必修1第三章对数函数的运算法则(全)

合集下载

对数的运算 课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册

对数的运算 课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
= log33-1
=-1.
10
解:
11
2. 用lnx , lny , lnz 表示下列各式:
解:(1) lg(xyz)
=lgx+lgy+lgz.
(2)
=lgx+lgy2–lgz
=lgx+2lgy–lgz.
(1) lg(xyz);
= lg(xy2)–lgz
12
(1)利用计算工具求ln2, ln3的近似值;(2)由对数的定义,你能利用ln2, ln3的值求log23的值吗?(3)根据对数的定义, 你能用logca, logcb表示logab(a>0, 且a≠1; b>0, c>0, 且c≠1)吗?
ax =N logaN = x
5
我们知道了对数与指数间的关系,能否利用指数幂运算性质得出相应的对数运算性质呢?
设M=am , N=an,
因为aman=am+n, 所以MN=am+n.
根据指数与对数间的关系可得
logaM=m, logaN=n, loga(MN)=m+n.
3
复习回顾
1. 实数指数幂的运算性质
x = logaN ,
其中a叫做对数的底数,N叫做真数 .
2. 对数的定义
3. 两种特殊的对数
(1) 以10为底的对数叫常用对数, 并把
log10N记作lgN .
(2) 以无理数 e (e=2.71828…)为底的对数叫自然对数, 并把
logeN记作lnN .
(1) aras =ar+s (a>0 , r , s∈R);
解:设里氏9.0级和8.0级地震的能量分别为E1和E2.
由lgE=4.8+1.5M, 可得

对数函数运算公式大全

对数函数运算公式大全

对数函数运算公式大全对数函数是指以常数为底的对数函数。

对数函数运算公式如下:1. 对数函数定义:对数函数的定义为 y = logₐ(x),其中 a 为底数,x 为实数。

2.换底公式:- logₐ(x) = logₑ(x) / logₑ(a),其中 logₑ表示以自然对数为底的对数。

- logₐ(x) = 1 / logₐ⁡(a)。

- logₐ(b) = logₐ(c) / logₐ(b),其中 b、c 为任意正数。

3.对数函数的性质:- logₐ(1) = 0,对于任意正数 a。

- logₐ(a) = 1,对于任意正数 a。

- logₐ(a^m) = m,对于任意正数 a 和整数 m。

- logₐ(m * n) = logₐ⁡(m) + logₐ⁡(n),对于任意正数 a、m 和 n。

- logₐ(m / n) = logₐ⁡(m) - logₐ⁡(n),对于任意正数 a、m 和 n。

- logₐ(m^n) = n * logₐ⁡(m),对于任意正数 a、m,并且 n 为任意实数。

- a^logₐ⁡(x) = x,对于任意正数 a 和实数 x。

4.常用对数函数:- 以底数 10 的对数函数称为常用对数函数,记为 log(x) 或 lg(x)。

- log(x) 的运算规则与对数函数相同。

5.自然对数函数:- 以底数 e(自然常数) 的对数函数称为自然对数函数,记为 ln(x)。

- ln(x) 的运算规则与对数函数相同。

6.对数函数的图像及性质:-对数函数的图像是一个以点(1,0)为对称轴的增函数,即随着x的增大,y也增大。

- 当 x > 1 时,logₐ⁡(x) > 0;当 0 < x < 1 时,logₐ⁡(x) < 0;当 x = 1 时,logₐ⁡(x) = 0。

-当a>1时,对数函数呈现上凸形状;当0<a<1时,对数函数呈现下凸形状。

以上是对数函数运算公式的大致内容,其中包含了对数函数的定义、换底公式、性质以及常用对数函数和自然对数函数的特点。

对数运算法则(自然对数ln的运算)

对数运算法则(自然对数ln的运算)

对数运算法则(自然对数ln的运算)Ln的运算法则:(1)ln(MN)=lnM +lnN(2)ln(M/N)=lnM-lnN(3)ln(M^n)=nlnM(4)ln1=0(5)lne=1注意:拆开后,M,N需要大于0。

自然对数以常数为底数的对数。

记作lnN(N>0)。

扩展资料有界性设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。

单调性设函数f(x)的定义域为D,区间I包含于D。

如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f (x1)>f(x2),则称函数f(x)在区间I上是单调递减的。

