河北省石家庄市 2020届高三高考第二次模拟(二模) (理科数学)解析版

合集下载

2020石家庄高三理科数学5月份二模试题含答案

2020石家庄高三理科数学5月份二模试题含答案

石家庄市2020届高三年级阶段性训练题答案数学理科一、选择题:1.B.【解析】由题意知{}|2B x x =>,故{}3≤<2=x x B A |I ,故选B.2. A.【解析】:p ⌝()0,0x ∃∈−∞,0023x x <,故选A.3. B.【解析】1(1)()11()1i i i i z i i i i −−−−−====−−⋅−,则1z i =−+,所以对应点在第二象限,故选B.4.C.【解析】由于x y 30=.在R 上单调递减,故1=30<30<0020...;由于x y 5=在R 上单调递增,故1=5>5030.;由于x y 20=.log 在()+∞0,上单调递减,故0=1<52020..log log .故b a c <<,故选C.5.D.【解析】由于sin 2sin 236y x x ππ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭,因此只需将函数x y 2=sin 的图象向右平移6π个单位,故选D.6.C.【解析】如图阴影部分为可行域,目标函数3+=x y z 表示可行域中点()y x ,与()0,3−连线的斜率,由图可知点()3,1P 与()0,3−连线的斜率最大,故z 的最大值为43,故选C.7.D.【解析】根据正弦定理知()()()B C c B A b a sin sin sin sin +=−+化为为()()()b c c b a b a +=−+,即bc c b a ++=222,故21−=2−+=222bc a c b A cos ,故32=πA ,则23=A sin .因为4=+c b ,bc c b 2≥+,所以4≤bc ,当且仅当2==c b ,等号成立,此时ABC Δ的面积3≤21=A bc S sin ,故ABC Δ的面积的最大值为3.故选D.8.C.【解析】双曲线2222:1(0,0)x y C a b a b−=>>的渐近线方程为b y x a =±,由对称性,不妨取b y x a =,即0bx ay −=.又曲线22420x y y +−+=化为()2222x y +−=,则其圆心的坐标为()0,2,半径为2. 由题得,圆心到直线的距离()22211d =−=,又由点到直线的距离公式.可得2221a d b a ==+. 解得223b a =,所以222222212c a b b e a a a +===+=,故选C. 9.A.【解析】由题意知||||5AC BD ==u u u r u u u r ,设C 到BD 的距离为d ,则有122555d ⨯==,故 ()BD CM BD AC BD CM AC BD AM ⋅+⋅=⋅+=⋅, 其中()()3−=+⋅+=⋅CD BC BC AB BD AC ,2=⋅≤⋅BD CM BD CM ,当且仅当CM 与BD 同向时,等号成立,故选A.10.D.【解析】由1+3=+1+n a a n n 得4+3=+1+2+n a a n n ,两式相减得3=−2+n n a a ,故Λ,,,531a a a 和Λ,,,642a a a 均为以3为公差的等差数列,11,a =,易求得()*2132k a k k N −=−∈.则9130=⎪⎭⎫ ⎝⎛911−131=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛1−1++⎪⎪⎭⎫ ⎝⎛1−1+⎪⎪⎭⎫ ⎝⎛1−131=1++1+16159533161595331a a a a a a a a a a a a ΛΛ,故选D.11.B.【解析】由()()x f x f −2=知()x f 关于1=x 对称,如图,令()0=x g ,即()x f x m =2−,设()2−=x m x h ,当0>x 时,()2−=mx x h ,设()x h 与()1≤=x x y ln 相切时的切点为()00x x P ln ,,x y 1=',则有0001=2+x x x ln ,解得e x 1=0,此时e x m =1=0,当()x h 过点()12,时,23=m ,故B 选项正确.若()x g 恰有两个零点,则0≤m 或e m =,故A 选项错误;若()x g 恰有四个零点,则23≤<0m ,故C 、D 选项错误.故选B.12. C.【解析】由题意知2+2+=2+2+=2+2+=323312211x x d x x d x x d ,,,带入2312=+d d d 得()31321+2=+2+x x x x x ,即312+=2x x x .由F 为321P P P Δ的重心,则有0=3++2=3++321321y y y x x x ,,即22−6=2x x ,即2=2x ,所以4−=2y ,因此有4=+31y y .故31P P 所在直线的斜率2=+8=−−=313131y y x x y y k ,故选C. 二、填空题:13. 255 【解析】由题意知225sin 55α==. 14.15.【解析】61x x ⎛⎫+ ⎪⎝⎭展开式的通项为33216C r r r T x −+=,33022r r −=⇒=,所以展开式的常数项为26C 15=.15. 4π;π40.【解法一】作⊥PE 平面ABCD ,由︒60=∠=∠PAD PAB 知点E 在线段AC 上,过E 作AB EH ⊥,连结PH ,因为E PE EH PE AB EH AB =⊥⊥I ,,,故⊥AB 平面PEH ,故PH AB ⊥.在PAH Rt Δ中,3=1=PH AH ,;在EAH Rt Δ中,1=2=EH AE ,;在PEH Rt Δ中,2=PE ,因此1=∠PAE tan ,故4=∠πPAE ;取M 为AC 中点,设该四棱锥的外接球的球心为O ,半径为R ,⊥OM 平面ABCD ,设d OM =,作OM PF ⊥,易知四边形PFME 为正方形.则有()⎪⎩⎪⎨⎧2+2+=8+=2222d R d R ,解得⎪⎩⎪⎨⎧10=2=R d ,故外接球表面积为πR πS 40=4=2.16. 515−1.【解析】由题意知,至少检测了4人该小区被确定为“感染高危小区”的概率()()()43−1+−1=p p p p p f ,()()()2+10−5−1='22p p p p f ,令()0='p f ,解得515−1=p ,故()p f 在⎪⎪⎭⎫ ⎝⎛515−10,上单调递增,在⎪⎪⎭⎫ ⎝⎛1515−1,上单调递减,故当515−1=p 时,()p f 取得最大值. 三、解答题17.解:(Ⅰ)设数列{}n a 的首项为1a ,公差为d ,由621S =得:()166212a a +=,所以167a a +=,………………………………2分又因为369a a +=,所以1d =.………………………………………………………4分于是11a =,故n a n =.……………………………………………………………………6分(Ⅱ)设{}n b 的前项和为n T ,因为12n n n a b ⎛⎫= ⎪⎝⎭,所以2n n b n =⨯,……………………8分 依题1212222n n T n =⨯+⨯++⨯L ,则231212222n n T n +=⨯+⨯++⨯L于是1211212122n n n T n +−=⨯+⨯+⨯−⨯L ()1122n n +=−⨯−………………………10分即()1122n n T n +=−⨯+故:()1122n n T n +=−⨯+.…………………………………………………………………12分18.证明:(Ⅰ)在图1△ABC 中,D ,E 分别为AC ,AB 边中点 所以DE ∥BC …………1分又因为AC ⊥BC 所以DE ⊥AC在图2中DE ⊥A 1D , DE ⊥DC 且A 1D ∩DC =D ,则DE ⊥平面A 1CD …………3分又因为DE ∥BC 所以BC ⊥平面A 1CD又因为BC ⊂平面A 1BC ,所以平面A 1CD ⊥平面A 1BC ………………………………5分(Ⅱ)由(Ⅰ)知DE ⊥平面A 1CD 且DE ⊂平面BCDE所以平面A 1CD ⊥平面BCDE,又因为平面A 1CD ∩平面BCDE =DC在正△A 1CD 中过A 1作A 1O ⊥CD ,垂足为O . 所以A 1O ⊥平面BCDE分别以CD ,梯形BCDE 中位线,OA 1所在直线为x 轴, y 轴,z 轴建立如图坐标系 ………………………………………………………………………………7分则A 1(0,0,3) ,B (1,4,0) ,C (1,0,0), E (-1,2,0) .)3,0,1(1−=C A ,)3,2,1(1−=EA ,)0,2,2(=EB . 设平面A 1BE 的法向量为n 111(,,)x y z =,则111111230220EA n x y z EB n x y ⎧⋅=−+=⎪⎨⋅=+=⎪⎩u u u r u u u r 取(1,1,3)=−−n .………………………………………………………………9分 设直线A 1C 与平面A 1BE 所成角为θ, 则sin θ =1111110(3)(3)cos ,13113⨯−⨯+−⨯−⋅==+⋅++⋅u u u u r u u u u r u u u u r A C A C A C n n n……………………11分255=. 所以直线A 1C 与平面A 1BE 所成角的正弦值为255. ………………12分 19.解:(Ⅰ)设()(),00F c c −> ,由条件知()0,B b ,所以△ABF 的面积为()13222c b +⋅= ○1……1分由2c a =得222a c =,从而2222b c c +=,化简得b c = ○2 ……………………………2分 ○1○2联立解得1b c ==, ……………………………4分从而a =,所以椭圆C 的方程为2212x y +=; …………………………… 5分 (Ⅱ)当l x ⊥轴时,不合题意,故设():2l y k x =−, ……………………………6分将()2y k x =−代入2212x y +=得()2222128820.k x k x k +−+−=由题()24240k ∆=−>得k << …………………………… 7分 设1122(,),(,)P x y Q x y ,则22121222882,1212k k x x x x k k −+==++ ……………………………8分 因为13OP OQ ⋅=u u u r u u u r , 所以()()()()22221212121212121221243x x y y x x k x x k x x k x x k +=+−−=+−++=……………… 9分从而()2222222828112412123k k k k k k k −+−+=++g g 解得1222k ⎛⎫=±∈− ⎪⎝⎭,…………………………11分 所以直线l 的方程为220x y +−=或220x y −−=. ……………………………12分(2)解法二:当l y ⊥轴时,其方程为0y =, 2OP OQ ⋅=−u u u r u u u r ,不合题意, ………………………………6分当l 与y 轴不垂直时,设:2l x my =+,将2x my =+代入2212x y +=得()222420.m y my +++=由题()2820m ∆=−>得m >或m <, …………………………… 7分 设1122(,),(,)P x y Q x y ,则12122242,22m y y y y m m −+==++ …………………………… 8分 因为13OP OQ ⋅=u u u r u u u r , 所以()()()()21212121212121221243x x y y my my y y m y y m y y +=+++=++++=,…………9分从而()222241124223m m m m m −+++=++gg 解得(2,m =±∈−∞U ,……………11分所以直线l 的方程为220x y +−=或220x y −−=. ……………………………12分 20.