第1章《有理数》期末复习检测题(2课时)

合集下载

七年级上册有理数章末试卷

七年级上册有理数章末试卷

七年级上册第一章有理数章末试卷班级________ 姓名_________一.选择题(共10小题,每小题3分)1.﹣2024的绝对值是( A )A .2024B .﹣2024C .10241D .20241 2.下列各数中,是负整数的是( B )A .+2B .﹣1C .﹣1.5D .51 3.去年12月的某天,沈阳、大连、丹东、哈尔滨这四个城市的最低气温分别是﹣12℃,3℃,0℃,﹣18℃,其中气温最低的城市是( D )A .大连B .丹东C .沈阳D .哈尔滨4.下列四个数轴的画法中,规范的是( C )A .B .C .D .5.2023年10月26日,“神舟十七号”载人飞船发射成功,在飞船上有一种零件的尺寸标准是300±5(单位:mm ),则下列零件尺寸不合格的是( D )A .295mmB .298mmC .304mmD .310mm6.有理数a 、b 在数轴上对应点的位置如图所示,则下列判断正确的是( C )A .a >0B .b <0C .a <bD .a >b7.下列各对数中,互为相反数的是( B )A .﹣(+1)和+(﹣1)B .﹣(﹣1)和+(﹣1)C .﹣(+1)和﹣1D .+(﹣1)和﹣1 8.下列说法正确的是( D )A .最小的正整数是0B .﹣a 是负数C .符号不同的两个数互为相反数D .﹣a 的相反数是a9.如图,数轴上有A 、B 、C 、D 四个点,其中绝对值最小的数对应的点是( B )A .点AB .点BC .点CD .点D10.如果x 为有理数,式子22024+-x 存在最大值,那么这个最大值是( B )A .2025B .2024C .2023D .2022二.填空题(共6小题,每小题3分)11.下列各数:π 31.2 0 6 4.3- 32,,,,, -,其中非负数有 4 个. 12.比较大小:⎪⎭⎫ ⎝⎛--54 > ﹣85-.(用“>”“=”或“<”连接) 13.a -2和﹣3互为相反数,那么a = 5 .14.观察下列各数;,,,,,65 54 43 32 21---...,根据它们的排列规律写出第100个数: 101100 。

【人教版】七年级数学上册:第1章《有理数》章末检测卷(含答案)

【人教版】七年级数学上册:第1章《有理数》章末检测卷(含答案)

第一章检测卷一.选择题(每小题3分,共30分)1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作()A.+50元B.-50元C.+150元D.-150元2.在有理数-4,0,-1,3中,最小的数是()A.-4B.0C.-1D.33.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点AB.点BC.点CD.点D4.2016年第一季度,某市“蓝天白云.繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是()A.408×104B.4.08×104C.4.08×105D.4.08×1065.下列算式正确的是()A.(-14)-5=-9B.0-(-3)=3C.(-3)-(-3)=-6D.|5-3|=-(5-3)6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),-1-1中,化简结果等于1的个数是()A.3个B.4个C.5个D.6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为()A.4.2B.4.3C.4.4D.4.58.有理数a,b在数轴上的位置如图所示,下列各式成立的是()A.b>0B.|a|>-bC.a+b>0D.ab<09.若|a|=5,b=-3,则a-b的值为()A.2或8B.-2或8C.2或-8D.-2或-810.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22016的末位数字是( )A.2B.4C.6D.8二.填空题(每小题3分,共24分)11.-3的相反数是________,-2018的倒数是________. 12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有______________________________,分数有______________________________.13.绝对值大于4而小于7的所有整数之和是________.14.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位到达点B ,则这两点所表示的数分别是________和________.15.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出16.太阳的半径为696000千米,用科学记数法表示为________千米;把210400精确到万位是________.17.已知(a -3)2与|b -1|互为相反数,则式子a 2+b 2的值为________.18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a +b +c =________.三.解答题(共66分)19.(8分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来. -112,0,2,-|-3|,-(-3.5).20.(16分)计算:(1)5×(-2)+(-8)÷(-2); (2)⎣⎡⎦⎤2-5×⎝⎛⎭⎫-122÷⎝⎛⎭⎫-14; (3)(-24)×⎝⎛⎭⎫12-123-38; (4)-14-(1-0×4)÷13×[(-2)2-6].21.(10分)小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m /min ,那么小明跑步一共用了多长时间?22.(8分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?23.(12分)某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).学 生 A B C D E F 身 高157 162 159 154 163 165 身高与平均身高的差值-3+2-1a+3b(1)列式计算表中的数据a 和b ;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)24.(12分)下面是按规律排列的一列数: 第1个数:1-⎝⎛⎭⎫1+-12;第2个数:2-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34;第3个数:3-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34⎣⎡⎦⎤1+(-1)45⎣⎡⎦⎤1+(-1)56. (1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B2.A3.A4.D5.B6.B7.C8.D9.B 10.C 11.3 -1201812.-4,-0.8,-15,-343,-|-24|+8.3,-0.8,-15,-34313.0 14.4 -4 15.1 16.6.96×105 21万 17.1018.110 解析:找规律可得c =6+3=9,a =6+4=10,b =ac +1=91,∴a +b +c =110. 19.解:数轴表示如图所示,(5分)由数轴可知-(-3.5)>2>0>-112>-|-3|.(8分)20.解:(1)原式=-10+4=-6.(4分) (2)原式=⎝⎛⎭⎫2-54×(-4)=-8+5=-3.(8分) (3)原式=-12+40+9=37.(12分)(4)原式=-1-1×3×(-2)=-1+6=5.(16分) 21.解:(1)如图所示:(3分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(6分)(3)(2+1.5+1)×2=9(km)=9000m ,9000÷250=36(min). 答:小明跑步一共用了36min.(10分)22.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(5分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)23.解:(1)a =154-160=-6,b =165-160=+5.(4分)(2)学生F 最高,学生D 最矮,最高与最矮学生的身高相差11厘米.(8分)(3)-3+2+(-1)+(-6)+3+5=0,所以这6名学生的平均身高与全班学生的平均身高相同,都是160厘米.(12分)24.解:(1)第1个数:12;第2个数:32;第3个数:52.(6分)(2)第2017个数:2017-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34…⎣⎡⎦⎤1+(-1)40324033⎣⎡⎦⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)。

人教版七年级数学上册第一章 有理数 章末检测卷(含答案解析)

人教版七年级数学上册第一章 有理数 章末检测卷(含答案解析)