单调递增和单调递减的函数统称为单调函数log对数函数基本十个公式?以下是常用的log对数函数的十个基本公式:loga(1) = 0:任何正数的1次幂都等于1,因此loga(1)等于0。

loga(a) = 1:对数函数是幂函数的反函数,因此loga(a)等于1。

loga(ab) = loga(a) + loga(b):对数函数具有加法性,即对数函数中两数之积的对数等于这两个数分别取对数后相加。

loga(a/b) = loga(a) - loga(b):对数函数具有减法性,即对数函数中两数之商的对数等于这两个数分别取对数后相减。

loga(an) = n:对数函数中a的n次幂的对数等于n。

a^(loga(x)) = x:对数函数是幂函数的反函数,因此a的loga(x)次幂等于x。

loga(x·y) = loga(x) + loga(y):对数函数具有乘法性,即对数函数中两数之积的对数等于这两个数分别取对数后相加。

loga(x/y) = loga(x) - loga(y):对数函数具有除法性,即对数函数中两数之商的对数等于这两个数分别取对数后相减。

对数函数运算公式大全

对数函数运算公式大全

对数函数运算公式大全对数函数是数学中的一种重要函数。

它主要由幂函数的逆运算演变而来,可以描述幂函数的指数部分。

对数函数的定义如下:对于任意的正实数 a 和正实数 x,我们将 b 称为以 a 为底 x 的对数,记作 logₐ(x) = b,如果且仅如果 a^b = x。

在实际问题中,对数函数常被用于解决各种指数增长和指数衰减的问题。

我们先来看一下对数函数的基本特性。

1.对数函数的定义域是正实数集,即x∈(0,+∞)。

2.对数函数的值域是全部实数集,即y∈(-∞,+∞)。

3. 对数函数的图像是由直线 y = x 和平行于 x 轴的直线 y =logₐx 组成。

当a>1时,对数函数是增函数;当0<a<1时,对数函数是减函数。

4.对数函数的性质:(a) logₐ(xy) = logₐx + logₐy(b) logₐ(x/y) = logₐx - logₐy(c) logₐ(x^n) = nlogₐx(d) logₐ(1/x) = -logₐx(e) logₐ1 = 0(f) logₐa = 1(g) log₁₀x = loga(x)/loga(10)下面我们来看一些常见的对数函数运算公式。

1. 换底公式:logₐb = logc(b) / logc(a),其中 c 是任意的正实数。

2. 对数的乘法运算公式:logₐ(xy) = logₐx + logₐy3. 对数的除法运算公式:logₐ(x/y) = logₐx - logₐy4. 对数的幂运算公式:logₐ(x^n) = nlogₐx5. 对数的倒数运算公式:logₐ(1/x) = -logₐx6. 底数为 10 的对数与底数为 a 的对数的转换关系:log₁₀x = loga(x) / loga(10)7. 自然对数和常用对数的转换关系:logₑx = ln(x) / ln(ₑ10)8. 对数函数与指数函数的逆运算关系:a^logₐx = x有了以上的对数函数运算公式,在解决实际问题中,我们可以更方便地进行计算和分析。

对数函数的运算法则

对数函数的运算法则

对数函数的运算法则对数函数是数学中常见的一类函数,它在许多科学领域都有广泛的应用。

在对数函数的运算中,有一些基本的法则和性质可以帮助我们简化计算和推导。

本文将介绍对数函数的常用运算法则,包括对数的加减法、乘除法、指数运算法则以及对数函数的换底公式。

一、对数的加减法对数函数的加减法法则可以用以下两个公式表示:1. 对数的加法法则:loga (mn) = loga m + loga n这个公式表示,在同一个底数a下,两个数的乘积的对数等于它们分别的对数之和。

例如,log2 (8×16) = log2 8 + log2 16 = 3 + 4 = 72. 对数的减法法则:loga (m/n) = loga m - loga n这个公式表示,在同一个底数a下,两个数的商的对数等于被除数的对数减去除数的对数。

例如,log10 (100/10) = log10 100 - log10 10 = 2 - 1 = 1二、对数的乘除法对数函数的乘除法法则可以用以下两个公式表示:1. 对数的乘法法则:loga (m^p) = p*loga m这个公式表示,在同一个底数a下,一个数的指数乘积的对数等于指数与底数的对数之积。

例如,log3 (9^2) = 2*log3 9 = 2*2 = 42. 对数的除法法则:loga (m^p/n^q) = p*loga m - q*loga n这个公式表示,在同一个底数a下,两个数的指数商的对数等于被除数的指数与底数的对数之差。

例如,log5 (25^2/5^3) = 2*log5 25 - 3*log5 5 = 2*2 - 3*1 = 4 - 3 = 1三、指数运算法则对数函数的指数运算法则可以用以下两个公式表示:1. 指数和对数的互换:a^loga m = m这个公式表示,在同一个底数a下,以底数为底的对数和指数可以互相抵消,得到原来的数。