解:(Ⅰ)以样本的频率作为概率,在昼批次中随机抽取1件为合格品的概率是910,在夜批次中随机抽取1件为合格品的概率是34,…………2分 故两个批次中分别抽取2件产品,其中恰有1件不合格产品的概率为22112219313981101044410200C C ⎛⎫⎛⎫⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭.………………4分 (Ⅱ)①若对所有产品不做检测,设1Y 为昼批次中随机抽取1件的利润,1Y 的可能取值为10,-25, 所以1Y 的分布列为所以1250.1100.9 6.5EY =−⨯+⨯=,故在不对所有产品做检测的情况下,1000件产品的利润的期望值为110006500EY =,……… 6分设2Y 为夜批次中随机抽取1件的利润,2Y 的可能取值为10,-25, 所以2Y 的分布列为所以2250.25100.75 1.25EY =−⨯+⨯=,故在不对所有产品做检测的情况下,1000件产品的利润的期望值为210001250EY =,…………8分②若对所有产品做检测,昼批次1000件产品的合格品的期望为900件,不合格品的期望为100件,所以利润为90010 2.5100010056000⨯−⨯−⨯=,夜批次1000件产品的合格品的期望为750件,不合格品的期望为250件,所以利润为75010 2.5100025053750⨯−⨯−⨯=,……………………………… 10分综上,昼批次不做检测的利润期望6500大于做检测的利润期望6000,故昼批次不做检测为好;夜批次不做检测的利润期望1250小于做检测的利润期望3750,故夜批次做检测为优.………… 12分21. 解:(Ⅰ)由()b ee xf xx−2+−='−,得()b f −2=0';由()ax x g 2=',得()a g 21='.………………………1分根据题意可得()⎩⎨⎧−++=+==b b a g a 212122,解得2=1=b a ,;………………………………………3分(Ⅱ)解法一:由不等式()()22+−≥k x kg x f 对任意R x ∈恒成立知022≥−−+−kx ee xx恒成立,令()2−−+=2−kx e e x F x x ,显然()x F 为偶函数,故当0≥x 时,()0≥x F 恒成立.……………………4分 ()kxe e x F x x 2−−='−,令()()02≥−−=−x kx e e x h x x ,()ke e x h x x 2−+='−,令()()()x x x x e e x H x k e e x H −−−='≥−+=,02,显然()x H '为()+∞,0上的增函数,故()()00='≥'H x H ,即()x H 在()+∞,0上单调递增,()k H 220−=.…………………………………………………………………………5分①当()0220≥−=k H ,即1≤k 时,()0≥x H ,则有()x h 在()+∞,0上单调递增,故()()00=≥h x h ,则()x F 在()+∞,0上单调递增,故()()0=0≥F x F ,符合题意;……………………………………6分 ②当()0220<−=k H ,即1>k 时,因为()0212ln >=kk H ,故存在()k x 2ln ,01∈,使得()01=x H ,故()x h 在()1,0x 上单调递减,在()+∞,1x 上单调递增.当()1,0x x ∈时,()()00=<h x h ,故()x F 在()1,0x 上单调递减,故()()0=0<F x F 与()0≥x F 矛盾.综上,1≤k .……………………………………………………………………………………8分 解法二:由不等式()()22−−≥k x kg x f 对任意R x ∈恒成立知022≥−−+−kx ee xx恒成立,当0=x 时,不等式成立;当0≠x 时,2−2−+≤x e e k x x ,令()2−2−+=xe e x h x x ,由于()x h 为偶函数,故只需考虑()+∞0,的情况即可.………………………………………………………………………………………………4分当()+∞0∈,x 时,()()()3−−2−+2−−='x e e e e x x h x x x x .令()()()2−+2−−=−−xx x x e e e e x x F ,()()()x x x x e e e e x x F −−−−+=',令()()()()()x x x x x x e e x x G e e e e x x G −−−−='−−+=,,当()+∞0∈,x 时,()0>'x G ,故()x G 在()+∞0,上单调递增,故()()0=0>G x G .……………………………………………………………………………………6分因此当()+∞0∈,x 时,()0>'x F ,故()x F 在()+∞0,上单调递增,即有()()0=0>F x F ,故()0>'x h ,所以()x h 在()+∞0,上单调递增,由洛必达法则有1=2+=2−=2−+−0→−0→2−0→xx x x x x x x x e e x e e x e e lim lim lim ,故1≤k .………………………………………………………………………………………………8分(Ⅲ)解法一:()()()()()21122121221121x x x x x x x x x x x x e e e e e e e e x f x f +−−−+−−+++=++=⋅,由(2)知()()22212121++≥++−+x x e e x x x x ,当且仅当120x x +=时,等号成立;()22211221+−≥+−−x x e e x x x x ,当且仅当120x x −=时,等号成立.故()()422222121++≥⋅x x x f x f ,当且仅当120x x ==时等号成立.…………………………………………………………………………………………………………10分 因此有()()4cos 2sin 2cos sin 2121++>n n f f θθθθ,()()4cos 2sin 2cos sin 122212++>−−n n f f θθθθ,…, ()()4cos 2sin 2cos sin 1221++>θθθθn n f f以上n 个式子相加得()()()()()()()()n f f f f f f f f n n n n 6cos sin cos sin cos sin cos sin 121121>⋅+⋅++⋅+⋅−−θθθθθθθθΛ.……………………………………………………………………………………………12分解法二:由(Ⅱ)知()()()()42242222222122212221222121++≥+++=++≥x x x x x x x x x f x f ,当且仅当120x x ==时等号同时成立.……………………………………………………………10分故()()4cos 2sin2cos sin 2121++>n n f f θθθθ,()()4cos 2sin 2cos sin 122212++>−−n n f f θθθθ,…, ()()4cos 2sin 2cos sin 1221++>θθθθn n f f以上n 个式子相加得()()()()()()()()n f f f f f f f f n n n n 6cos sin cos sin cos sin cos sin 121121>⋅+⋅++⋅+⋅−−θθθθθθθθΛ.……………………………………………………………………………………………………12分 (二)选考题:22.解:(Ⅰ)曲线1C的参数方程为,322132x t y t ⎧=+⎪⎪⎨⎪=−+⎪⎩(t 为参数).消去t 得0x =,将cos ,sin x y ρθρθ==代入上式得曲线1C 的极坐标方程cos sin 0,sin 62πρθθρθ⎛⎫=−=− ⎪⎝⎭整理得 … … … … … … 2分 因为 222221sin -2cos cos ϕϕϕ=−y x … … … … …4分=221-sin =1cos ϕϕ所以曲线2C 的普通方程为22y 2x −=1. … … … … … 5分(Ⅱ)因为233P ⎛⎫−⎪ ⎪⎝⎭在曲线1C 上,所以将1C的参数方程,322132x y t ⎧=+⎪⎪⎨⎪=−+⎪⎩(t 为参数).代入到2C 的直角坐标方程得25480839t t +−=, ………………………………………… 8分则有126445t t ⋅=−,由参数t 的几何意义得1264.45PA PB t t ⋅=⋅= … … … … … … … … … … … … … … … … … … 10分23. 解:()1()31,2,13,2,2131,,2x x f x x x x x <<⎧⎪−−≤−⎪⎪=−+−⎨⎪⎪+≥⎪⎩… … … … … … … … … … … … 2分当2x ≤−时,()f x 5≥;当122x −<<时,5()52f x <<;当12x ≥时,()f x 52≥. ()5.2f x 所以的最小值为 … … … … … … … … … … … … … … … … … … 5分()()521=2 5.2M a b += 由知,即()()00111211111217121又因为,,所以+++⎛⎫=++++>>⎡⎤ ⎪⎣⎦++⎝⎭a b a b a b a b… … … … … …… … … … … … …… 7分121127121++⎛⎫=++ ⎪++⎝⎭b a a b … … … … … … … … … … … … … …… … … … … … … …8分17⎛≥ ⎝4=.7114.1217a b +≥++所以… … … … … … …… … … … … … … … … … 10分。