第一章有理数章末检测卷(人教版)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分120分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.数据“175****0000”用科学记数法表示为()A .81.7510⨯B .817.510⨯C .91.7510⨯D .101.7510⨯2.下列说法正确的是()A .-1的相反数是1B .-1的倒数是1C .-1的绝对值是±1D .-1是最小的负整数3.如图所示的是某用户微信支付情况,100-表示的意思是()A .发出100元红包B .收入100元C .余额100元D .抢到100元红包4.下列说法中正确的是()A .正分数和负分数统称为分数B .正整数、负整数统称为整数C .零既可以是正整数,也可以是负整数D .一个有理数不是正数就是负数5.已知有理数a ,b 在数轴上表示的点如图所示,则下列结论中正确的是()A .0a b ->B .0a b +>C .ab小于1-D .0ab >6.若()22m -与3n +互为相反数,则()2021m n +的值是()A .-1B .1C .2021D .-20217.计算1234567820172018-+-+-+-+⋅⋅⋅+-的结果是()A .-1009B .-2018C .0D .-18.如图,在一个由6个圆圈组成的三角形里,把-25到-30这6个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最小值是()A .-84B .-85C .-86D .-879.定义:如果x a N =(0a >,且1a ≠),那么x 叫做以a 为底N 的对数,记做log a x N =.例如:因为2749=,所以7log 492=;因为35125=,所以5log 1253=.下列说法:①6log 636=;②3log 814=;③若4log (14)2a +=,则2a =;④222log 64log 32+log 2=;正确的序号有()A .①③B .②③C .①②③D .②③④10.有两个正数a 和b ,满足a <b ,规定把大于等于a 且小于等于b 的所有数记作[a ,b ],例如大于等于0且小于等于5的所有数记作[0,5].如果m 在[5,15]中,n 在[20,30]中,则mn的一切值所在的范围是()A .13,64⎡⎤⎢⎥⎣⎦B .11,42⎡⎤⎢⎥⎣⎦C .4,63⎡⎤⎢⎥⎣⎦D .13,24⎡⎤⎢⎥⎣⎦二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.若a ,b 互为相反数,则(a +b ﹣1)2016=_____.12.已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.13.比较大小:56⎛⎫+- ⎪⎝⎭__________89--.14.某检修小组从A 地出发,在东西方向的马路上检修线路,若规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下(单位:km ):7+,9-,8+,6-,5-.则收工时检修小组在A 地______边______km .15.定义一种新运算“⊕”:2x yx y x -⊕=.如:()()32273233-⨯-⊕-==,则()248⊕⊕=______.16.使得521n ⋅+是完全平方数的整数n 的值是_________.17.若()()42530x x y y ++-⋅+-≤,()x y +的最大值和最小值的差__________.18.如图,数轴上A 、B 两点之间的距离AB =12,有一根木棒PQ ,PQ 在数轴上移动,当Q 移动到与A 、B 其中一个端点重合时,点P 所对应的数为5,且点P 始终在点Q 的左侧,当Q 移动到线段AB 的中点时,点P 所对应的数为__________.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.把下列各数分别填入相应的集合里.-3,23--,0,227,-3.14,20,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…};20.计算题:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)231152525424-⨯+⨯-⨯;(4)2141420.8263553⎛⎫+-+-- ⎪⎝⎭.21.综合与实践:一名外卖员骑电动车从饭店出发送外卖,向西走了2千米到达小琪家,然后又向东走了4千米到达小莉家,继续向东走了3.5千米到达小刚家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示1千米,点,,,O A B C 分别表示饭店,小莉家,小刚家和小琪家.(1)请你在数轴上表示出点,,,O A B C 的位置;(2)小刚家距小琪家多远?(3)小莉步行到小刚家,每小时走5千米;小琪骑自行车到小刚家,每小时骑15千米.若两个人同时分别从自己家出发,问两个人能否同时到达小刚家?若不能,谁先到达?22.已知a ,b ,c 在数轴上的对应点如图所示.(1)判断正、负,用“>”“<”填空:a +b 0,c -a 0,b +c 0,b -c 0,a -b0;(2)化简:|a |+|a +b |+|c -a |-2|b +c |-|b -c |+|a -b |.23.如图在数轴上A 点表示数a ,B 点表示数b ,a ,b 满足2a ++6b -=0;(1)点A 表示的数为;点B 表示的数为;(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC =2BC ,则C 点表示的数;(3)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请分别表示出甲,乙两小球到原点的距离(用t 表示).24.在平面直角坐标系xOy 中,对于任意两点M ,N ,给出如下定义:点M ,N 的横坐标之差的绝对值与纵坐标之差的绝对值的和叫做这两点之间的“直角距离”,记作:MN d ,即点()11,M x y 与点()22,N x y 之间的“直角距离”为1212MN x x d y y -+-=.已知点()3,2A -,点()2,1B .(1)A 与B 两点之间的“直角距离”AB d =______;(2)点()0,C t 为y 轴上的一个动点,当t 的取值范围是______时,AC BC d d +的值最小;(3)若动点P 位于第二象限,且满足AP BP d d ≥,请在图中画出点P 的运动区域(用阴影表示).25.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,(3)(3)(3)(3)-÷-÷-÷-记作4(3)-,读作“3-的4次商”.一般地,我们把n 个(0)a a ≠相除记作n a ,读作“a 的n 次商”.初步探究(1)直接写出结果:32=________;(2)关于除方,下列说法错误的是_________.①任何非零数的2次商都等于1;②对于任何正整数n ,(1)1n -=-;③4334=;④负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算能够转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?例:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式4(3)-=_______;517⎛⎫= ⎪⎝⎭_______.(4)想一想:将一个非零有理数a 的n 次商写成幂的形式等于___________;(5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭________.26.在数学问题中,我们常用几何方法解决代数问题,借助数形结合的方法使复杂问题简单化.材料一:我们知道|a |的几何意义是:数轴上表示数a 的点到原点的距离;|a ﹣b |的几何意义是:数轴上表示数a ,b 的两点之间的距离;|a +b |的几何意义是:数轴上表示数a ,﹣b 的两点之间的距离;根据绝对值的几何意义,我们可以求出以下方程的解.(1)|x ﹣3|=4解:由绝对值的几何意义知:在数轴上x表示的点到3的距离等于4∴x1=3+4=7,x2=3﹣4=﹣1(2)|x+2|=5解:∵|x+2|=|x﹣(﹣2)|,∴其绝对值的几何意义为:在数轴上x表示的点到﹣2的距离等于5.∴x1=﹣2+5=3,x2=﹣2﹣5=﹣7材料二:如何求|x﹣1|+|x+2|的最小值.由|x﹣1|+|x+2|的几何意义是数轴上表示数x的点到表示数1和﹣2两点的距离的和,要使和最小,则表示数x的这点必在﹣2和1之间(包括这两个端点)取值.∴|x﹣1|+|x+2|的最小值是3;由此可求解方程|x﹣1|+|x+2|=4,把数轴上表示x的点记为点P,由绝对值的几何意义知:当﹣2≤x≤1时,|x﹣1|+|x+2|恒有最小值3,所以要使|x﹣1|+|x+2|=4成立,则点P必在﹣2的左边或1的右边,且到表示数﹣2或1的点的距离均为0.5个单位.故方程|x﹣1|+|x+2|=4的解为:x1=﹣2﹣0.5=﹣2.5,x2=1+0.5=1.5.