例如,2^log2 8 = 82. 对数的指数运算:loga (a^m) = m这个公式表示,在同一个底数a下,以底数为底的对数函数和指数函数可以互相抵消,得到原来的指数。

对数函数运算法则公式

对数函数运算法则公式

对数函数运算法则公式一、什么是对数函数对数函数,又称为指数函数,是一类常见的数学函数,它可以用来表达不同系数的多次方之间的关系。

它的基本形式为y=loga x (a>0, a≠1),其中 a 为底数,x 为真数,y 为对数。

二、对数函数运算法则1. 同底数相加/减法则:若 y1=loga x,y2=loga m,则有:y1+y2=loga x+loga m =loga (xm)y1-y2=loga x-loga m =loga (x/m)2. 同底数乘/除法则:若 y1=loga x,y2=loga m,则有:y1*y2=loga x*loga m =loga (x^m)y1/y2=loga x/loga m =loga (x^(1/m))3. 相乘/除法则:若 y1=loga x,y2=logb m,则有:y1*y2=loga x*logb m =loga (x^b)y1/y2=loga x/logb m =loga (x^(1/b))4. 幂函数的对数运算法则:若 y=ax,则有:loga y=x*loga a5. 指数函数的对数运算法则:若 y=a^x,则有:loga y=x*loga a6. 反函数的对数运算法则:若 y=f-1(x),则有:loga y=loga f-1(x)=loga x7. 同余式的对数运算法则:若y=a^x ≡ b^x mod c,则有:loga y=x*loga a ≡ x*loga b mod c三、总结以上就是关于“对数函数运算法则公式” 的详细介绍,它是一类常见的数学函数,可以用来表达不同系数的多次方之间的关系,它有 7 种运算法则,即同底数相加/减法、同底数乘/除法、相乘/除法、幂函数的对数运算法则、指数函数的对数运算法则、反函数的对数运算法则以及同余式的对数运算法则。

对数函数运算公式

对数函数运算公式

对数函数运算公式对数函数是高中数学中的一个重要概念,它在数学和科学运算中都有广泛的应用。

对数函数有着丰富的性质和运算规则,下面将介绍对数函数的运算公式。

1.对数函数的定义:对数函数是指关于求对数的函数,一般表示为y = logₐx,其中a是底数,x是真数,y是对数。

对数函数的定义域是x > 0,值域是实数集。

2.对数的含义:对数的含义是指一个数相对于一个给定底数的幂次。

对数函数的运算公式是以底数为底的指数函数的反函数。

即x = a^y,y = logₐx。

3.基本对数函数的性质和运算规则:- logₐa = 1:任何数以自己为底的对数都等于1- logₐ1 = 0:任何底数为自然数的对数都等于0。

- logₐaⁿ = n:任何底数为幂的对数等于指数。

- logₐxy = logₐx + logₐy:两个数的乘积的对数等于它们的对数之和。

- logₐ(x/y) = logₐx - logₐy:两个数的商的对数等于它们的对数之差。

- logₐxⁿ = nlogₐx:一个数的幂的对数等于幂次与对数的乘积。

- logₐa = 1/logₐa:对数函数的互逆性,任何数以底数为底的对数等于指数函数的互逆。

4.对数函数的换底公式:换底公式是指当给定一个对数的底不是我们所熟悉的常用底数,需要将其换成我们所熟悉的底数的公式。

换底公式如下:logₐx = logᵦx / logᵦa其中,a,b,x为正实数,且a≠1,b≠15.对数函数与指数函数的关系:对数函数和指数函数是互为反函数的关系,即对数函数是指数函数的反函数,反之亦然。

对数函数可以用来求解指数方程,而指数函数可以通过对数函数求解指数方程的解。

6.常用对数函数:在实际应用中,常用的对数函数是以10为底的常用对数函数(log₁₀x),以及以自然对数e为底的自然对数函数(lnx)。

常用的对数函数主要用于科学计算、对数缩尺、音量、酸碱度等方面。

总结起来,对数函数的运算公式包括对数函数的性质和运算规则、换底公式、对数函数与指数函数的关系等。

必修对数函数的运算法则全

必修对数函数的运算法则全

【一.教学内容:对数运算、对数函数二.重点、难点:1.对数运算(1)x N a =log N a x =⇔(2)01log =a(3)1log =a a[例215151515(3)=+⋅+18log 3log 2log )2(log 66626;(4)=⋅81log 16log 329; (5)=+⋅++)2log 2(log )5log 5)(log 3log 3(log 2559384;(6)=+⋅+2)2(lg 50lg 2lg 25lg 。