2020届石家庄二模试卷(理科)答案

2020届石家庄二模试卷(理科)答案

第 1 页 共 11 页石家庄市2020届高三年级阶段性训练题答案数学理科一、选择题:1.B.【解析】由题意知{}|2B x x =>,故{}3≤<2=x x B A |I ,故选B.2. A.【解析】:p ⌝()0,0x ∃∈-∞,0023x x <,故选A.3. B.【解析】1(1)()11()1i i i i z i i i i -----====--⋅-,则1z i =-+,所以对应点在第二象限,故选B.4.C.【解析】由于x y 30=.在R 上单调递减,故1=30<30<0020...;由于x y 5=在R 上单调递增,故1=5>5030.;由于x y 20=.log 在()+∞0,上单调递减,故0=1<52020..log log .故b a c <<,故选C.5.D.【解析】由于sin 2sin 236y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,因此只需将函数x y 2=sin 的图象向右平移6π个单位,故选D.6.C.【解析】如图阴影部分为可行域,目标函数3+=x y z 表示可行域中点()y x ,与()0,3-连线的斜率,由图可知点()3,1P 与()0,3-连线的斜率最大,故z 的最大值为43,故选C.7.D.【解析】根据正弦定理知()()()B C c B A b a sin sin sin sin +=-+化为为()()()b c c b a b a +=-+,即bc c b a ++=222,故21-=2-+=222bc a c b A cos ,故32=πA ,则23=A sin .因为4=+c b ,bc c b 2≥+,所以4≤bc ,当且仅当2==c b ,等号成立,此时ABC Δ的面积3≤21=A bc S sin ,故ABC Δ的面积的最大值为3.故选D.。