阅读以上材料,解决以下问题:(1)填空:|x﹣3|+|x+2|的最小值为;(2)已知有理数x满足:|x+3|+|x﹣10|=15,有理数y使得|y﹣3|+|y+2|+|y﹣5|的值最小,求x﹣y的值.(3)试找到符合条件的x,使|x﹣1|+|x﹣2|+…+|x﹣n|的值最小,并求出此时的最小值及x的取值范围.第一章有理数章末检测卷(人教版)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分120分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.数据“175****0000”用科学记数法表示为()A .81.7510⨯B .817.510⨯C .91.7510⨯D .101.7510⨯【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,确定n 的值时.要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:175****0000=1.75×1010故选D【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.下列说法正确的是()A .-1的相反数是1B .-1的倒数是1C .-1的绝对值是±1D .-1是最小的负整数【答案】A【分析】根据相反数和倒数以及绝对值的概念求解即可.【详解】解:A 、-1的相反数是1,故选项正确,符合题意;B 、-1的倒数是-1,故选项错误,不符合题意;C 、-1的绝对值是1,故选项错误,不符合题意;D 、-1是最大的负整数,故选项错误,不符合题意.故选:A .【点睛】此题考查了-1的相反数和倒数以及绝对值的概念,解题的关键是熟练掌握相反数和倒数的概念.3.如图所示的是某用户微信支付情况,100-表示的意思是()A .发出100元红包B .收入100元C .余额100元D .抢到100元红包【答案】A【分析】根据用正负数表示两种具有相反意义的量解答即可.【详解】解:如图某用户微信支付情况,−100表示的意思是发出100元红包故选:A .【点睛】本题考查了正数和负数,解题的关键是明确用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.4.下列说法中正确的是()A .正分数和负分数统称为分数B .正整数、负整数统称为整数C .零既可以是正整数,也可以是负整数D .一个有理数不是正数就是负数【答案】A【分析】按照正负,有理数分为正数、0、负数;按照整数分数,有理数分为整数、分数;以此查看选项作答即可.【详解】A .正分数和负分数统称为分数,说法正确,故本选项符合题意;B .正整数、零和负整数统称为整数,原说法错误,故本选项不符合题意;C .零既不是正整数,也不是负整数,原说法错误,故本选项不符合题意;D .零是有理数,但零既不是正数,也不是负数,原说法错误,故本选项不符合题意;故选:A .【点睛】本意考查有理数的分类,解决本题的关键是不能混淆整数和正数,注意0的划分范围.5.已知有理数a ,b 在数轴上表示的点如图所示,则下列结论中正确的是()A .0a b ->B .0a b +>C .ab小于1-D .0ab >【答案】A【分析】由数轴上,右边的数总是大于左边的数,得到a >0>b ,且a b <,再根据有理数的运算法则解答.【详解】解:根据数轴可知a >0>b ,且a b <,0a b ∴->,0a b +<,故A 正确,B 错误,∴10ab-<<,故C 错误,0ab ∴<,故D 错误,故选:A .【点睛】本题考查数轴上两数比较大小及有理数的运算法则,掌握数形结合的思想是解题关键.6.若()22m -与3n +互为相反数,则()2021m n +的值是()A .-1B .1C .2021D .-2021【答案】A【分析】由偶次幂及绝对值的非负性可知2m =,3n =-,然后代入求解即可.【详解】解:∵()22m -与3n +互为相反数,∴()22m -30n ++=,∴20m -=,30n +=,∴2m =,3n =-,∴()()20212021231m n +=-=-;故选A .【点睛】本题主要考查有理数的乘方运算、绝对值的非负性及代数式的值,掌握偶次幂及绝对值的非负性是解题的关键.7.计算1234567820172018-+-+-+-+⋅⋅⋅+-的结果是()A .-1009B .-2018C .0D .-1【答案】A【分析】利用加法的结合律将原式整理成(12)(34)(20172018)-+-+⋅⋅⋅+-即可求解.【详解】解:1234567820172018-+-+-+-+⋅⋅⋅+-,(12)(34)(56)(78)(20172018)=-+-+-+-+⋅⋅⋅+-,(1)(1)(1)(1)(1)=-+-+-+-+⋅⋅⋅+-,1009=-,故选:A .【点睛】本题考查了有理数的加减法,解题的关键是掌握相应的运算法则.8.如图,在一个由6个圆圈组成的三角形里,把-25到-30这6个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最小值是()A .-84B .-85C .-86D .-87【答案】A【分析】三个顶角分别是−29,−30,−28,−29与−30之间是−-25,−29和−28之间是−27,−30和−28之间是−26,这样每边的和才能相等并且S 有最小值.【详解】解:如图,由图可知S =−29+(−25)+(−30)=−84.故选∶A .【点睛】本题考查了有理数的加法,解题关键是三角形的三个顶点的数字是−25~−30这6个数最小的三个数字.9.定义:如果x a N =(0a >,且1a ≠),那么x 叫做以a 为底N 的对数,记做log a x N =.例如:因为2749=,所以7log 492=;因为35125=,所以5log 1253=.下列说法:①6log 636=;②3log 814=;③若4log (14)2a +=,则2a =;④222log 64log 32+log 2=;正确的序号有()A .①③B .②③C .①②③D .②③④【答案】D【分析】由新定义可得:2777log 49log 2,==利用新定义逐一计算判断,从而可得答案.【详解】解:根据新定义可得:6log 61,=故①不符合题意;4333log 81log 4,==故②符合题意; 4log (14)2a +=,2144,a \+=解得:2,a =故③符合题意;6222log 64log 6,==5222222log 32+log 2log log 516,=+=+=∴222log 64log 32+log 2=,故④符合题意,故选D【点睛】本题考查的新定义运算,有理数的乘方运算的含义,正确理解新定义,运用新定义解决问题是解本题的关键.10.有两个正数a 和b ,满足a <b ,规定把大于等于a 且小于等于b 的所有数记作[a ,b ],例如大于等于0且小于等于5的所有数记作[0,5].如果m 在[5,15]中,n 在[20,30]中,则mn的一切值所在的范围是()A .13,64⎡⎤⎢⎥⎣⎦B .11,42⎡⎤⎢⎥⎣⎦C .4,63⎡⎤⎢⎥⎣⎦D .13,24⎡⎤⎢⎥⎣⎦【答案】A【分析】根据m 在[5,15]内,n 在[20,30]内,可得m n的最小值与最大值.【详解】解:∵m 在[5,15]内,n 在[20,30]内,∴5≤m ≤15,20≤n ≤30,∴m n 的最小值为51=306,最大值为153=204∴m n 的一切值所在的范围是13,64⎡⎤⎢⎥⎣⎦.故选:A .【点睛】本题考查了新定义的有理数运算,关键是得到5⩽m ⩽15,20⩽n ⩽30,求出m n 的最大与最小值.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.若a ,b 互为相反数,则(a +b ﹣1)2016=_____.【答案】1【分析】根据相反数的性质得a +b =0,再代入进行计算即可.【详解】解:∵a ,b 互为倒数,∴a +b =0,∴(a +b ﹣1)2016=20162016(01)(1)1-=-=,故答案为:1.【点睛】此题主要考查相反数的性质和有理数的乘方,关键是正确理解相反数的性质.12.已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.【答案】1或-3##-3或1【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,可以得到a +b =0,cd =1,m =±2,然后代入所求式子计算即可.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,∴a +b =0,cd =1,m =±2,当m =2时,()()2202120112020a b m cd ++-=+-=;当m =﹣2时,()()2202120132020a b m cd ++-=-+-=-;故答案为:1或-3.【点睛】本题考查有理数的混合运算,解答本题的关键是求出a +b =0,cd =1,m =±2.13.比较大小:56⎛⎫+- ⎪⎝⎭__________89--.【答案】>【分析】根据正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的其值反而小,比较即可.【详解】解:∵5566⎛⎫+-=- ⎪⎝⎭,8899--=-,且832530936636=>=,∴5869->-,∴5869⎛⎫+->-- ⎪⎝⎭.