解:(1)原式491733)3(27log 7log 27log 22333=====---- (2)原式115log 15==(3)原式18log )3log 2(log 2log 6666++⋅=(4)原式58)3log 54()2log 24(23=⋅= (5)原式815)2log 23()5log 23()3log 65(532=⋅⋅= (6)原式)2lg 50(lg 2lg 25lg ++=[例2]若z y x ,,满足)](log [log log )](log [log log 33132212y x =)]z (log [log log 5515=0=,试比较z y x 、、的大小关系。

解:log 2〔log 21(log 2x)〕=0⇒log 21(log 2x)=1⇒log 2x =21⇒x =2=(215)301.11[例[例C 1,C 2[例[例(1)1log 2-=x y(2))82(log 221--=x x y解:(1)↑=t y 2log 1-=x t ↑+∞↓-∞),1()1,(∴)(x f y =在(+∞,1)↑(2)↓=t y 21log 822--=x x t ↑+∞↓--∞),4()2,(∴)(x f y =在↑--∞)2,([例7]研究函数)1(log )(22x x x f y -+==的定义域、值域、奇偶性、单调性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本讲教育信息】一. 教学内容:对数运算、对数函数二. 重点、难点: 1. 对数运算0,0,1,1,0,0>>≠≠>>N M b a b a(1)x N a =log N a x=⇔(2)01log =a (3)1log =a a(4)N a Na =log(5)N M N M a a a log log )(log +=⋅(6)N M N Ma a alog log log -= (7)M x M a xa log log ⋅=(8)a M M b b a log /log log =(9)b xyb a ya x log log =(10)1log log =⋅a b b a2. 对数函数x y a log =,0>a 且1≠a 定义域 (+∞,0) 值域R单调性 ↓∈)1,0(a ↑+∞∈),1(a奇偶性 非奇非偶 过定点 (1,0)图象x y a log =与x y a1log =关于x 轴对称【典型例题】[例1] 求值(1)=7log 3)91( ;(2)=-++4log 20log 23log 2log 15151515 ; (3)=+⋅+18log 3log 2log )2(log 66626 ;(4)=⋅81log 16log 329 ;(5)=+⋅++)2log 2(log )5log 5)(log 3log 3(log 2559384 ; (6)=+⋅+2)2(lg 50lg 2lg 25lg 。

解:(1)原式491733)3(27log 7log 27log 22333=====---- (2)原式115log 15==(3)原式18log )3log 2(log 2log 6666++⋅=236log 18log 2log 666==+=(4)原式58)3log 54()2log 24(23=⋅=(5)原式815)2log 23()5log 23()3log 65(532=⋅⋅=(6)原式)2lg 50(lg 2lg 25lg ++=2100lg 2lg 225lg ==+=[例2] 若z y x ,,满足)](log [log log )](log [log log 33132212y x =)]z (log [log log 5515=0=,试比较z y x 、、的大小关系。

解:log 2〔log 21 (log 2x)〕=0⇒log 21(log 2x)=1⇒log 2x =21⇒x =2=(215)301.同理可得 y =33=(310)301,z =55=(56)301.∵310>215>56,由幂函数y =x 301在(0,+∞)上递增知,y>x>z.[例3] 若==2121log log b b a a ……λ==n a b n log ,则=⋅)(log 21)(21n a a a b b b n 。

解:由已知λ11a b =,λλn n a b a b == 22∴ λ)()(11n n a a b b =∴ λ=)(log 21)(1n a a b b b n[例4] 图中四条对数函数x y a log =图象,底数a 为101,53,34,3这四个值,则相对应的C 1,C 2,C 3,C 4的值依次为( )A.101,53,34,3 B. 53,101,34,3 C. 101,53,3,34 D. 53,101,3,34答案:A[例5] 求下列函数定义域(1))]lg[lg(lg x y =(2))43lg(2--=x x y (3))1(log 21-=x y解:(1)1lg 0]lg[lg =>x ∴ 1lg >x ∴ ),10(+∞∈x (2)0432>--x x ),4()1,(+∞⋃--∞∈x (3)110≤-<x ]2,1(∈x[例6] 求下列函数的增区间(1)1log 2-=x y (2))82(log 221--=x x y解:(1)↑=t y 2log 1-=x t ↑+∞↓-∞),1()1,( ∴ )(x f y =在(+∞,1)↑(2)↓=t y 21log 822--=x x t ↑+∞↓--∞),4()2,(∴ )(x f y =在↑--∞)2,([例7] 研究函数)1(log )(22x x x f y -+==的定义域、值域、奇偶性、单调性。