石家庄市二中2020年6月高三数学(理)高考模拟试题卷附答案解析

石家庄市二中2020年6月高三数学(理)高考模拟试题卷附答案解析

石家庄市二中2020年6月高三数学(理)高考模拟试题卷一、单选题 1.设集合(){}2|lg 34A x Z y xx =∈=-++,{}|24x B x =≥,则A B =( )A .[)2,4 B .{}2,4 C .{}3D .{}2,32.满足条件4z i z i +=+的复数z 对应点的轨迹是( )A .直线B .圆C .椭圆D .双曲线3.已知()0,1x ∈,令log 5x a =,cos b x =,3x c =,那么a b c ,,之间的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<4.如图,点A 的坐标为()1,0,点C 的坐标为()2,4.函数()2f x x =,若在矩形ABCD 内随机取一点.则该点取自阴影部分的概率为( )A .13B .12C .23D .5125.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种C .100种D .120种6.已知函数()f x 的图象如图所示,则函数()f x 的解析式可能是( )A .()()44||x xf x x -=+B .()4()44log||x xf x x -=-C .()14()44log ||x xf x x -=+ D .()4()44log ||x x f x x -=+7.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )A .n 是偶数?,100n ≥?B .n 是奇数?,100n ≥?C .n 是偶数?,100n >?D .n 是奇数?,100n >?8.下列判断正确的个数是( ) ①“2x <-”是“()ln 30x +<”的充分不必要条件②函数()22199f x x x =+++的最小值为2③当a ,R β∈时,命题“若a β=,则sin sin a β=”的逆否命题为真命题 ④命题“0x ∀>,201920190x +>”的否定是“00x ∃≤,020*******x +≤” A .0B .1C .2D .39.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()gx 的图象,且()g x 为奇函数,则( )A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 10.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为A .2B .3C .2 D .311.过正方体1111ABCD A B C D -的顶点A 作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作( ) A .1个B .2个C .3个D .4个12.已知22log (1),13()1235,322x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩ ,若()f x m =有四个不同的实根1234,,,x x x x ,且1234x x x x <<<,则()3412m m x x x x ⎛⎫+⋅+ ⎪⎝⎭的取值范围( )A .()0,10B .[]0,10C .()0,4D .[]0,413.二项式51x x ⎛⎫- ⎪⎝⎭的展开式中含x 的项的系数是__________.14.已知平面向量a b ,满足(1,1)a =-,||1b =,22a b +=,则a 与b 的夹角为________.15.设数列{}n a 的前n 项和为n S ,若112a =且当2n ≥时,1n n n a S S -=-⋅,则{}n a 的通项公式n a =_______. 16.四棱锥S ABCD -中,底面ABCD 是边长为2的正方形,侧面SAD 是以SD 为斜边的等腰直角三角形,若224SC ≤≤,则四棱锥S ABCD -的体积取值范围为_____.三、解答题 17.如图.在ABC 中,点P 在边BC 上,3C π=,2AP =,4AC PC ⋅=.(1)求APB ∠; (2)若ABC 的面积为532.求sin PAB ∠18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,且2PA PB ==,若点E ,F 分别为AB 和CD 的中点.(1)求证:平面ABCD ⊥平面PEF ; (2)若二面角P AB C 的平面角的余弦值为36,求PC 与平面PAB 所成角的正弦值.19.某花卉企业引进了数百种不同品种的康乃馨,通过试验田培育,得到了这些康乃馨种子在当地环境下的发芽率,并按发芽率分为8组:[)0.486,0.536、[)0.536,0.586、、[)0.836,0.886加以统计,得到如图所示的频率分布直方图.企业对康乃馨的种子进行分级,将发芽率不低于0.736的种子定为“A 级”,发芽率低于0.736但不低于0.636的种子定为“B 级”,发芽率低于0.636的种子定为“C 级”.(Ⅰ)现从这些康乃馨种子中随机抽取一种,估计该种子不是“C 级”种子的概率;(Ⅱ)该花卉企业销售花种,且每份“A 级”、“B 级”、“C 级”康乃馨种子的售价分别为20元、15元、10元.某人在市场上随机购买了该企业销售的康乃馨种子两份,共花费X 元,以频率为概率,求X 的分布列和数学期望;(Ⅲ)企业改进了花卉培育技术,使得每种康乃馨种子的发芽率提高到原来的1.1倍,那么对于这些康乃馨的种子,与旧的发芽率数据的方差相比,技术改进后发芽率数据的方差是否发生变化?若发生变化,是变大了还是变小了?(结论不需要证明).20.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,其右顶点为A ,下顶点为B ,定点()0,2C ,ABC的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于,P Q 两点,直线,BP BQ 分别与x 轴交于,M N 两点.(1)求椭圆C 的方程;(2)试探究,M N 的横坐标的乘积是否为定值,若是,请求出该定值;若不是,请说明理由.21.已知函数21()ln 22f x x x ax =+-,其中a R ∈. (1)讨论函数()f x 的单调性;(2)若函数()f x 存在两个极值点1x ,2x (其中21x x >),且()()21f x f x -的取值范围为1532ln 2,ln 284⎛⎫-- ⎪⎝⎭,求a 的取值范围.22.选修4-4:坐标系与参数方程: 在平面直角坐标系xoy 中,已知曲线C 的参数方程为,x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为242,131013x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),点P 的坐标为()2,0-.(1)若点Q 在曲线C 上运动,点M 在线段PQ 上运动,且2PM MQ =,求动点M 的轨迹方程. (2)设直线l 与曲线C 交于,A B 两点,求PA PB ⋅的值.23.(1)已知,,+∈a b c R ,且1a b c ++=,证明:1119a b c++; (2)已知,,+∈a b c R ,且1abc =,证明:111c b a a b c++++.答案解析石家庄市二中2020年6月高三数学(理)高考模拟试题卷一、单选题 1.设集合(){}2|lg 34A x Z y xx =∈=-++,{}|24x B x =≥,则A B =( )A .[)2,4 B .{}2,4 C .{}3D .{}2,3【答案】D【解析】利用一元二次不等式的解法化简集合A ,再利用交集的定义与集合B 求交集. 由2340x x -++>得2340x x --<, 则14x -<<,又由x ∈Z 得0,1,2,3x =. 所以{}0,1,2,3A =,而[)2,B =+∞.从而{}2,3A B ⋂=. 故选:D .【点睛】本题主要考查集合的基本运算以及一元二次不等式的解法,还考查了运算求解的能力,属于基础题. 2.满足条件4z i z i +=+的复数z 对应点的轨迹是( )A .直线B .圆C .椭圆D .双曲线【答案】A【解析】先令z a bi =+,代入化简可得250b +=,从而可得其轨迹方程 【详解】解:设z a bi =+,则由4z i z i +=+得,(4)(1)a b i a b i ++=++,所以2222(4)(1)a b a b ++=++, 化简得250b +=,52b =-,所以复数z 在复平面内对应的点为5(,)2a -,所以z 对应点的轨迹为直线52y =-,故选:A 【点睛】此题考查复数的模,复数的几何意义,考查转化思想,属于基础题. 3.已知()0,1x ∈,令log 5x a =,cos b x =,3x c =,那么a b c ,,之间的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<【答案】A【解析】因为(0,1)x ∈,所以log 50x a =<, 因为y cosx =在0,2π⎡⎤⎢⎥⎣⎦单调递减,所以,cos cos1cos 02b π<<<,所以01b << 因为函数3xy =在(0,1)上单调递增,所以0333x <<,即13c <<,比较大小即可求解【详解】 因为()0,1x ∈,所以0a <.因为12π>,所以01b <<, 因为()0,1x ∈,所以13c <<,所以a b c <<,故选:A. 【点睛】本题考查指数函数,对数函数和三角函数的单调性,以及利用单调性判断大小的题目,属于简单题 4.如图,点A 的坐标为()1,0,点C 的坐标为()2,4.函数()2f x x =,若在矩形ABCD 内随机取一点.则该点取自阴影部分的概率为( )A .13B .12C .23D .512【答案】D【解析】分别由矩形面积公式与微积分的几何意义计算阴影部分和矩形部分的面积,最后由几何概型概率计算公式计算即可.【详解】由已知,矩形的面积为4,阴影部分的面积为()223233111115444224113333x dx x x ⎛⎫⎛⎫⎛⎫-=-=⨯-⨯-⨯-⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎰, 由几何概型公式可得此点取自阴影部分的概率等于553412P ==, 故选:D 【点睛】本题考查微积分的几何意义求面积,还考查了几何概型求概率,属于简单题.5.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种C .100种D .120种【答案】B【解析】根据题意,首先从5人中抽出两人在星期五参加活动,有种情况, 再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有=60种.故选B . 6.已知函数()f x 的图象如图所示,则函数()f x 的解析式可能是( )A .()()44||x xf x x -=+B .()4()44log||x xf x x -=-C .()14()44log ||x xf x x -=+ D .()4()44log ||x x f x x -=+【答案】D【解析】结合图像,利用特值法和函数的奇偶性,即可求解 【详解】A 项,(0)0f =,与所给函数图象不相符,故A 项不符合题意B 项,4()(44)log ||()xx f x x f x --=-=-,()f x 为奇函数,与所给函数图象不相符,故B 项不符合题意C 项,4414(2)(22)log 20f -=+<,与所给函数图象不符.故C 项不符合题意 综上所述,A 、B 、C 项均不符合题意,只有D 项符合题意, 故选:D. 【点睛】本题主要考查函数的概念与性质,属于简单题7.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )A .n 是偶数?,100n ≥?B .n 是奇数?,100n ≥?C .n 是偶数?, 100n >?D .n 是奇数?,100n >?【答案】D【解析】根据偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,可知第一个框应该是“奇数”,执行程序框图,1,0;2,2;3,4;n s n s n s ====== 22991100...;99,100,;22n s n s -==== 101100n =>结束,所以第二个框应该填100n >,故选D.8.下列判断正确的个数是( ) ①“2x <-”是“()ln30x +<”的充分不必要条件②函数()22199f x x x =+++的最小值为2③当a ,R β∈时,命题“若a β=,则sin sin a β=”的逆否命题为真命题 ④命题“0x ∀>,201920190x +>”的否定是“00x ∃≤,020*******x +≤” A .0 B .1C .2D .3【答案】B【解析】对于①,由充分不必要条件的定义判断;对于②,利用基本不等式求解;对于③,由原命题的真假判断逆命题的真假;对于④,命题的否定是改量词,否结论. 