oc的坐标,借助数量积为零,求出a的值,根据实际问题予以取舍.试题解析:(Ⅰ)由于平面aef?平面efcb,△aef为等边三角形,o为ef的中点,则ao?ef,根据面面垂直性质定理,所以ao?平面efcb,又be?平面efcb,则ao?be.(Ⅱ)取cb的中点d,连接od,以o为原点,分别以oe、od、oa为x、y、z轴建立空间直角坐标系,a),e(a,0,0),b?,0),ae?(a,0,),eb?(2?a?,0),由于平面aef与y轴垂直,则设平面aef的法向量为n1?(0,1,0),设平面aeb的法向量n2?(x,y,1),n2?ae,ax?0,x?n2?eb,(2?a)x??)y?0,y??1,则n2??1,1),二面角f?ae?b的余弦值cos?n1,n2??n1?n2n1?n2?1??,5由二面角f?ae?b为钝二面角,所以二面角f?ae?b的余弦值为?. (Ⅲ)有(1)知ao?平面efcb,则ao?be,若be?平面aoc,只需be?oc,eb?(2?a,?,0),又oc?(??,0),2be?oc??2(2?a)??)?0,解得a?2或a?44,由于a?2,则a?. 33考点:1.线线垂直的证明;2.利用法向量求二面角;3.利用数量积解决垂直问题.4.(15北京文科)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为() a.1bc.2【答案】c 【解析】试题分析:四棱锥的直观图如图所示:由三视图可知,sc?平面abcd,sa是四棱锥最长的棱,sa???.考点:三视图.6.(15年广东理科)若空间中n个不同的点两两距离都相等,则正整数n的取值 a.大于5 b. 等于5 c. 至多等于4 d. 至多等于3 【答案】c.【考点定位】本题考查空间想象能力、推理能力,属于中高档题. 7.(15年广东理科)如图2,三角形pdc所在的平面与长方形abcd所在的平面垂直,pd=pc=4,ab=6,bc=3.点e是cd边的中点,点f、g分别在线段ab、bc上,且af=2fb,cg=2gb.图2(1)证明:pe?fg;(2)求二面角p-ad-c的正切值;(3)求直线pa与直线fg所成角的余弦值.【答案】(1)见解析;(2(3.【解析】(1)证明:∵ pd?pc且点e为cd的中点,∴pe?dc,又平面pdc?平面abcd,且平面pdc面pdc,∴ pe?平面abcd,又fg?平面abcd,∴ pe?fg;(2)∵ abcd是矩形,∴ ad?dc,又平面pdc?平面abcd,且平面pdc面abcd,∴ ad?平面pcd,又cd、pd?平面pdc,∴ ad?dc,ad?pd,∴?pdc即为二面角p?ad?c的平面角,在rt?pde中,pd?4,de?fec平面abcd?cd,pe?平平面abcd?cd,ad?平1ab?3,pe? 2∴ tan?pdc?pe?即二面角p?ad?c; de(3)如下图所示,连接ac,【篇三:立体几何(2013年高考题汇编)】ass=txt>一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1 .(2013广东(理))设m,n是两条不同的直线,?,?是两个不同的平面,下列命题中正确的是()a.若???,m??,n??,则m?n b.若?//?,m??,n??,则m//n c.若m?n,m??,n??,则??? d.若m??,m//n,n//?,则???【答案】d2.(2013年高考大纲卷(文))已知正四棱锥abcd?a1b1c1d1中,aa1?2ab,则cd与平面bdc1所成角的正弦值等于a.213bc.3d.3【答案】a3.(2013浙江(理))在空间中,过点a作平面?的垂线,垂足为b,记b?f?(a).设?,?是两个不同的平面,对空间任意一点p,q1?f?[f?(p)],q2?f?[f?(p)],恒有 pq1?pq2,则a.平面?与平面?垂直 b.平面?与平面?所成的(锐)二面角为450 c.平面?与平面?平行d.平面?与平面?所成的(锐)二面角为600【答案】a4 .(2013上海春季高考)若两个球的表面积之比为1:4,则这两个球的体积之比为a.1:2b.1:4 c.1:8 d.1:16【答案】c5 .(2013广东(理))某四棱台的三视图如图所示,则该四棱台的体积是)))(((正视图侧视图俯视图第5题图1416a.4b.3 c.3d.6【答案】b6.(2013山东数(理))已知三棱柱abc?a1b1c1的侧棱与底面垂直,体积为4,底面是边长.若p为底面a1b1c1的中心,则pa与平面abc所成角的大小为 5????a.12b.3 c.4 d.6【答案】b7.(2013年高考辽宁卷(文))已知三棱柱abc?a1b1c1的6个顶点都在球o的球面上,若ab?3,ac?4,ab?ac,aa1?12,则球o的半径为a.2b.c.132d.【答案】c8 (2013新课标Ⅱ(理))已知m,n为异面直线,m?平面?,n?平面?.直线l满足l?m,l?n,l??,l??,则a.?//?,且l//?b.???,且l??c.?与?相交,且交线垂直于ld.?与?相交,且交线平行于l【答案】d9.(2013辽宁(理))已知三棱柱abc?a1b1c1的6个顶点都在球o的球面上,若))))((((ab?3,ac?4,ab?ac,aa1?12,则球o的半径为()a.2b.c.132d.【答案】c10.(2013江西(理))如图,正方体的底面与正四面体的底面在同一平面?上,且ab?cd,正方体的六个面所在的平面与直线ce,ef相交的平面个数分别记为m,n,那么m?n?a.8b.9 c.10 d.11【答案】a11.(2013新课标Ⅱ(理))一个四面体的顶点在空间直角坐标系o?xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zox平面为投影面,则得到正视图可以为a.b. c. d.【答案】a12.(2013安徽(理))在下列命题中,不是公理..的是 a.平行于同一个平面的两个平面相互平行b.过不在同一条直线上的三点,有且只有一个平面c.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 d.如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】a二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.(2013北京(文))某四棱锥的三视图如图所示,该四棱锥的体积为__________.)))(((【答案】314.(2013上海(理))在xoy平面上,将两个半圆弧(x?1)2?y2?1(x?1)和(x?3)2?y2?1(x?3)、两条直线y?1 和y??1围成的封闭图形记为d,如图中阴影部分.记d绕y轴旋转一周而成的几何体为?,过(0,y)(|y|?1)作?的水平截面,所得截面面积为48?,试利用祖暅原理、一个平放的圆柱和一个长方体,得出?的体积值为__________【答案】2?2?16?.15.(2013陕西(理))某几何体的三视图如图所示, 则其体积为_______.【答案】?316.(2013上海(文科))已知圆柱?的母线长为l,底面半径为r,o 是上地面圆心,a、b是下底面圆周上两个不同的点,bc是母线,如图.若直线oa与bc所成角的大小为则1?________. r【答案】三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(2013江西(文))如图,直四棱柱abcd – a1b1c1d1中,ab//cd,ad⊥ab,ab=2,ad=,aa1=3,e为cd上一点,de=1,ec=3 (1) 证明:be⊥平面bb1c1c; (2) 求点b1 到平面ea1c1 的距离【答案】解.(1)证明:过b作cd的垂线交cd于f,则bf?ad?ef?ab?de?1,fc?2在rt?bfe中,be,rt?bfc中,bc 在?bce中,因为be?bc=9=ec,故be?bc 由bb1?平面abcd,得be?bb1,所以be?平面bb1c1c(2)三棱锥e?a1b1c1的体积v=aa1?s?a1b1c122213在rt?a1d1c1中,a1c1,ea1同理,ec1,因此s?a1c1e?.设点b1到平面eac11的体积11的距离为d,则三棱锥b1?eac1v=?d?s?a1ec1,?d?318.(2013重庆(理))如图,四棱锥p?abcd中,pa?底面abcd,bc?cd?2,ac?4,?acb??acd?点,af?pb.(1)求pa的长; (2)求二面角b?af?d的正弦值.?3,f为pc的中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(2016—6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是
3
28π
,则它的表面积是
(A )π20 (B )π18 (C )π17 (D )π28 2、(2016—11)平面α过正方体1111D C B A ABCD -的顶点A ,//
α平面11D CB ,I α平面m ABCD =,I α平面n A ABB =11,则m ,n 所成角的正弦值为 (A )3
3
(B )
2
2 (C )
2
3 (D )
3
1
3、(2015—6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体
积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有 (A )14斛
(B )22斛
(C )36斛
(D )66斛
4、(2015—11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为π2016+,则=r (A )1 (B )2 (C )4
(D )8
正视图
2r
r
r
2r
5、(2014—12)如图,网格纸上小正方形的边长为1,
粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()
(A