解:(1)x x x x ≥=>+221 ∴ 012>-+x x ∴ 定义域为R(2)R x ∈),0(12+∞∈-+x x ∴ R y ∈为值域(3))1(log )](1)([log )(2222x x x x x f ++=--+-=- )()1(log 11log 12222x f x x xx -=-+=-+=-∴ 奇函数(4)),0(+∞∈x 时,xx x x y ++=-+=11log )1(log 2222↓++=xx t 112t y 2log =↑ ∴ )(x f y =在),0(+∞上↓∵ 奇函数 ∴ )(x f y =为R 上↓[例8] 已知)1,0(∈x ,0>a 且1≠a ,试比较)1(log x a +与)1(log x a -的大小关系。

解:(1))1,0(∈a 时,)1(log )1(log x x a a --+0)1(log )1(log )1(log 2<--=--+-=x x x a a a(2)),1(+∞∈a 时,)1(log )1(log x x a a --+)1(log )1(log x x a a -++=0)1(log 2<-=x a综上所述,)1(log )1(log x x a a -<+[例9] 函数)34(log )(22++==kx kx x f y(1)若定义域为R ,求k 的取值范围。

(2)若值域为R ,求k 的取值范围。

解:(1)0=k 时,3log 2=y R x ∈4300121602<<⇒⎩⎨⎧<-=∆>k k k k ∴ )43,0[∈k (2)⎩⎨⎧≥-=∆>0121602k k k ),43[+∞∈⇒k【模拟试题】(答题时间:30分钟)1. 求值:(1)=-2log 5)1251(; (2)=+-+8lg 5.0lg 215lg 4lg ; (3)=+-)2log 3(log )6)(log 6(log 3232 ;(4)=-+++6lg 26lg )6(lg 3lg 2lg 62。

2. 正实数y x ,满足zyx643==(1)求证:yx z 2111=- (2)比较y y x 6,4,3的大小关系3. 已知a =2log 3,b =2log 5试用b a ,表示90log 304. ),1(d x ∈,x a d 2log =,2log x b d =,)(log log x c d d =,试比较c b a ,,大小关系。

5. 若12>>>a b a ,则b a abb a a b b alog ,log ,log ,log 的大小关系是 。

6. 1>>m n ,试比较n m log 与n m 2log 2的大小关系。

7. 研究函数)1(log )(-==xa a x f y (0>a 且1≠a )的定义域及单调性。

【试题答案】1.(1)8558log )2log (355==-- (2)原式1lglg 22==(3)2)2log 3(log )2log 1)(3log 1(3232=+-++(4)16lg 16lg )16(lg 3lg 2lg 2=-+=-++ 2.(1)令010643>===kz y x ∴ 6lg 4lg 3lg kz k y k x ===2lg 1)3lg 6(lg 111k k x z =-=- 2lg 124lg 21kk y == ∴ 成立(2)k k k y x =-=-4lg 43lg 3434lg 3lg 3lg 44lg 3⋅-⋅0]81lg 64[lg 4lg 3lg <-⋅⋅=k]4lg 66lg 4[6lg 4lg 6lg 64lg 464-⋅⋅=-=-kk k z y0]64lg 36[lg 6lg 4lg 2<-⋅=k∴ z y x 643<< 3. ⎪⎪⎩⎪⎪⎨⎧==5log 13log 122ba5log 3log 15log 3log 2130log 90log 90log 22222230++++==b a ab b a ab ba b a ++++=++++=2111121 4. x x a d d log log ⋅= x b d log 2⋅= ∵ )1,0(log ∈x d∴ c a b >>>05. 0log 1log <-=b b a a a)21,0(0log 1log ∈>-=a a b b b )1,21(log ∈a b )2,1(log ∈b a ∴ baa b a b a b b a log log log log >>>6. m n m n n n m m 22222log 1log 1log log 2log log ++-=-0)log 1(log log log 2222>+-=m m mn 7.(1))1,0(∈a 01a a x => ∴ 定义域为)0,(-∞ ↓=t y a log↓-=1x a t ∴ ↑=)(x f y(2)),1(+∞∈a 01a a x=> ∴ 定义域为),0(+∞↑=t y a log ↑-=1x a t ∴ ↑=)(x f y。

相关文档
最新文档