【详解】解:对于①,当2x <-时,不能得到()ln 30x +<,所以“2x <-”不是“()ln 30x +<”的充分不必要条件,所以①错误;对于②,由基本不等式得,()221929f x x x =++≥+,而22199x x +=+不成立,所以取不到等号,所以②错误;对于③,命题“若a β=,则sin sin a β=”为真命题,所以它的逆否命题为真命题,所以③正确; 对于④,命题“0x ∀>,201920190x +>”的否定为“0x ∃>,020*******x +≤”,所以④错误 所以正确的有1个, 故选:B 【点睛】此题考查了充分不必要条件、逆否命题、命题的否定、基本不等式,综合性强,但难度不大,属于基础题. 9.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()gx 的图象,且()g x 为奇函数,则( )A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 【答案】C 【解析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可.【详解】 因为函数()f x 图象相邻的最高点之间的距离为π,所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象, 又因为()gx 是奇函数,令()6k k Z πϕπ+=∈,所以()6k k ϕπ=π-∈Z .又2πϕ<, 所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭. 当6x π=时,()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误;当6x π=-时,()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫-⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫- ⎪⎝⎭上,2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确; 在2,36ππ⎛⎫-- ⎪⎝⎭上,3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误.故选:C 【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题.10.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为A .2B .3C .2 D .3【答案】D【解析】本题首先可以通过题意画出图像并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果.【详解】根据题意可画出以上图像,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF ,M 在双曲线上,所以根据双曲线性质可知,122MF MF a ,即2232MF MF a ,2MF a =,因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =,因为OMb =,2MF a =,2OFc =,222+=a b c ,所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ,ab cMH,即M 点纵坐标为ab c , 将M 点纵坐标带入圆的方程中可得22222a b c x b ,解得2b cx,2,b ab ccM, 将M 点坐标带入双曲线中可得422221b a a c c ,化简得4422b a a c ,222422c aa a c ,223c a =,3c ae,故选D .【点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题.11.过正方体1111ABCD A B C D -的顶点A 作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作( ) A .1个 B .2个C .3个D .4个【答案】D【解析】每条棱在平面α的正投影的长度都相等,等价于每条棱所在直线与平面α所成角都相等,从而棱AB ,AD ,1AA 所在直线与平面α所成的角都相等,三棱锥1A A BD -是正三棱锥,直线AB ,AD ,1AA 与平面1A BD 所成角都相等,过顶点A 作平面α平面1A BD ,由此能求出这样的平面α的个数.【详解】在正方体1111ABCD A B C D -中,每条棱在平面α的正投影的长度都相等⇔每条棱所在直线与平面α所成的角都相等⇔棱1AB AD AA 、、所在直线与平面α所成的角都相等,易知三棱锥1A A BD -是正三棱锥,直线1AB AD AA 、、与平面1A BD 所成的角都相等.过顶点A 作平面α平面1A BD ,则直线1AB AD AA 、、与平面α所成的角都相等.同理,过顶点A 分别作平面α与平面1C BD 、平面1B AC 、平面1D AC 平行,直线1AB AD AA 、、与平面α所成的角都相等.所以这样的平面α可以作4个,故选:D. 【点睛】本题考查立体几何中关于线面关系和面面关系的相关概念,属于简单题12.已知22log (1),13()1235,322x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩ ,若()f x m =有四个不同的实根1234,,,x x x x ,且1234x x x x <<<,则()3412m m x x x x ⎛⎫+⋅+ ⎪⎝⎭的取值范围( )A .()0,10B .[]0,10C .()0,4D .[]0,4【答案】A【解析】分析:因为题设有5个变量,故利用分段函数的图像可得()()12111x x --=,3410x x +=,所以()3412m m x x x x ⎛⎫++ ⎪⎝⎭就可化成关于m 的函数,最后根据()f x m =有四个不同的实数根得到m 的取值范围即得()3412m m x x x x ⎛⎫++ ⎪⎝⎭的取值范围. 详解:由题设,有()f x m =在(]1,3上有两个不同的解12,x x ,在()3,+∞上有两个不同的解34,x x .当(]1,3x ∈时, ()()2log 1f x x =-,故()()2122log 1log 1x x -=-,因12x x <,故()()2122log 1log 1x x --=-,所以()()12111x x --=即1212x x x x =+且01m <≤.当()3,x ∈+∞时, ()2123522f x x x =-+, 3410x x +=且01m <<. 所以()()3412100,10m m x x m x x ⎛⎫++=∈ ⎪⎝⎭,故选A .点睛:对于多变量函数的范围问题,降低变元的个数是首选方法,故需要利用函数图像找到各变量之间的关系.注意根据零点的个数判断m 的取值范围.二、填空题13.二项式51x x ⎛⎫- ⎪⎝⎭的展开式中含x 的项的系数是__________. 【答案】5-【解析】根据二项展开式通项公式确定含x 的项的项数,进而确定含x 的项的系数. 【详解】因为53521551()()()(1)rrrr r r r T C x C x x--+=-=-,所以令5312r -=得1,r =因此含x 的项的系数为115(1) 5.C -=-【点睛】本题考查二项展开式的项的系数,考查基本分析求解能力,属基础题. 14.已知平面向量a b ,满足(1,1)a =-,||1b =,22a b +=,则a 与b 的夹角为________.【答案】34π【解析】将|2|2a b +=两边同时平方后展开,结合平面向量数量积运算及模的运算,即可求得a 与b 的夹角的余弦值,进而求得a 与b 的夹角即可. 【详解】因为(1,1)a =-,则2a =因为|2|2a b +=,等式两边同时平方可得22442a a b b +⋅+=代入2a =,||1b =可得1a b ⋅=-设,a b 夹角为α,则由平面向量数量积的定义可得12221cos a b a bα⋅-==-⨯⋅=因为0απ≤≤所以34πα=故答案为: 34π 【点睛】本题考查了平面向量数量积的定义及简单应用,向量夹角的求法,属于基础题.15.设数列{}n a 的前n 项和为n S ,若112a =且当2n ≥时,1n n n a S S -=-⋅,则{}n a 的通项公式n a =_______. 【答案】11212(1)n n n n ⎧=⎪⎪⎨-⎪≥+⎪⎩【解析】根据n S 与n a 的关系,当2n ≥时,可得1nn n a S S -=-,从而可得11n n n n S S S S ---⋅-=,从而可得1111n n S S --=,进而求出n S ,再根据n S 与n a 的关系即可求解. 【详解】 当2n ≥时,1nn n a S S -=-⋅,则11n n n n S S S S ---⋅-=,1111n n S S -∴-=, 112a =,∴112S =,即112S =,()12111nn n S ∴=+-⨯=+, 所以11n S n =+, 所以当2n ≥时,()111111n n n a S S n n n n--=-=-=++, 当1n =时,112a =,不满足上式, 故11212(1)n n a n n n ⎧=⎪⎪=⎨-⎪≥+⎪⎩,故答案为:11212(1)n n n n ⎧=⎪⎪⎨-⎪≥+⎪⎩【点睛】本题主要考查了n S 与n a 的关系、等差数列的通项公式,需熟记公式,属于中档题.16.四棱锥S ABCD -中,底面ABCD 是边长为2的正方形,侧面SAD 是以SD 为斜边的等腰直角三角形,若224SC ≤≤,则四棱锥S ABCD -的体积取值范围为_____.【答案】438,33⎡⎤⎢⎥⎣⎦【解析】如图所示,四棱锥S ABCD -中,可得:;AD SA AD AB AD ⊥⊥⇒⊥平面SAB ⇒平面SAB ⊥平面ABCD ,过S 作SO AB ⊥于O ,则SO ⊥平面ABCD ,故1433S ABCD ABCD V S SO SO -=⋅=,在SAB ∆中,2SA AB ==,设SAB θ∠=,则有,232cos SC θ=-,又224SC ≤≤112cos [,]2233ππθθ⇒-≤≤⇒∈,则2sin [3,2]SO θ=∈,四棱锥S ABCD -的体积取值范围为438[,]33.三、解答题 17.如图.在ABC 中,点P 在边BC 上,3C π=,2AP =,4AC PC ⋅=.(1)求APB ∠; (2)若ABC 的面积为532.求sin PAB ∠ 【答案】(1)23APB ∠=π;(2)357sin 38PAB ∠=. 【解析】(1)在APC △中,设AC x =, 4AC PC ⋅=,得到4PC x=,再由余弦定理2222cos3AP AC PC AC PC π=+-⋅⋅⋅,解得x ,利用平面几何知识求解.(2)由ABC 的面积为532,利用153sin 232ABC S AC BC π=⋅⋅=△,解得BC ,得到则BP ,作AD BC ⊥交BC 于D ,得到AD ,PD ,进而得到AB ,然后在ABP △中,利用正弦定理求解. 【详解】(1)在APC △中,设AC x =, 因为4AC PC ⋅=,4PCx=, 又因为3C π=,2AP =,由余弦定理得:2222cos3AP AC PC AC PC π=+-⋅⋅⋅即:2224422cos 3x x x x π⎛⎫=+-⋅⋅⋅ ⎪⎝⎭, 解得2x =,所以AC PC AP ==,此时APC △为等边三角形,所以23APB ∠=π; (2)由153sin 232ABCS AC BC π=⋅⋅=△, 解得5BC =,则3BP =,作AD BC ⊥交BC 于D ,如图所示:由(1)知,在等边APC △中,3AD =,1PD =,在Rt △ABD 中2231619AB AD BD =+=+=.在ABP △中,由正弦定理得sin sin AB PB APB PAB=∠∠,所以333572sin 3819PAB ⨯∠==. 【点睛】本题主要考查正弦定理,余弦定理以及平面几何知识,还考查了数形结合的思想和运算求解的能力,属于中档题. 18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,且2PA PB ==,若点E ,F 分别为AB和CD 的中点.(1)求证:平面ABCD ⊥平面PEF ; (2)若二面角PAB C 的平面角的余弦值为36,求PC 与平面PAB 所成角的正弦值.【答案】(1)见解析(2)226【解析】(1)先由线面垂直的判定定理证得AB ⊥平面PEF ,再由面面垂直的判定定理证得平面ABCD ⊥平面PEF ;(2)由二面角的定义及题意可知,3cos 6PEF ∠=,建立空间直角坐标系,求出平面PAB 的法向量n ,PC ,利用sin cos ,n PC n PC n PCθ⋅=〈〉=⋅即可得解.【详解】 (1)PA PB =,E 为AB 中点,∴AB PE ⊥,又AB EF ⊥,PE ⊂平面PEF ,EF⊂平面PEF ,PE EF E ⋂=,∴AB ⊥平面PEF ,又AB平面ABCD ,∴平面ABCD ⊥平面PEF .