故答案为:>【点睛】本题考查了有理数大小比较,绝对值的性质,要熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.14.某检修小组从A 地出发,在东西方向的马路上检修线路,若规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下(单位:km ):7+,9-,8+,6-,5-.则收工时检修小组在A 地______边______km .【答案】西5【分析】将五次行驶的记录数据相加即可得到答案.【详解】∵798655-+--=-,∴在A 地西边5千米处.故答案为:西;5.【点睛】本题考查了有理数的加减法,能够将实际问题和有理数的加减相结合,并且能够准确计算出结果是解决本题的关键.15.定义一种新运算“⊕”:2x y x y x -⊕=.如:()()32273233-⨯-⊕-==,则()248⊕⊕=______.【答案】4【分析】根据2x y x y x-⊕=,可以计算出()248⊕⊕的值.【详解】解:∵2x y x y x -⊕=,∴()248⊕⊕=42822(3)2(2(3)442-⨯-⨯-⊕=⊕-==.故答案为:4.【点睛】本题考查了有理数的混合运算、新定义,解答本题的关键是会用新定义解答问题.16.使得521n ⋅+是完全平方数的整数n 的值是_________.【答案】4【分析】由5×2n +1是完全平方数,可设5×2n +1=m 2(其中m 为正整数),可得5×2n =m 2-1=(m +1)(m -1),即可得m 为奇数,然后设m =2k -1(其中k 是正整数),即可得方程组,解方程组即可求得答案.【详解】解:设5×2n +1=m 2(其中m 为正整数),则5×2n =m 2-1=(m +1)(m -1),∵5×2n 是偶数,∴m 为奇数,设m =2k -1(其中k 是正整数),则5×2n =4k (k -1),即5×2n -2=k (k -1).显然k >1,∵k 和k -1互质,∴25211n k k -⎧=⨯⎨-=⎩或2512n k k -=⎧⎨-=⎩或2215n k k -⎧=⎨-=⎩,解得:k =5,n =4.因此,满足要求的整数n 为4.故答案为:4.【点睛】此题考查了完全平方数的知识.此题难度较大,解题的关键是将原式变形,可得5×2n =m 2-1=(m +1)(m -1),然后得到m 为奇数,则可设m =2k -1(其中k 是正整数),从而得到方程组.17.若()()42530x x y y ++-⋅+-≤,()x y +的最大值和最小值的差__________.【答案】11【分析】根据426,55x x y y ++-≥+-≥,而()()42530x x y y ++-⋅+-≤,求出42,05x y -≤≤≤≤,分别计算x+y 的最大值和最小值,即可得到答案.【详解】解:∵426,55x x y y ++-≥+-≥,∴()()42530x x y y ++-⋅+-≥,而()()42530x x y y ++-⋅+-≤,∴()()42530x x y y ++-⋅+-=,∴42,05x y -≤≤≤≤,∴当x =2,y =5时,x+y 有最大值2+5=7,当x=-4,y=0时,x+y有最小值-4+0=-4,∴x+y的最大值和最小值的差为7-(-4)=11,故答案为:11.【点睛】此题考查了绝对值最值问题,根据式子讨论得到字母的取值范围进行计算是解题的关键.18.如图,数轴上A、B两点之间的距离AB=12,有一根木棒PQ,PQ在数轴上移动,当Q移动到与A、B其中一个端点重合时,点P所对应的数为5,且点P始终在点Q的左侧,当Q移动到线段AB的中点时,点P所对应的数为__________.【答案】11或-1##-1或11【分析】设PQ的长度为m,当点Q与点A重合时,此时点P对应的数为5,则点A对应的数为m+5,点B对应的数为m+17,由此即可求解;当点Q与点B重合时,同理可得,点B对应的数为m+5,点A对应的数为m-7,由此即可求解.【详解】解:设PQ的长度为m,当点Q与点A重合时,此时点P对应的数为5,则点A对应的数为m+5,点B对应的数为m+17∴当点Q到AB中点时,点P此时对应的数为:()1755112m m+-++=,当点Q与点B重合时,同理可得,点B对应的数为m+5,点A对应的数为m-7,∴点Q到AB中点时,点P此时对应的数为:()57512m m+---=-,故答案为:11或-1.【点睛】此题综合考查了数轴上两点的距离,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.把下列各数分别填入相应的集合里.-3,23--,0,227,-3.14,20,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…};【答案】(1)22,20,1.88,7⎧⎭+⎫⎨⎬⎩ (2)()23,,3.14,5,3---⎧-⎭-+⎫⎨⎬⎩ (3)(){}3,0,20,5,--+ (4)222,,3.14,1.88,37-⎧-⎭-+⎫⎨⎬⎩ 【分析】(1)根据正数的概念即可得;(2)根据负数的概念即可得;(3)根据整数的概念即可得;(4)根据分数的概念即可得.(1)解:2233--=-,(5)5-+=-,正数集合:22,20,1.88,7⎧⎭+⎫⎨⎬⎩ .(2)解:负数集合:()23,,3.14,5,3---⎧-⎭-+⎫⎨⎬⎩ .(3)解:整数集合:(){}3,0,20,5,--+ .(4)解:分数集合:222,,3.14,1.88,37-⎧-⎭-+⎫⎨⎬⎩ .【点睛】本题考查了正数与负数、整数与分数、化简绝对值,熟记各概念和绝对值的性质是解题关键.20.计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)231152525424-⨯+⨯-⨯;(4)2141 420.826 3553⎛⎫+-+--⎪⎝⎭.【答案】(1)8(2)-1(3)-12.5(4)15.2【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=3+2-6 =-1 (3)解:231152525424 -⨯+⨯-⨯=311 252525424 -⨯+⨯-⨯=311 25424⎛⎫-⨯-+⎪⎝⎭=1 252 -⨯=-12.5 (4)解:2141 420.826 3553⎛⎫+-+--⎪⎝⎭=21441 4226 35553+-++=21144(46(22)33555++-+=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.21.综合与实践:一名外卖员骑电动车从饭店出发送外卖,向西走了2千米到达小琪家,然后又向东走了4千米到达小莉家,继续向东走了3.5千米到达小刚家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示1千米,点,,,O A B C 分别表示饭店,小莉家,小刚家和小琪家.(1)请你在数轴上表示出点,,,O A B C 的位置;(2)小刚家距小琪家多远?(3)小莉步行到小刚家,每小时走5千米;小琪骑自行车到小刚家,每小时骑15千米.若两个人同时分别从自己家出发,问两个人能否同时到达小刚家?若不能,谁先到达?【答案】(1)见解析(2)7.5千米(3)不能同时到达,小琪先到达【分析】(1)根据题意在数轴上表示出点O ,A ,B ,C 的位置即可;(2)由(1)得,小琪家在饭店西2千米处,小刚家在饭店东5.5千米处,根据数轴即可计算;(3)分别计算出两人所行的距离及所用时间,再进行比较,即可得答案.(1)根据已知,以饭店为原点,以向东为正方向,用1个单位长度表示1千米,外卖员骑电动车从饭店出发,向西走了2千米,即为-2,到达小琪家,然后又向东走了4千米,即为242-+=,到达小莉家,继续向东走了3.5千米,即为2 3.5 5.5+=,到达小刚家,最后回到饭店,所以,点O ,A ,B ,C 的位置如图所示:;(2)由数轴可得,22, 5.5OC OB =-==,2 5.57.5BC ∴=+=,所以,即小刚家距小琪家有7.5千米;(3)由数轴可得, 5.52 3.5AB =-=,∴小莉用时为3.550.7h ÷=,小琪用时为7.5150.5h ÷=,0.70.5> ,∴两人不能同时到达,小琪先到达.【点睛】本题考查了数轴的简单应用,明确数轴的表示方法及数轴上的点与点所表示的数的关系及绝对值等概念,是解题的关键.22.已知a ,b ,c 在数轴上的对应点如图所示.(1)判断正、负,用“>”“<”填空:a +b 0,c -a0,b +c 0,b -c 0,a -b 0;(2)化简:|a |+|a +b |+|c -a |-2|b +c |-|b -c |+|a -b |.【答案】(1)<,<,<,>,>;(2)2a -b +2c【分析】(1)根据数轴确定字母的符号以及大小,即可判断;(2)根据字母和式子的符号,求解绝对值,化简即可.【详解】解:(1)由数轴可得:0c b a <<<,且b a<-∴0a b +<,0c a -<,0b c +<,0b c ->,0a b ->故答案为:<,<,<,>,>(2)||||||||2||a a b c a b c b c a b +--++-+--+22a a b c a b c b c a b=---+++-++-22a b c=-+【点睛】此题考查了数轴的应用,以及绝对值的化简,解题的关键是根据数轴判断出字母以及各式子的符号.23.