(B
)(C)6(D)4
6、(2013—6
)如图,有一个水平放置的透明无盖的正方体容器,容器高cm
8,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为cm
6,如果不计容器的厚度,则球的体积为()
A.3
3
500
cm
π
B.3
3
866
cm
π
C.3
3
1372
cm
π
D.3
3
2048
cm
π
7、(2013—8)某几何体的三视图如图所示,
则该几何体的体积为()
A. 168π
+
B. 88π
+
C. 1616π
+
D. 816π
+
俯视图
侧视图
则相应的侧视图可以为()
(D)
(C)
(B)
(A)
11、(2011—15)已知矩形ABCD的顶点都在半径为4的球O的球面上,且6
AB=,BC=,则棱锥O ABCD
-的体积为_________.
12、(2010—10)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()
A. 2a
π B. 2
7
3
a
π C. 2
11
3
a
π D. 2
5a
π
13、(2010—14)正视图为一个三角形的几何体可以是___________________.(写出三种)
14、(2009—
8

如图,正方体
1111
ABCD A B C D
-的棱线长为1,线段
11
B D上有两个动
点E、F,且
2
EF=,则下列结论中错误的是()
A. AC BE

B. //
EF平面ABCD
C. 三棱锥A BEF
-的体积为定值
D. 异面直线,
AE BF所成的角为定值
15、(2009—11)一个棱锥的三视图如图,
则该棱锥的全面积(单位:2
cm)为()
A. 48+
B. 48+
C. 36+
D. 36+
俯视图
正视图
F
E
D1
C1B1
A1
D
C
B
侧视图
16、(2008—12)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为( )
A.22
B.32
C. 4
D.52 17、(2008—15)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为
9
8
,底面周长为3,那么这个球的体积为_________. 18、(2007—8)已知某个几何体的三视图如上图, 根据图中标出的尺寸(单位:cm ),可得这个几 何体的体积是( )
A .3
4000cm 3
B .3
8000cm 3
C .3
2000cm
D .3
4000cm
19、(2007—12)一个四棱锥和一个三棱锥恰好 可以拼接成一个三棱柱,这个四棱锥的底面为正 方形,且底面边长与各侧棱长相等,这个三棱锥 的底面边长与各侧棱长也都相等.设四棱锥、三棱
锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =( ) A
B
2:2 C
2 D
2
答案:1、C 2、C 3、B 4、B 5、C 6、A 7、A 8、B 9、A 10、D 11、38 12、B 13、圆锥,三棱柱,三棱锥 14、D 15、A 16、C 17、
3

18、B 19、
B 侧视图
正视图。

相关文档
最新文档