(2)PE AB ⊥,EF AB ⊥,平面PAB ⋂平面ABCD AB =,∴PEF ∠就是二面角PAB C 的平面角,所以3cos 6PEF ∠=, 如图作PO EF ⊥,垂足为O , 则363OE OE PE ==,所以12OE =,32OF =,则112OP =,如图,建立空间直角坐标系,则11(0,0,)2P ,3(1,,0)2C ,1(1,,0)2A --,1(1,,0)2B -,设平面PAB 的法向量为(,,)n x y z =,则00PB n AB n ⎧⋅=⎨⋅=⎩,即11102220x y z x ⎧--=⎪⎨⎪=⎩,令1z =,则0111x y z =⎧⎪=-⎨⎪=⎩, 则(0,11,1)n =-是平面PAB 的一个法向量,311(1,,)22PC=-,则21122sin cos ,6126n PC n PC n PCθ⋅=〈〉===⋅⋅.所以PC 与平面PAB 所成角的正弦值226.【点睛】本题考查了线面垂直和面面垂直的判定定理以及向量法求线面角的正弦值,考查学生的推理与运算能力,建立恰当的空间直角坐标系是解题的关键,属于中档题.19.某花卉企业引进了数百种不同品种的康乃馨,通过试验田培育,得到了这些康乃馨种子在当地环境下的发芽率,并按发芽率分为8组:[)0.486,0.536、[)0.536,0.586、、[)0.836,0.886加以统计,得到如图所示的频率分布直方图.企业对康乃馨的种子进行分级,将发芽率不低于0.736的种子定为“A 级”,发芽率低于0.736但不低于0.636的种子定为“B 级”,发芽率低于0.636的种子定为“C 级”.(Ⅰ)现从这些康乃馨种子中随机抽取一种,估计该种子不是“C 级”种子的概率;(Ⅱ)该花卉企业销售花种,且每份“A 级”、“B 级”、“C 级”康乃馨种子的售价分别为20元、15元、10元.某人在市场上随机购买了该企业销售的康乃馨种子两份,共花费X 元,以频率为概率,求X 的分布列和数学期望;(Ⅲ)企业改进了花卉培育技术,使得每种康乃馨种子的发芽率提高到原来的1.1倍,那么对于这些康乃馨的种子,与旧的发芽率数据的方差相比,技术改进后发芽率数据的方差是否发生变化?若发生变化,是变大了还是变小了?(结论不需要证明).【答案】(Ⅰ)0.8;(Ⅱ)分布列详见解析,数学期望为31;(Ⅲ)方差变大了.【解析】(Ⅰ)利用频率分布直方图中矩形面积之和为1,求出a 的值,再结合频率分布直方图以及对立事件的概率公式可求得所求事件的概率;(Ⅱ)由题意可知,随机变量X 的可能取值有20、25、30、35、40,计算出随机变量X 在不同取值下的概率,由此可列出随机变量X 的分布列,进而可求得随机变量X 的数学期望; (Ⅲ)根据离散型随机变量方差的性质可得出结论. 【详解】(Ⅰ)设事件M 为:“从这些康乃馨种子中随机抽取一种,且该种子不是“C 级”种子”, 由图表,得()0.4 1.2 4.0 6.0 4.4 1.20.40.051a +++++++⨯=,解得 2.4a =,由图表,知“C 级”种子的频率为()0.4 1.2 2.40.050.2++⨯=,故可估计从这些康乃馨种子中随机抽取一种,该种子是“C 级”的概率为0.2.因为事件M 与事件“从这些康乃馨种子中随机抽取一种,且该种子是“C 级”种子”为对立事件, 所以事件M 的概率()10.20.8PM =-=;(Ⅱ)由题意,任取一颗种子,恰好是“A 级”康乃馨的概率为()4.4 1.20.40.050.3++⨯=,恰好是“B 级”康乃馨的概率为()4.0 6.00.050.5+⨯=,恰好是“C 级”的概率为()0.4 1.2 2.40.050.2++⨯=.随机变量X 的可能取值有20、25、30、35、40,且()2200.20.04PX ===,()2520.50.20.2P X ==⨯⨯=,()2300.520.30.20.37P X ==+⨯⨯=,()350.30.520.3P X ==⨯⨯=, ()2400.30.09P X ===.所以X 的分布列为:X20 253035 40P0.04 0.20.370.3 0.09故X 的数学期望()200.04250.2300.37350.3400.0931EX =⨯+⨯+⨯+⨯+⨯=.(Ⅲ)与旧的发芽率数据的方差相比,技术改进后发芽率数据的方差变大了. 【点睛】本题考查频率分布直方图的应用,同时也考查了离散型随机变量分布列及数学期望的计算,考查计算能力,属于中等题.20.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,其右顶点为A ,下顶点为B ,定点()0,2C ,ABC的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于,P Q 两点,直线,BP BQ 分别与x 轴交于,M N 两点.(1)求椭圆C 的方程;(2)试探究,M N 的横坐标的乘积是否为定值,若是,请求出该定值;若不是,请说明理由.【答案】(1)2214x y +=(2)是定值,43【解析】(1)由三角形的面积、离心率列出方程组求解a 、b ,即可写出椭圆方程;(2)设出直线PQ 的方程与点,P Q 的坐标,求出直线BP 、BQ 的方程进而求出点M 、N 的横坐标,两横坐标相乘并化简为关于1x 、2x 的表达式,直线PQ 的方程与椭圆方程联立并利用韦达定理求出12x x 、12x x +,代入横坐标的乘积化简即可证明. 【详解】(1)由已知,,A B 的坐标分别是()(),0,0,Aa Bb -由于ABC ∆的面积为3,1(2)32b a ∴+=①,又由23=12c b e a a ⎛⎫==- ⎪⎝⎭,化简得2a b =②, ①②两式联立解得:=1b 或=3b -(舍去),2,=1a b ∴=,∴椭圆方程为2214x y +=;(2)设直线PQ 的方程为2y kx =+,,P Q 的坐标分别为()()1122,,,P x y Q x y则直线BP 的方程为1111y y x x +=-,令0y =,得点M 的横坐标111M xx y =+, 直线BQ 的方程为2211y y x x +=-,令0y =,得点N 的横坐标221N xx y =+,1212(1)(1)M N x x x x y y ∴⋅=++1212(3)(3)x x kx kx =++12212123()9x x k x x k x x =+++把直线2y kx =+代入椭圆2214x y +=得22(14)16120k x kx +++=,由韦达定理得1221214x x k =+,1221614kx x k+=-+ ∴222221214124891414M N k x x k k k k+==-+++22212412489363k k k =-++,是定值. 【点睛】本题考查直线与椭圆的综合应用、椭圆的简单几何性质、直线的方程、椭圆中的定值问题,属于较难题. 21.已知函数21()ln 22f x x x ax =+-,其中a R ∈. (1)讨论函数()f x 的单调性;(2)若函数()f x 存在两个极值点1x ,2x (其中21x x >),且()()21f x f x -的取值范围为1532ln 2,ln 284⎛⎫-- ⎪⎝⎭,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)325,44⎡⎤⎢⎥⎣⎦【解析】(1)对函数进行求导,将导数的正负转化成研究一元二次函数的根的分布问题; (2)利用韦达定理得到122x x a +=,121=x x ,将()()21f x f x -转化成关于12,x x 的表达式,再利用换元法令21(1)x t t x =>,从而构造函数11()ln 22h t t t t=-+,根据函数的值域可得自变量t 的范围,进而得到a 的取值范围. 【详解】解:(1)2121()2(0)x ax f x x a x x x-+'=+-=>.令2()21g x x ax =-+,则244a ∆=-.①当0a ≤或0∆≤,即1a ≤时,()0f x '≥恒成立,所以()f x 在(0,)+∞上单调递增. ②当00a >⎧⎨∆>⎩,即1a >时,由()0f x '>,得201x a a <<--或21x a a >+-;由()0f x '<,得2211a a x a a --<<+-,∴()f x 在2(0,1)a a --和2(1,)a a +-+∞上单调递增,在22(1,1)a a a a --+-上单调递减.综上所述,当1a ≤时,()f x 在(0,)+∞上单调递增; 当1a >时,()f x 在2(0,1)a a --和2(1,)a a +-+∞上单调递增,在22(1,1)a a a a --+-上单调递减.(2)由(1)得,当1a >时,()f x 有两极值点1x ,2x (其中21x x >).由(1)得1x ,2x 为2()210g x x ax =-+=的两根,所以122x x a +=,121=x x .所以()()()()22221212111ln22x f x f x x x a x x x -=+--- 22222212212211112112ln ln ln 2222x x x x x x x x x x x x x x x x --=-=-=-+.令21(1)x t t x =>,则()()2111()ln 22f x f x h t t t t-==-+, 因为2222211121(1)()02222t t t h t t t t t-+---'=--==<, 所以()h t 在(1,)+∞上单调递减,而3(2)ln 24h =-,15(4)2ln 28h =-, 所以24t ≤≤,又()212212142([2,4])x x a t t x x t+==++∈,易知1()2x t t ϕ=++在[2,4]上单调递增, 所以2925424a ≤≤,所以实数a 的取值范围为325,44⎡⎤⎢⎥⎣⎦. 【点睛】本题考查利用导数研究函数的单调性、已知双元函数的值域求参数的取值范围,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,求解时注意换元法的应用.22.选修4-4:坐标系与参数方程: 在平面直角坐标系xoy 中,已知曲线C 的参数方程为,x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为242,131013x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),点P 的坐标为()2,0-.(1)若点Q 在曲线C 上运动,点M 在线段PQ 上运动,且2PM MQ =,求动点M 的轨迹方程. (2)设直线l 与曲线C 交于,A B 两点,求PA PB ⋅的值.【答案】(1)222439x y =⎛⎫++ ⎪⎝⎭(2)3 【解析】(1)设()Q cos ,sin θθ,(),Mx y ,由2PM MQ =即得动点M 的轨迹方程;(2)由题得直线l 的参数方程可设为122,13513x t y t ⎧=-+⎪⎪⎨⎪='⎩'⎪(t '为参数),代入曲线C 的普通方程,得2483013t t +=''-,再利用直线参数方程t 的几何意义求解. 【详解】(1)设()Q cos ,sin θθ,(),M x y ,则由2PM MQ =,得()()2,2cos sin θθ+=--x y x,y , 即323cos ,32sin .x y θθ+=⎧⎨=⎩消去θ,得222439x y =⎛⎫++ ⎪⎝⎭,此即为点M 的轨迹方程.(2)曲线C 的普通方程为221x y +=,直线l 的普通方程()5212y =x +, 设α为直线l 的倾斜角,则5tan 12α=,512sin ,cos 1313αα==, 则直线l 的参数方程可设为122,13513x t y t ⎧=-+⎪⎪⎨⎪='⎩'⎪(t '为参数),代入曲线C 的普通方程,得2483013t t +=''-, 由于24827612013169⎛⎫∴∆=--=> ⎪⎝⎭, 故可设点,A B 对应的参数为1t ',2t ',则21213PA PB t t t t ''''⋅=⋅==. 【点睛】本题主要考查参数方程与普通方程的互化,考查动点的轨迹方程,考查直线参数方程t 的几何意义,意在考查学生对这些知识的理解掌握水平和分析推理能力.23.(1)已知,,+∈a b c R ,且1a b c ++=,证明:1119a b c++; (2)已知,,+∈a b c R ,且1abc =,证明:111c b a a b c++++.【答案】(1)见解析(2)见解析【解析】(1)结合1a b c ++=代人所证不等式的左边中的分子,通过变形转化,利用基本不等式加以证明即可 (2)结合不等式右边关系式的等价变形,通过基本不等式来证明即可 【详解】 证明:(1)111a b c a b c a b c a b c a b c++++++++=++ 111b c a c a ba ab bc c =++++++++39b a b c a c a b c b c a=++++++, 当a b c ==时等号成立. (2)因为1111111111111122222a b c a b a c b c ab ac bc ⎛⎫⎛⎫++=+++++⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又因为1abc =,所以1c ab =,1b ac =,1a bc =,111cb a a b c∴++++.当a b c ==时等号成立,即原式不等式成立.【点睛】本题考查基本不等式的应用,考查推理论证能力,化归与转化思想。