如图在数轴上A 点表示数a ,B 点表示数b ,a ,b 满足2a ++6b -=0;(1)点A 表示的数为;点B 表示的数为;(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC =2BC ,则C 点表示的数;(3)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请分别表示出甲,乙两小球到原点的距离(用t 表示).【答案】(1)-2;6(2)103或14(3)甲球与原点的距离为:t +2;当03t时,乙球到原点的距离为62t -;当3t >时,乙球到原点的距离为26t -【分析】(1)根据非负数的性质求得a =-2,b =6;(2)分C 点在线段AB 上和线段AB 的延长线上两种情况讨论即可求解;(3)甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:①当0<t ≤3时,乙球从点B 处开始向左运动,一直到原点O ,此时OB 的长度-乙球运动的路程即为乙球到原点的距离;②当t >3时,乙球从原点O 处开始向右运动,此时乙球运动的路程-OB 的长度即为乙球到原点的距离.(1)解:∵|a +2|+|b −6|=0,∴a +2=0,b −6=0,解得,a =−2,b =6,∴点A 表示的数为−2,点B 表示的数为6.故答案为:−2;6.(2)设数轴上点C 表示的数为c ,∵AC =2BC ,∴|c −a |=2|c −b |,即|c +2|=2|c −6|,∵AC =2BC >BC ,∴点C 不可能在BA 的延长线上,则C 点可能在线段AB 上和线段AB 的延长线上,①当C 点在线段AB 上时,则有−2⩽c ⩽6,得c +2=2(6−c ),解得:c =103;②当C 点在线段AB 的延长线上时,则有c >6,得c +2=2(c −6),解得c =14,故当AC =2BC 时,c =103或c =14;故答案为:103或14.(3)∵甲球运动的路程为:1⋅t =t ,OA =2,∴甲球与原点的距离为:t +2;乙球到原点的距离分两种情况:①当0<t ⩽3时,乙球从点B 处开始向左运动,直到原点O ,∵OB =6,乙球运动的路程为:2⋅t =2t ,乙到原点的距离:6−2t (0⩽t ⩽3);②当t >3时,乙球从原点O 处开始一直向右运动,此时乙球到原点的距离为:2t −6(t >3).【点睛】本题主要考查数轴、数轴上两点之间的距离、绝对值的非负数的性质,解题的关键是掌握数轴、绝对值的非负数的性质,注意分类讨论.24.在平面直角坐标系xOy 中,对于任意两点M ,N ,给出如下定义:点M ,N 的横坐标之差的绝对值与纵坐标之差的绝对值的和叫做这两点之间的“直角距离”,记作:MN d ,即点()11,M x y 与点()22,N x y 之间的“直角距离”为1212MN x x d y y -+-=.已知点()3,2A -,点()2,1B .(1)A 与B 两点之间的“直角距离”AB d =______;(2)点()0,C t 为y 轴上的一个动点,当t 的取值范围是______时,AC BC d d +的值最小;(3)若动点P 位于第二象限,且满足AP BP d d ≥,请在图中画出点P 的运动区域(用阴影表示).【答案】(1)6(2)12t ≤≤(3)见解析【分析】(1)根据定义即可求得;(2)根据定义可得215AC BC d d t t +=-+-+,再分段讨论即可求得(3)AP BP d d ≥,则0AP BP d d -≥,根据定义,计算出AP BP d d -即可.(1)解:根据题意得:3221516AB d =--+-=+=,故答案为:6;(2)解:根据题意得:AC BCd d +302201t t=--+-+-+-215t t =-+-+当<1t 时,2<0t -,1<0t -,()()21528AC BC d d t t t +=----+=-+,故此时不存在最小值,当12t ≤≤时,20t -≤,10t -≥,()()2156AC BC d d t t +=--+-+=,故此时的最小值为6,当>2t 时,2>0t -,1>0t -,()()21522AC BC d d t t t +=-+-+=+,故此时不存在最小值,综上,当12t ≤≤时,AC BC d d +的值最小;故答案为:12t ≤≤;(3)设点P (x ,y )∵点P 在第二象限,∴x <0,y >032AP d x y=--+-21BP d x y=-+-3221AP BP d d x y x y-=--+-----=3221x x y y----+---①当0<y ≤1时3221AP BP d d x x y y-=----+---=321x x ----+若x <-3,则原式=(-3-x )-(2-x )+1=-4(不符合题意)若-3<x <0,则原式=(x +3)-(2-x )+1=2x +2∵AP BPd d ≥∴0AP BP d d -≥,即2x +2≥0,解得:x ≥-1当0<y ≤1时,x ≥-1,如图;②当1<y ≤2时3221AP BP d d x x y y-=----+---=3232x x y----+-若x <-3,则原式=(-3-x )-(2-x )+3-2y =-2-2y (不符合题意)若-3<x <0,则原式=(x +3)-(2-x )+3-2y =2x -2y +4∵AP BPd d ≥∴0AP BP d d -≥,即2x -2y +4≥0,整理得:y ≤x +2当1<y ≤2时,y ≤x +2,如图③当y >2时3221AP BP d d x x y y-=----+---=321x x -----若x <-3,则原式=(-3-x )-(2-x )-1=-6(不符合题意)若-3<x <0,则原式=(x +3)-(2-x )-1=2x ,∵x <0,∴2x <0,(不符合题意)综上:点P的运动范围如图所示.【点睛】本题考查了新定义运算,理解题目中新定义运算的概念是解题的关键,在去掉绝对值符号时,注意分清楚绝对值符号里面的正负,若不知道正负,则应该分类讨论.25.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,(3)(3)(3)(3)-÷-÷-÷-记作4(3)-,读作“3-的4次商”.一般地,我们把n 个(0)a a ≠相除记作n a ,读作“a 的n 次商”.初步探究(1)直接写出结果:32=________;(2)关于除方,下列说法错误的是_________.①任何非零数的2次商都等于1;②对于任何正整数n ,(1)1n -=-;③4334=;④负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算能够转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?例:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式4(3)-=_______;517⎛⎫= ⎪⎝⎭_______.(4)想一想:将一个非零有理数a 的n 次商写成幂的形式等于___________;(5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________.【答案】(1)12;(2)②③;(3)213⎛⎫- ⎪⎝⎭,37;(4)21n a -⎛⎫ ⎪⎝⎭;(5)314-【分析】(1)利用题中的新定义计算即可求出值;(2)利用题中的新定义分别判断即可;(3)利用题中的新定义计算即可表示成幂的形式;(4)根据题干和(1)(2)(3)的规律总结即可;(5)将算式中的除方部分根据(4)中结论转化为幂的形式,再根据有理数的混合运算法则计算即可.【详解】解:(1)3122222=÷÷=;(2)当a ≠0时,a 2=a ÷a =1,因此①正确;对于任何正整数n ,当n 为奇数时,(1)(1)(1)...(1)1n -=-÷-÷÷-=-,当n 为偶数时,(1)(1)(1)...(1)1n -=-÷-÷÷-=,因此②错误;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③错误;负数的奇数次商结果是负数,负数的偶数次商结果是正数,因此④正确;故答案为:②③;(3)4(3)-=(3)(3)(3)(3)-÷-÷-÷-=111(3)333⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭213⎛⎫- ⎪⎝⎭,5111111777777⎛⎫=÷÷÷÷ ⎪⎝⎭=177777⨯⨯⨯⨯=37;(4)由题意可得:将一个非零有理数a 的n 次商写成幂的形式等于21n a -⎛⎫ ⎪⎝⎭;(5)2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()()()23112344÷-⨯-+-⨯=()12714⨯--=314-【点睛】此题考查了有理数的混合运算,理解题中除方的运算法则是解本题的关键.26.在数学问题中,我们常用几何方法解决代数问题,借助数形结合的方法使复杂问题简单化.材料一:我们知道|a |的几何意义是:数轴上表示数a 的点到原点的距离;|a ﹣b |的几何意义是:数轴上表示数a ,b 的两点之间的距离;|a +b |的几何意义是:数轴上表示数a ,﹣b 的两。