【精准解析】河北省石家庄市第二中学2020届高三6月高考全仿真数学(理)试题

【精准解析】河北省石家庄市第二中学2020届高三6月高考全仿真数学(理)试题

6
对称,不关于点
6
, 0
对称,
故 B 错误;

6
,
3
上,
2x
6
2
,
2

f
x
单调递增,故
C
正确;

2 3
, 6
上,
2x
6
3 2
, 2

f
x
单调递减,故
D
错误.
故选:C 【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属
-7-
于中档题.
A. 直线 【答案】A 【解析】
B. 圆
C. 椭圆
D. 双曲线
-1-
【分析】
先令 z a bi ,代入化简可得 2b 5 0 ,从而可得其轨迹方程 【详解】解:设 z a bi ,则由 z 4i z i 得,
a (b 4)i a (b 1)i ,
所以 a2 (b 4)2 a2 (b 1)2 ,
´
MF2

MH
=
ab c
,即
M
点纵坐标为
ab c

-8-
( ) 将 M
点纵坐标带入圆的方程中可得 x2
+ a2b2 c2
= b2 ,解得 x
=
b2 c
,M
, b2 ab
cc

将M
点坐标带入双曲线中可得
b4 a2c2
-
a2 c2
=1,
( ) 化简得 b4 - a4 = a2c2 ,
c2 - a2
2
- a4
的相关性质判断出三角形 OMF2 的形状并求出高 MH 的长度, MH 的长度即 M 点纵坐标, 然后将 M 点纵坐标带入圆的方程即可得出 M 点坐标,最后将 M 点坐标带入双曲线方程即可

河北省石家庄市 2020届高三毕业班综合训练(二)数学(理)含答案

河北省石家庄市 2020届高三毕业班综合训练(二)数学(理)含答案



,且
,则


,且
,则


,且
,则


、且
,则
A.①②③
B.①③④
C.②④
D.③④
8.已知函数
,则
的解集为()
A.
B.
C.
D.
9.已知 x,y 满足
,且目标函数 z=2x+y 的最大值为 9,最小值为 1,则
=( )
A.
B.6
C.
D.7
10.已知△ABC 的三条边 a,b,c 满足 b=2,ac=4,分别以边 a,c

(Ⅰ )求 C1 的方程; (Ⅱ )直线 l:y=kx+m(k>0,m>0)与 x 轴交于点 Q,且与椭圆 C1 和圆 C2 都相切,切点分别为 M,
N,记△F1F2M 和△QF2N 的积分别为 S1 和 S2,求
的量小值.
21.(本小题满分 12 分)
已知函数
,且

(Ⅰ )求 a 的值; (Ⅱ )在函数 f(x)的图象上任意取定两点
右焦点 F 的直线交 C 的右支于 A,B 两点,直线 AO(O 是坐标
原点)交 C 的左支于点 D.若 DF⊥ AB,且
,则双曲线 C 的离心率为( )
A. B.
C. C.ຫໍສະໝຸດ 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13.等差数列{an}中,a3=5,a8=15,则 a6=.
2
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合 题目要求的.
1.已知集合
,集合
,则 A∩B=( )

2020年石家庄市二模数学有答案(理科)

2020年石家庄市二模数学有答案(理科)

2020年石家庄市高中毕业班第二次模拟考试高三数学(理科)注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 回答第II卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I卷(选择题60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M={5,6,7 },N={5,7,8 },则A. B. C. D.2. 若F(5,0)是双曲线(m是常数)的一个焦点,则m的值为A. 3B. 5C. 7D. 93. 已知函数f(x),g(x)分别由右表给出,则,的值为A. 1B.2C. 3D. 44. 的展开式中的常数项为A. -60B. -50C. 50D. 605. 的值为A. 1B.C.D.6. 已知向量a=(1,2),b=(2,3),则是向量与向量n=(3,-1)夹角为钝角的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要的条件7. —个几何体的正视图与侧视图相同,均为右图所示,则其俯视图可能是8. 从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程,据此模型预报身高为172 cm的高三男生的体重为A. 70.09B. 70.12C. 70.55D. 71.059. 程序框图如右图,若输出的s值为位,则n的值为A. 3B. 4C. 5D. 610. 已知a是实数,则函数_的图象不可能是11. 已知长方形ABCD,抛物线l以CD的中点E为顶点,经过A、B两点,记拋物线l与AB边围成的封闭区域为M.若随机向该长方形内投入一粒豆子,落入区域M 的概率为P.则下列结论正确的是A.不论边长AB,CD如何变化,P为定值;B.若-的值越大,P越大;C.当且仅当AB=CD时,P最大;D.当且仅当AB=CD时,P最小.12. 设不等式组表示的平面区域为Dn an表示区域Dn中整点的个数(其中整点是指横、纵坐标都是整数的点),则=A. 1012B. 2020C. 3021D. 4001第II卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 复数(i为虚数单位)是纯虚数,则实数a的值为_________.14. 在ΔABC 中,,,则 BC 的长度为________.15. 己知F1 F2是椭圆(a>b>0)的两个焦点,若椭圆上存在一点P使得,则椭圆的离心率e的取值范围为________.16. 在平行四边形ABCD中有,类比这个性质,在平行六面体中ABCD-A1B1C1D1中有=________三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知Sn 是等比数列{an}的前n项和,S4、S10、S7成等差数列.(I )求证而a3,a9,a6成等差数列;(II)若a1=1,求数列W{a3n}的前n项的积.18. (本小题满分12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图,(I)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(II)用样本估计总体,如果希望80%的居民每月的用水量不超出标准&则月均用水量的最低标准定为多少吨,并说明理由;(III)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(II)中最低标准的人数为x,求x的分布列和均值.19. (本小题满分12分)在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,,D为AA1中点,BD与AB1交于点0,C0丄侧面ABB1A1(I )证明:BC丄AB1;(II)若OC=OA,求二面角C1-BD-C的余弦值.20. (本小题满分12分)在平面直角坐标系中,已知直线l:y=-1,定点F(0,1),过平面内动点P作PQ丄l 于Q点,且•(I )求动点P的轨迹E的方程;(II)过点P作圆的两条切线,分别交x轴于点B、C,当点P的纵坐标y 0>4时,试用y表示线段BC的长,并求ΔPBC面积的最小值.21. (本小题满分12分)已知函数(A ,B R,e为自然对数的底数),.(I )当b=2时,若存在单调递增区间,求a的取值范围;(II)当a>0 时,设的图象C1与的图象C2相交于两个不同的点P、Q,过线段PQ的中点作x轴的垂线交C1于点,求证.请考生在第22〜24三题中任选一题做答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1几何证明选讲已知四边形ACBE,AB交CE于D点,,BE2=DE-EC.(I)求证:;(I I)求证:A、E、B、C四点共圆.23. (本小题满分10分)选修4-4坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,X 轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C 1的参数方程为:(为参数);射线C 2的极坐标方程为:,且射线C 2与曲线C 1的交点的横坐标为(I )求曲线C 1的普通方程;(II)设A 、B 为曲线C 1与y 轴的两个交点,M 为曲线C 1上不同于A 、B 的任意一点,若直线AM 与MB 分别与x 轴交于P,Q 两点,求证|OP|.|OQ|为定值.24. (本小题满分10分)选修4-5不等式选讲 设函数 (I)画出函数的图象;(II)若不等式,恒成立,求实数a 的取值范围.2020年石家庄市高中毕业班第二次模拟考试 高三数学(理科答案) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1-5 CDADB 6-10 ABBCB 11-12 AC二、填空题:本大题共4小题,每小题5分,共20分.13. 1 14. 1或 2 15. 1,12⎡⎫⎪⎢⎣⎭16.22214()AB AD AA ++.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 解:(Ⅰ)当1q =时,10472S S S ≠+所以1q ≠ ………………………………………………..2分10472S S S =+由,得()()1074111211(1)111a q a q a q q q q---=+--- 104710,12a q q q q ≠≠∴=+ , ………………………….4分则8251112a q a q a q =+,9362a a a ∴=+,所以3,9,6a a a 成等差数列. ………………………6分(Ⅱ)依题意设数列{}3n a 的前n 项的积为n T ,n T =3333123n a a a a ⋅⋅3323131()()n q q q -=⋅⋅=33231()()n q q q -⋅3123(1)()n q ++-==(1)32()n n q -,…………………8分又由(Ⅰ)得10472q q q =+,63210q q ∴--=,解得3311(,2q q ==-舍).…………………10分所以()1212n n n T -⎛⎫=- ⎪⎝⎭. …………………………………………….12分18. 解: (Ⅰ)………………………………3分(Ⅱ)月均用水量的最低标准应定为2.5吨.样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为 2.5吨.……………………………………………6分(Ⅲ)依题意可知,居民月均用水量不超过(Ⅱ)中最低标准的概率是45,则4~(3,)5X B ,311(0)()5125P X === 1234112(1)()55125P X C ===2234148(2)()()55125P X C ===3464(3)()5125P X ===………………8分 X0 1 2 3 P1125 12125 48125 64125分412()355E X =⨯=………………………………………………………………12分19. 解:(Ⅰ)因为11ABB A 是矩形,D 为1AA 中点,1AB =,12AA =,2AD =, 所以在直角三角形1ABB 中,112tan 2AB AB B BB ∠==, 在直角三角形ABD中,12tan 2AD ABD AB ∠==, 所以1AB B ∠=ABD ∠, 又1190BAB AB B ∠+∠=,190BAB ABD ∠+∠=,所以在直角三角形ABO 中,故90BOA ∠=,即1BD AB ⊥, (3)分又因为11CO ABB A ⊥侧面,111AB ABB A ⊂侧面,所以1CO AB ⊥所以,1AB BCD ⊥面,BC BCD ⊂面, 故1BC AB ⊥…………………………5分 (Ⅱ) 解法一:如图,由(Ⅰ)可知,,,OA OB OC 两两垂直,分别以,,OA OB OC 为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -. 在Rt ABD中,可求得63OB =,66OD =,33OC OA ==,在1Rt ABB 中,可求得1233OB = ,故60,,06D ⎛⎫ ⎪ ⎪⎝⎭,60,,03B ⎛⎫- ⎪ ⎪⎝⎭,30,0,3C ⎛⎫ ⎪ ⎪⎝⎭,123,0,03B ⎛⎫- ⎪ ⎪⎝⎭所以 60,,02BD ⎛⎫= ⎪ ⎪⎝⎭,630,,33BC ⎛⎫= ⎪ ⎪⎝⎭,1236,,033BB ⎛⎫=- ⎪ ⎪⎝⎭可得,1123263,,333BC BC BB ⎛⎫=+=- ⎪ ⎪⎝⎭…………………………………8分设平面1BDC 的法向量为(),,x y z =m ,则 10,0BD BC ⋅=⋅=m m ,即23263060x y z y ⎧-++=⎪⎪⎨⎪=⎪,取1,0,2x y z ===, 则()1,0,2=m , …………………………………10分又BCD 面()1,0,0=n ,故5cos ,5==m n , 所以,二面角1C BD C --的余弦值为5…………………………………12分 解法二:连接1CB 交1C B 于E ,连接OE ,因为11CO ABB A ⊥侧面,所以BD OC ⊥,又1BD AB ⊥,所以1BD COB ⊥面,故BD OE ⊥所以EOC ∠为二面角1C BD C --的平面角…………………………………8分BD =,1AB =1112AD AO BB OB ==,1123OB AB ==113OC OA AB === , 在1Rt COB中,13B C === ,……………………10分 又EOC OCE ∠=∠1cos 5OC EOC CB ∠==故二面角1C BD C --的余弦值为…………………………12分 20.解:(Ⅰ)设(),P x y ,则(),1Q x -, ∵QP QF FP FQ =,∴()()()()0,1,2,1,2y x x y x +-=--. …………………2分 即()()22121y x y +=--,即24x y =,所以动点P 的轨迹E 的方程24x y =. …………………………4分 (Ⅱ)解法一:设00(,),(,0),(,0)P x y B b C c ,不妨设b c >.直线PB 的方程:00()y y x b x b=--,化简得 000()0y x x b y y b ---=.又圆心(0,2)到PB 的距离为22= ,故222220000004[()]4()4()y x b x b x b y b y b +-=-+-+,易知04y >,上式化简得2000(4)440y b x b y -+-=, 同理有2000(4)440y c x c y -+-=. …………6分所以0044x b c y -+=-,0044y bc y -=-,…………………8分则2220002016(4)()(4)x y y b c y +--=-.因00(,)P x y 是抛物线上的点,有2004x y =,则 2202016()(4)y b c y -=-,0044y b c y -=-. ………………10分 所以0000002116()2[(4)8]244PBC y S b c y y y y y ∆=-⋅=⋅=-++--832≥=.当20(4)16y -=时,上式取等号,此时008x y ==.因此PBC S ∆的最小值为32. ……………………12分解法二:设),(00y x P , 则4200x y =,PB 、PC 的斜率分别为1k 、2k , 则PB :2010()4x y k x x -=-,令0y =得20014B x x x k =-,同理得20024C x x x k =-; 所以||4|44|||||212120120220k k k k x k x k x x x BC C B -⋅=-=-=,……………6分 下面求||2121k k k k -, 由(0,2)到PB :2010()4x y k x x -=-的距离为22010|2|2x k x +-=, 因为04y >,所以2016x >, 化简得2222220001010(4)(4)()024x x x k x k x -+⋅-+-=, 同理得2222220002020(4)(4)()024x x x k x k x -+⋅-+-=…………………8分 所以1k 、2k 是22222200000(4)(4)()024x x x k x k x -+⋅-+-=的两个根.所以2001220(4)2,4x x k k x -+=-222220*********(1)()164,44x x x x k k x x --==--201220||4x k k x -==-,1220121||116k k x k k -=-, 22000120200120411||||44411416B C x x y k k x x y y x k k y --=⋅=⋅=⋅=---,……………10分 所以0000002116||2[(4)8]244PBC y S BC y y y y y ∆=⋅=⋅=-++--832≥=.当20(4)16y -=时,上式取等号,此时008x y ==.因此PBC S ∆的最小值为32. ……………………12分21.解:(Ⅰ)当2b =时,若2()()()2x x F x f x g x ae e x =-=+-,则2()221x x F x ae e '=+-,原命题等价于2()2210x x F x ae e '=+-在R 上有解.……………2分 法一:当0a 时,显然成立;当0a <时,2211()2212()(1)22x x x F x ae e a e a a '=+-=+-+ ∴ 1(1)02a -+>,即102a -<<. 综合所述 12a >-.…………………5分 法二:等价于2111()2x x a e e>⋅-在R 上有解,即∴ 12a >-.………………5分 (Ⅱ)设1122(,),(,)P x y Q x y ,不妨设12x x <,则2102x x x +=,2222x x ae be x +=,1121x x ae be x +=,两式相减得:21212221()()x x x x a e e b e e x x -+-=-,……………7分整理得 212121212121221()()()()2()x x x x x x x x x x x x x x a e e e e b e e a e e e b e e +-=-++--+- 则21212122x x x x x x ae b e e +-+-,于是21212121212202()x x x x x x x x x x e ae be f x e e +++-'⋅+=-,…………………9分而212121212121221x x x x x x x x x x x x e e e e e +----⋅=⋅-- 令210t x x =->,则设22()ttG t e e t -=--,则2222111()1210222t t t t G t e e e e --'=+->⋅⋅⋅-=, ∴ ()y G t =在(0,)+∞上单调递增,则22()(0)0t t G t e et G -=-->=,于是有22t t e e t -->, 即21t t e te ->,且10t e ->,∴ 211t t t e e <-, 即0()1f x '<.…………………12分请考生在第22~24三题中任选一题做答,如果多做,则按所做的第一题记分22.选修4-1几何证明选讲证明:(Ⅰ)依题意,DE BE BE EC=,11∠=∠ , 所以DEB BEC ∆∆,………………2分得34∠=∠,因为45∠=∠,所以35∠=∠,又26∠=∠,可得EBD ACD ∆∆.……………………5分 (Ⅱ)因为因为EBD ACD ∆∆, 所以ED BD AD CD =,即ED AD BD CD=,又ADE CDB ∠=∠,ADE CDB ∆∆,所以48∠=∠,………………7分因为0123180∠+∠+∠=, 因为278∠=∠+∠,即274∠=∠+∠,由(Ⅰ)知35∠=∠, 所以01745180,∠+∠+∠+∠=即0180,ACB AEB ∠+∠=所以A 、E 、B 、C 四点共圆.………………10分23.选修4-4:坐标系与参数方程解:(Ⅰ)曲线1C 的普通方程为2221x y a+=, 射线2C 的直角坐标方程为(0)y x x =≥,…………………3分可知它们的交点为⎝⎭,代入曲线1C 的普通方程可求得22a =. 所以曲线1C 的普通方程为2212x y +=.………………5分 (Ⅱ) ||||OP OQ ⋅为定值.由(Ⅰ)可知曲线1C 为椭圆,不妨设A 为椭圆1C 的上顶点,设,sin )M ϕϕ,(,0)P P x ,(,0)Q Q x , 因为直线MA 与MB 分别与x 轴交于P 、Q 两点, 所以AM AP K K =,BM BQ K K =,………………7分 由斜率公式并计算得1sin P x ϕϕ=-,1sin Q x ϕϕ=+, 所以||||2P Q OP OQ x x ⋅=⋅=.可得||||OP OQ ⋅为定值.……………10分24.选修4-5:不等式选讲解: (Ⅰ)由于37,2,()35 2.x x f x x x +≥-⎧=⎨--<-⎩…………2分 则函数的图象如图所示:(图略)……………5分 (Ⅱ) 由函数()y f x =与函数y ax =的图象可知,当且仅当132a -≤≤时,函数y ax =的图象与函数()y f x =图象没有交点,……………7分 所以不等式()f x ax ≥恒成立,则a 的取值范围为1,32⎡⎤-⎢⎥⎣⎦.…………………10分。