初一数学第一章有理数检测题(有答案)

初一数学第一章有理数检测题(有答案)

初一数学第一章有理数检测题(有答案)要想学好数学,就一定要多多做题,积聚阅历。

下面是小编为大家整理的初一数学第一章有理数检测题(有答案),欢迎大家参考!第一章有理数检测题(本检测题总分值:100分,时间:90分钟)一、选择题(每题3分,共30分)1.假设表示添加,那么表示()A.添加B.添加C.增加D.增加2.有理数在数轴上表示的点如下图,那么的大小关系是( )3.以下说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是正数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B. 2C. 3D. 44.(2021江西中考)以下四个数中,最小的数是( )A. B. 0 C. -2 D. 25.有理数、在数轴上对应的位置如下图,那么( )A. 0B. 0C. - 0D. - 06.在-5,- ,-3.5,-0.01,-2,-212各数中,最大的数是( )A.-212B.- C .-0.01 D.-57.(2021福州中考)地球绕太阳公转的速度约是110 000千米/时,将110 000用迷信记数法表示为( )A.11104B.1.1105C.1.1104D.0.111068.用四舍五入法按要求对0.05019区分取近似值,其中错误的选项是( )A.0.1(准确到0.1)B.0.05(准确到百分位)C.0.05(准确到千分位)D.0.050 2(准确到0.0001)9.小明近期几次数学测试效果如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次检验的效果是( )A.90分B.75分C.91分D.81分10.假定规则〝!〞是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,那么的值为( )A. B. C. D.二、填空题(每题3分,共24分)11. 的倒数是____; 的相反数是____.12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 .13.假定01,那么,,的大小关系是 .14.+5.7的相反数与-7.1的相对值的和是 .15.每辆汽车要装4个轮胎,那么51只轮胎至少能装配辆汽车.16.-9、6、-3这三个数的和比它们相对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记载是:调入38台,调出42台,调入27台,调出33台,调出40台,那么这个仓库现有电脑台.18. 规则﹡,那么(-4)﹡6的值为 .三、解答题(共46分)19.(6分)计算以下各题:(1)10 0.1 6;(2)( 12;(3)[(-4)2-(1-32) 2] 22.20.(8分)比拟以下各对数的大小:(1) 与 ; (2) 与 ;(3) 与 ; (4) 与 .21.(6分)10袋小麦以每袋150千克为准,超越的千克数记为正数,缺乏的千克数记为正数,区分记为:,与规范质量相比拟,这10袋小麦总计超越或缺乏多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?22.(6分)假定,求的值.23.(6分)小虫从某点O动身在不时线下去回匍匐,假定向右匍匐的路程记为正,向左匍匐的路程记为负,爬过的路程依次为(单位:cm):问:(1)小虫能否回到动身点O ?(2)小虫分开动身点O最远是多少厘米?(3)在匍匐进程中,假设每匍匐1 cm奖励一粒芝麻,那么小虫共可失掉多少粒芝麻?24.(6分)同窗们都知道,|5-(-2)|表示5与-2之差的相对值,实践上也可了解为5与-2两数在数轴上所对的两点之间的距离.试探求:(1)求|5-(-2)|=______.(2)找出一切契合条件的整数,使得 =7,这样的整数是_____.25.(8分)一辆货车从超市动身,向东走了1千米,抵达小明家,继续向东走了3千米抵达小兵家,然后向西走了10千米,抵达小华家,最后又向东走了6千米完毕行程.(1)假设以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的详细位置.第25题图(2)请你经过计算说明货车最后回到什么中央?(3)假设货车行驶1千米的用油量为0.25升,请你计算货车从动身到完毕行程共耗油多少升?第一章有理数检测题参考答案1.C 解析:在一对具有相反意义的量中,把其中的一个量规则为〝正〞的,那么与它意义相反的量就是〝负〞的.〝正〞和〝负〞相对,所以假设表示添加,那么表示增加 .2.D 解析:由数轴可知,所以其在数轴上的对应点如下图,3.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、正数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.应选B.4. C 解析:依据〝正数大于0,0大于正数,正数大于正数〞可知,这四个数中,最小的一定是正数,再依据〝两个正数,相对值大的反而小〞可得-25.A 解析:是正数,是正数,离原点的距离比离原点的距离大,所以,应选A.6.C 解析:可将这些数标在数轴上,最左边的数最大.也可以依据:正数比拟大小,相对值大的反而小.应选C.7. B 解析:迷信记数法的表示方式为a×10n的方式,其中1≤|a|10,n为整数.表示时关键要正确确定a的值以及n的值,110 000=1.1105.8.C 解析:C应该是0.050.9.C 解析:小明第四次检验的效果是应选C.10.C 解析:依据题意可得:100!=100×99×98×97× ×1,98!=98×97× ×1,∴ =100×99=9 900,应选C.11. 解析:依据倒数和相反数的定义可知的倒数为的相反数是 .12. 解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,区分位于点的两侧,区分是13 解析:当01时,14.1.4 解析:的相反数为,的相对值为7.1,所以+5.7的相反数与-7.1的相对值的和是15.12 解析:51÷4=12 3.所以51只轮胎至少能装配12辆汽车.16.24 解析:,,所以 .17.50 解析:将调入记为〝+〞,调出记为〝-〞,那么依据题意有所以这个仓库现有电脑50台.18.-9 解析:依据﹡,得(-4)﹡6 .19. 剖析:(1)依据乘法交流律先交流位置,再应用乘法法那么计算即可;(2)应用乘法分配律(a+b+c)m=am+bm+cm计算即可;(3)依据运算顺序,有括号先算括号外面的(先算括号外面的乘方,再算乘除,最后算加减),最后就能算出结果.=2.20.解:(1) 所以(2) =1, =9,所以 .(3)(4)21.剖析:将十个数相加,假定和为正,那么为超越的千克数,假定和为负,那么为缺乏的千克数;假定将这个数加1 500,那么为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.解:∵∴ 与规范质量相比拟,这10袋小麦总计少了2 kg10袋小麦的总质量是1 500-2=1 498(kg).每袋小麦的平均质量是22.解:当所以原式=-1.23.剖析:(1)假定将爬过的路程(向右匍匐记为正,向左匍匐记为负)相加和为0,那么小虫回到动身点.(2)可画图直观看出.(3)将所给数的相对值相加即为所奖励的芝麻数. 解:(1)∵ ,∴ 小虫最后回到动身点O.(2)12㎝.(3) + + + + + + =54,∴ 小虫可失掉54粒芝麻.24.剖析:(1)直接去括号,再依照去相对值的方法去相对值就可以了.(2)要求的整数值可以停止分段计算,令或时,分为3段停止计算,最后确定的值.解:(1)7. 新(2)令或,那么或 .当时,,当时,,当 2时,,∴ 综上所述,契合条件的整数有:-5,-4,-3,-2,-1,0,1,2.25. (1)依据,以超市为原点,以向东为正方向,用1个单位长度表示1千米.一辆货车从超市动身,向东走了1千米,抵达小明家,继续向东走了3千米抵达小兵家,然后向西走了10千米,抵达小华家,最后又向东走了6千米完毕行程,那么小明家、小兵家和小华家在数轴上的位置如下图. (2)这辆货车一共行走的路程,实践上就是1+3+10+6=20(千米),货车从动身到完毕行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.解:(1)小明家、小兵家和小华家在数轴上的位置如下图. 第25题答图(2)由题意得(+1)+(+3)+(-10)+(+6)=0,因此货车回到了超市.(3)由题意得,1+3+10+6=20,货车从动身到完毕行程共耗油0.25×20=5(升).答:(1)参见上图;(2)货车最后回到了超市;(3)货车从动身到完毕行程共耗油5升.以上就是查字典数学网为大家整理的初一数学第一章有理数检测题(有答案),怎样样,还满意吗?希望对大家的学习有所协助!。

人教版七年级上册数学期末复习第一章《有理数》专项测试题

人教版七年级上册数学期末复习第一章《有理数》专项测试题

人教版2020-2021学年上期七年级数学期末复习第一章《有理数》专项测试题班级:__________ 姓名:__________ 分数:__________一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知a,b是有理数,若a在数轴上的对应点的位置如图所示,且a+b<0,有以下结论:①b<0;②a−b<0;③b<−a<a<−b;④|a|<|b|,其中结论正确的个数是()A.4个B.2个C.3个D.1个2. 用“☆”定义新运算:对于任意的有理数a和b,都有a☆b=b2+a,例如:9☆5=52+9=34,则2☆(1☆3)的值为()A.99B.100C.101D.1023. 点A,B在数轴上的位置如图所示,其对应的数分别是a和b,以下结论正确的是()<−1.(1)b−a<0;(2)|a|<|b|;(3)a+b>0;(4)baA.(1)(2)(3)B.(2)(3)(4)C.(1)(3)D.(2)(4)4. 下列各组数中,①−(−2)和−|−2|;②(−1)2和−12;③23和32;④(−2)3和−23.互为相反数的有()A.④B.①②C.①②③D.①②④5. 已知数轴上A,B两点之间的距离为6个单位长度,点A表示的有理数是−4,若A,B两点经折叠后重合,此时折线与数轴的交点表示的有理数是()A.−1B.−7C.−1或−7D.1或56. 若|x+3|+|y−2|=0,则x y的值为()A.−6B.−9C.9D.67. 已知a,b,c在数轴上的位置如图所示,化简:|a|+|c−a|+|b−c|的结果为()A.−2a+bB.bC.−bD.2a+b8. 下列结论错误的是()A.若a>0,b<0,则a−b>0B.若a<0,b>0,则a−b<0C.若a<0,b<0,则a−(−b)>0D.若a<0,b<0,且|b|>|a|,则a−b>09. 已知整数a1,a2,a3,a4,…,满足下列条件:a1=0,a2=−|a1+1|,a3=−|a2+2|,a4=−|a3+3|,…依此类推,则a2021的值为()A.2020B.−2020C.−1010D.101010. 已知:|x|=3,|y|=2,且x>y,则x+y的值为()A.5B.1C.5或1D.−5或−1二、填空题(本题共计4 小题,每题3 分,共计12分,)11. 计算:(−4)2−(−2020)0=________.12. 已知|a−2|与|b+5|互为相反数,则a+b的值是________.13. a|a|+b|b|(ab≠0)的所有可能的值有________.14. 某商场对顾客实行优惠,规定:①如果一次购物不超过200元,则不予折扣;②如一次购物超过200元,但不超过500元,则按标价的九折优惠;③如果一次购物超过500元的,其中500元按②给予优惠,超过500元的部分则给予八折优惠.某人两次去购物付款168元与423元,如果他只去一次购买同样的物品,则应付款________元.三、解答题(本题共计7 小题,共计58分,)15.(8分) 计算.(1)(23−112−415)×(−60);(2)−23−(1−0.5)×13×[2−(−3)2].16.(8分) 分别计算下列三组数和的绝对值与绝对值的和,比较所得结果,你发现了什么?你有什么样的猜想?(1)2,3;(2)1,−5;4(3)−7,−2.317.(8分) 某供电局线路检修班乘汽车沿南北方向检修路线,检修班的记录员把当天行车情况记录如下:(1)求J地与起点之间的路程有多少km?(2)若汽车每1km耗油0.12升.这天检修班从起点开始,最后到达J地,一共耗油多少升?(精确到0.1升)18. (8分)若a,b互为相反数,c,d互为倒数,e是最大的负整数,求(a+b)−2cd+3e的值.19.(8分) 有理数a,b,c在数轴上的对应点位置如图:(1)用“<”连接0,a,b,c四个数;(2)化简:|a+b|+|b−c|−|a+c|−|a−b|.20. (9分)规定符号“∗”的意义是a∗b={a2−b(a≥b),b2+a(a<b),比如3∗1=32−1=8,2∗3=32+2=11.求(−3)∗(−2)+4∗(−1)的值.21.(9分) 下表为某校七年级50名学生参加某次跳绳比赛的情况,规定标准数量为每人每分钟100个(超过记为+,不足记为−).(1)50名同学中跳绳最多的同学一分钟跳的个数是________个,跳的最少的同学一分钟跳的个数是________个;(2)跳绳比赛的计分方式如下:①若每分钟跳的个数是标准数量,不计分;②若每分钟跳的个数超过标准数量,每多跳1个加2分;③若每分钟跳的个数没有达到标准数量,每少跳1个扣1分.如果这50名同学跳绳总积分超过200分,便可得到学校的奖励,请你通过计算说明这50名同学能否得到学校奖励?参考答案与试题解析人教版2020-2021学年上期七年级数学期末复习第一章《有理数》专项测试题一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】C【解析】根据图示,可得:a>0,然后根据a+b<0,逐项判断即可.【解答】解:∵a>0,a+b<0,∴ b<0,故①符合题意;∵a>0,b<0,∴a−b>0,故②不符合题意;∵a>0,a+b<0,∴ |b|>|a|,b<0,∴ b<−a<a<−b,故③符合题意;∴ a>0,a+b<0,∴|a|<|b|,故④符合题意,综上,结论正确的为①③④,共有3个.故选C.2.【答案】D【解析】利用a☆b=b2+a代入求解即可.【解答】解:∴ 1☆3=32+1=10,∴ 2☆(1☆3)=102.故选D.3.【答案】B【解析】根据坐标轴的位置,结合各项结论进行判断即可.【解答】解:由数轴可知:b>3,−3<a<0,<−1,∴ b−a>0,|a|<|b|,a+b>0,ba∴ (2)(3)(4)正确;(1)错误.故选B.4.