河北省石家庄市2019-2020学年高考数学二模考试卷含解析

河北省石家庄市2019-2020学年高考数学二模考试卷含解析

河北省石家庄市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()f x 是R 上的偶函数,且当[)0,x ∈+∞时,函数()f x 是单调递减函数,则()2log 5f ,31log 5f ⎛⎫ ⎪⎝⎭,()5log 3f 的大小关系是( )A .()()3521log log 3log 55f f f <<⎛⎫⎪⎝⎭B .()()3251log log 5log 35f f f <<⎛⎫⎪⎝⎭C .()()5321log 3log log 55f f f ⎪<⎛⎫⎝⎭< D .()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭< 【答案】D 【解析】 【分析】利用对数函数的单调性可得235log 5log 5log 3>>,再根据()f x 的单调性和奇偶性可得正确的选项. 【详解】因为33log 5log 31>=,5550log 1log 3log 51=<<=, 故35log 5log 30>>.又2233log 5log 42log 9log 50>==>>,故235log 5log 5log 3>>. 因为当[)0,x ∈+∞时,函数()f x 是单调递减函数, 所以()()()235log 5log 5log 3f f f <<. 因为()f x 为偶函数,故()()3331log log 5log 55f f f ⎛⎫== ⎪⎝⎭-, 所以()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭<. 故选:D. 【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.2.若,x y 满足约束条件02636x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最大值为( )A .10B .8C .5D .3【分析】画出可行域,将2z x y =+化为122zy x =-+,通过平移12y x =-即可判断出最优解,代入到目标函数,即可求出最值. 【详解】解:由约束条件02636x y x y ≤+≤⎧⎨≤-≤⎩作出可行域如图,化目标函数2z x y +=为直线方程的斜截式,122zy x =-+.由图可知 当直线122zy x =-+过()3,0A 时,直线在y 轴上的截距最大,z 有最大值为3. 故选:D. 【点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为y ax bz =+ 的形式,在可行域内通过平移y ax =找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.3.已知向量()()1,3,2a m b ==-v v ,,且()a b b +⊥vv v ,则m=( )A .−8B .−6C .6D .8【答案】D 【解析】 【分析】由已知向量的坐标求出a b +rr 的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-r r r r ,又()a b b +⊥rr r ,∴3×4+(﹣2)×(m ﹣2)=0,解得m =1.本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.4.已知函数()cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数()g x x=的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 【答案】D 【解析】 【分析】由函数()f x 的图象关于直线3x π=对称,得1m =,进而得()cos 2sin 2cos 63f x x x x x ππ⎛⎫⎛⎫=+=+=- ⎪ ⎪⎝⎭⎝⎭,再利用图像变换求解即可【详解】由函数()f x 的图象关于直线3x π=对称,得3f π⎛⎫=⎪⎝⎭322m +=1m =,所以()cos 2sin 2cos 63f x x x x x ππ⎛⎫⎛⎫=+=+=- ⎪ ⎪⎝⎭⎝⎭,()2cos2g x x =,故只需将函数()f x 的图象上的所有点“先向左平移3π个单位长度,得2cos ,y x =再将横坐标缩短为原来的12,纵坐标保持不变,得()2cos2g x x =”即可. 故选:D 【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题5.已知关于x sin 2x x m π⎛⎫+-= ⎪⎝⎭在区间[)0,2π上有两个根1x ,2x ,且12x x π-≥,则实数m 的取值范围是( )A .10,2⎡⎫⎪⎢⎣⎭B .[)1,2C .[)0,1D .[]0,1【答案】C 【解析】 【分析】先利用三角恒等变换将题中的方程化简,构造新的函数2sin()6y x π=+,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合12x x π-≥,解得m 的取值范围. 【详解】由题化简得3sin cos x x m +=,2sin()6m x π=+,作出2sin()6y x π=+的图象,又由12x x π-≥易知01m ≤<. 故选:C. 【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.6.设变量,x y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则目标函数2z x y =+的最大值是( )A .7B .5C .3D .2【答案】B 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,表示的可行域,如图,由20 2390x y x y +-=⎧⎨--=⎩可得31x y =⎧⎨=-⎩, 将2z x y =+变形为2y x z =-+, 平移直线2y x z =-+,由图可知当直2y x z =-+经过点()3,1-时, 直线在y 轴上的截距最大, z 最大值为2315z =⨯-=,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( ).金牌 (块) 银牌(块) 铜牌(块) 奖牌总数 24 5 11 12 28 25 16 22 12 54 26 16 22 12 50 27 28 16 15 59 28 32 17 14 63 2951212810030 38 27 23 88A .中国代表团的奥运奖牌总数一直保持上升趋势B .折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C .第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D .统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5 【答案】B 【解析】 【分析】根据表格和折线统计图逐一判断即可. 【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为545956.52+=,不正确; 故选:B 【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.8.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:mm )服从正态分布()280,5N ,则直径在(]75,90内的概率为( )附:若()2~,X N μσ,则()0.6826P X μσμσ-<+=„,()220.9544P X μσμσ-<+=„.A .0.6826B .0.8413C .0.8185D .0.9544【答案】C 【解析】 【分析】根据服从的正态分布可得80μ=,5σ=,将所求概率转化为()2P X μσμσ-<≤+,结合正态分布曲线的性质可求得结果. 【详解】由题意,80μ=,5σ=,则()75850.6826P X <=„,()70900.9544P X <=„, 所以()()185900.95440.68260.13592P X <=⨯-=„,()75900.68260.13590.8185P X <=+=„. 故果实直径在(]75,90内的概率为0.8185. 故选:C 【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.9.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为ˆy=0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重比为58.79kg 【答案】D 【解析】根据y 与x 的线性回归方程为 y=0.85x ﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误. 故选D .10.已知α322sin αα=,则cos2α等于( ) A .23B .29C .13-D .49-【答案】C 【解析】 【分析】322sin αα=可得3cos 3α=,再利用2cos 22cos 1αα=-计算即可. 【详解】因为23cos 2sin ααα=,sin 0α≠,所以3cos 3α=,所以221cos22cos 1133αα=-=-=-. 故选:C. 【点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题. 11.在三棱锥S ABC -中,4SB SA AB BC AC =====,26SC =,则三棱锥S ABC -外接球的表面积是( ) A .403πB .803πC .409πD .809π【答案】B 【解析】 【分析】取AB 的中点D ,连接SD 、CD ,推导出90SDC ∠=o ,设设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F ,可得出OE ⊥平面ABC ,OF ⊥平面SAB ,利用勾股定理计算出球O 的半径,再利用球体的表面积公式可得出结果. 【详解】取AB 的中点D ,连接SD 、CD ,由SAB ∆和ABC ∆都是正三角形,得SD AB ⊥,CD AB ⊥,则34232SD CD ==⨯=,则(((222222336SD CD SC +=+==,由勾股定理的逆定理,得90SDC ∠=o .设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F . 由球的性质可知:OE ⊥平面ABC ,OF ⊥平面SAB , 又312343OE DF OE OF =====,由勾股定理得2226OD OE DE =+=所以外接球半径为R===.所以外接球的表面积为22804433S Rπππ⎛===⎝⎭.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.12.已知符号函数sgnx100010xxx⎧⎪==⎨⎪-⎩,>,,<f(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgn x B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]【答案】A【解析】【分析】根据符号函数的解析式,结合f(x)的单调性分析即可得解.【详解】根据题意,g(x)=f(x)﹣f(ax),而f(x)是R上的减函数,当x>0时,x<ax,则有f(x)>f(ax),则g(x)=f(x)﹣f(ax)>0,此时sgn[g (x)]=1,当x=0时,x=ax,则有f(x)=f(ax),则g(x)=f(x)﹣f(ax)=0,此时sgn[g (x)]=0,当x<0时,x>ax,则有f(x)<f(ax),则g(x)=f(x)﹣f(ax)<0,此时sgn[g (x)]=﹣1,综合有:sgn[g (x)]=sgn(x);故选:A.【点睛】此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.二、填空题:本题共4小题,每小题5分,共20分。

2020石家庄高考模拟理数

2020石家庄高考模拟理数
∴BM⊥平面 ADE,CN⊥平面 ADE,∴BM∥CN; 由题意知 Rt△ABE≌Rt△DCE,∴BM=CN, ∴四边形 BCNM 是平行四边形,∴BC∥MN; 又 BC⊄平面 ADE,MN⊂平面 ADE,∴BC∥平面 ADE; …… …..5 分 (2)由已知,AE、DE 互相垂直,以 E 为原点,ED 所在直线为 x 轴, EA 所在直线为 y 轴,建立空间直角坐标系 E−xyz,如图所示;则 E(0,
于另一点 D,点 O 是△ABD 的重心,则△ACD 的外接圆的半径为 ()
A.2
B. 57 6
C. 57 3
D.8
12.已知定义在 R 上的函数 f ( x) 的图像关于 y 轴对称,其导函数为 f ( x) ,当 x…0 时,不等式
xf ( x) 1− f ( x) . 若 x R ,不等式 ex f (ex ) − ex + ax − axf (ax) 0 恒成立,则正整数
2z = 0
1);……… ….8 分
ur
mv
uuuv EA
=
0
ur
设平面
AEB
的法向量为
m
=(x,y,z),则
mv
uuuv EB
=
0
,得
m
=(1,0,0),………
….9

ur r cos m, n =
ur r urm nr
= −11+ 0 + 0 = −
3 ,……… ….11 分
=
(2n
−1) 3n−1 ,(n
2)
当 n = 1 时上式也成立,所以 an = (2n −1) 3n−1 .……… …..6 分
……… …..5 分
(2)由(1)知 an = (2n −1) 3n−1 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两组,一组 2 个,另一组 3 个,则 6 和 28 恰好在同一组的概率为 ( )
1
A.
5
【答案】B
2
B.
5
3
C.
5
1
D.
10
【解析】
【分析】
推导出基本事件总数,6 和 28 恰好在同一组包含的基本事件个数,由此能求出 6 和 28 恰好
在同一组的概率.
【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组 2 个,
此时直线 =y 3x + z 在 y 轴上的截距最大,目标函数取得最大值,
又由
x
y
−2y =0
+
1
=0
,解得
A(−1,
0)

所以目标函数的最大值为 z =−3× (−1) + 0 =3 ,故选 A.
【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式 组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重 考查了数形结合思想,及推理与计算能力,属于基础题.
河北石家庄市 2020 届高三二模试题 理
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,
只有一项是符合题目要求的
1.设 i
1+
是虚数单位,复数
i
i
=


A. −1 + i
B. -1 − i
C. 1+ i
D. 1− i
【答案】D
【解析】
【分析】
利用复数的除法运算,化简复数 1+ i = 1− i ,即可求解,得到答案. i
【点睛】本题主要考查了集合混合运算,其中解答中熟记集合的并集和补集的概念及运算是 解答的关键,着重考查了运算与求解能力,属于基础题. 3.如图是一个算法流程图,则输出的结果是( )
1
A. 3
【答案】A
B. 4
C. 5
D. 6
【解析】 【分析】
执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.
记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与
运算能力,属于基础题.
6.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的表
面积( )
A. 6 + 2 3
B. 6 + 2 2
C. 4 + 4 2
D.
4+4 3
【答案】C 【解析】 【分析】 画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.
【详解】由题意,复数 1+ i = (1+ i) ⋅ ( − i) = 1− i ,故选 D.
i
i × ( − i)
【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关
键,着重考查了运算与求解能力,属于基础题.
2.已知全集U = R ,集合=A {x x < 1} , B= {x −1 ≤ x ≤ 2} ,则 (CU A) ∩ B =( )
可得函数 g ( x=) sin[2(x + ϕ)=] sin(2x + 2ϕ)
又由函数 g ( x) 为偶函数,所以 2ϕ =π + kπ , k ∈ Z ,解得ϕ = π + kπ , k ∈ Z ,
2
42
因为 0 ≤ ϕ ≤ π ,当 k = 0 时,ϕ = π ,故选 D.
2
4
【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟
5.将函数
f
(x)
=
sin
2x 的图象向左平移ϕ
0

ϕ

π 2
个单位长度,得到的函数为偶函数,
则ϕ 的值为( )
π A.
12
π B.
6
π C.
3
π
D.
4
【答案】D 【解析】 【分析】 利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.
3
【详解】将将函数 f ( x) = sin 2x 的图象向左平移ϕ 个单位长度,
图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基
础题.
x −2y +1≥ 0 4.已知实数 x 、 y 满足不等式组 2x − y −1 ≤ 0 ,则 z =−3x + y 的最大值为( )
y ≥ 0
A. 3
B. 2
C. − 3 2
D. −2
【答案】A
【解析】
2
【分析】
【详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,
正方体的棱长为 2,
4
该几何体的表面积:
1×2×2+ 1×2×2+ 1×2×2 2 + 1×2×2 2 = 4+4 题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键. 7.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6 和 28,进一步研 究发现后续三个“完全数”分别为 496,8128,33550336,现将这五个“完全数”随机分为
A. {x |1 < x ≤ 2}
B. { x 1 #x 2}
C. {x −1 ≤ x < 1}
D. {x | x ≥ −1}
【答案】B 【解析】 【分析】
{ } 由补集的运算求得 C= U A x x ≥ 1 ,再根据集合的并集运算,即可求解,得到答案. 【详解】由题意,集合 A= {x x < 1}, B= {x −1 ≤ x ≤ 2} ,则 C= U A {x x ≥ 1} , { } 根据集合的并集运算,可得 (CU A) ∩ B =x 1 ≤ x ≤ 2 ,故选 B.
另一组 3 个,
基本事件总= 数 n C= 52C33 10 ,
6 和 28 恰好在同一组包含的基本事件个数 m = C22C30 + C22C31 = 4 ,
∴6 和 28 恰好在同一组的概率 =p m=
画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答
案.
x −2y +1≥ 0 【详解】画出不等式组 2x − y −1 ≤ 0 所表示平面区域,如图所示,
y ≥ 0 由目标函数 z =−3x + y ,化为直线 =y 3x + z ,当直线 =y 3x + z 过点 A 时,
【详解】由题意,执行上述的程序框图:
第 1 次循环:满足判断条件,=x 2= , y 1;
第 2 次循环:满足判断条件,=x 4= , y 2 ;
第 3 次循环:满足判断条件,= x 8= ,y 3 ;
不满足判断条件,输出计算结果 y = 3 ,
故选 A.
【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框
相关文档
最新文档