【答案】B【解析】认真审题,首先需要了解有理数的乘方(有理数乘方的法则:1、正数的任何次幂都是正数2、负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(−a)n=−a n 或(a−b)n=−(b−a)n, 当n为正偶数时:(−a)n=a n或(a−b)n=(b−a)n),还要掌握相反数(只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;相反数的和为0;a+b=0:a、b互为相反数)的相关知识才是答题的关键.【解答】解:①−(−2)=2,−|−2|=−2,故互为相反数;②(−1)2=1,−12=−1,故互为相反数;③23=8,32=9,不互为相反数;④(−2)3=−8,−23=−8,相等,不互为相反数;所以互为相反数的有①②.故选B.5.【答案】C【解析】分当点B在点A的左侧时和当点B在点A的右侧时两种情况讨论,分别求出点B表示的有理数,即可求出折线与数轴的交点表示的有理数.【解答】解:当点B在点A的左侧时,点B表示的有理数是−4−6=−10,=−7;所以折线与数轴的交点表示的有理数是−10+(−4)2当点B在点A的右侧时,点B表示的有理数是−4+6=2,=−1.所以折线与数轴的交点表示的有理数是−4+22故选C.6.【答案】C【解析】根据非负数的性质即可求出答案.【解答】解:由题意可知:x+3=0,y−2=0,∴ x=−3,y=2,∴ x y=(−3)2=9.故选C.7.【答案】A【解析】由数轴可知:a<c<0<b,再根据有理数的运算法则,求出绝对值里的代数式的正负性,最后根据绝对值的性质化简.解:由数轴可得:a<c<0<b,∴ a<0,c−a>0,b−c>0,∴ |a|+|c−a|+|b−c|=−a+c−a+b−c=−2a+b.故选A.8.【答案】C【解析】根据各项中a与b的正负,利用有理数的减法法则判断即可得到结果.【解答】解:A,若a>0,b<0,则a−b>0,正确;B,若a<0,b>0,则a−b<0,正确;C,若a<0,b<0,则a−(−b)=a+b<0,不正确;D,若a<0,b<0,且|b|>|a|,则a−b>0,正确,故选C.9.【答案】C【解析】根据数的变化可得出“a2n=a2n+1=−n(n为正整数)”,再结合2021=2×1010+1,即可得出a2021的值.【解答】解:依题意,得:a1=0,a2=−1,a3=−1,a4=−2,a5=−2,a6=−3,a7=−3,a8=−4,…,∴ a2n=a2n+1=−n(n为正整数).又∴ 2021=2×1010+1,∴ a2021=−1010.故选C.10.C【解析】首先根据x和y的绝对值确定x和y的值,然后代入求解即可.【解答】解:∴ |x|=3,∴ x=3或−3.∴ |y|=2,∴ y=2或−2.又∴ x>y,∴ x=3,y=2或x=3,y=−2.当x=3,y=2时,原式=3+2=5;当x=3,y=−2,原式=3−2=1.故选C.二、填空题(本题共计4 小题,每题 3 分,共计12分)11.【答案】15【解析】无【解答】解:(−4)2−(−2002)0=16−1=15.故答案为:15.12.【答案】−3【解析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列式求出a、b的值,然后相加即可得解.【解答】解:∴ |a−2|与|b+5|互为相反数,∴ |a−2|+|b+5|=0,∴ a−2=0,b+5=0,解得a=2,b=−5,∴ a+b=2−5=−3.故答案为:−3.13.【答案】2,0,−2【解析】根据绝对值的性质,可化简绝对值,根据有理数的除法,可得答案.【解答】解:当a>0,b>0时,a|a|+b|b|=1+1=2;当a>0,b<0时,a|a|+b|b|=1−1=0;当a<0,b>0时,a|a|+b|b|=−1+1=0;当a<0,b<0时,a|a|+b|b|=−1−1=−2.故答案为:2,0,−2.14.【答案】560.4【解析】此题暂无解析【解答】解:某人两次去购物,分别付款168元与423元,由于商场的优惠规定,168元的商品未优惠,而423元的商品是按九折优惠后的,则实际商品价格为423÷0.9=470元,如果他只去一次购买同样的商品即价值168+470=638元的商品时,应付款为:故答案为:560.4.三、解答题(本题共计7 小题,共计58分)15.【答案】解:(1)(23−112−415)×(−60)=23×(−60)+(−112)×(−60)+(−415)×(−60) =−40+5+16=−19.(2)−23−(1−0.5)×13×[2−(−3)2]=−8−12×13×(2−9)=−8−16×(−7)=−486+76=−416.【解析】(1)根据乘法分配律将(−60)分别去乘以括号里面的每一项,再利用有理数乘法的运算法则进行计算求解.根据有理数乘方的运算法则先计算−23和(−3)2,再利用有理数混合运算法则来计算求解.【解答】解:(1)(23−112−415)×(−60)=23×(−60)+(−112)×(−60)+(−415)×(−60) =−40+5+16=−19.(2)−23−(1−0.5)×13×[2−(−3)2]=−8−12×13×(2−9)=−8−16×(−7) =−486+76=−416. 16.【答案】解:(1)|2+3|=5,|2|+|3|=5.(2)|14+(−5)|=434,|14|+|−5|=514.(3)|−7+(−23)|=723, |−7|+|−23|=723 .发现了(1)和(3)中两数和的绝对值与绝对值的和相等 .猜想:同号两数和的绝对值等于其绝对值的和,异号两数和的绝对值小于其绝对值的和 .【解析】(1)|2+3|=5,|2|+|3|=5 .(2)|14+(−5)|=434,|14|+|−5|=514 . (3)|−7+(−23)|=723, |−7|+|−23|=723 .发现了(1)和( 3)中西数和的绝对值与绝对值的和相等 .猜想:同号两数和的绝对值等于地绝对值的和,异号两数和的绝对值小于其绝对近的和 .【解答】解:(1)|2+3|=5,|2|+|3|=5.(2)|14+(−5)|=434,|14|+|−5|=514.(3)|−7+(−23)|=723, |−7|+|−23|=723. 发现了(1)和(3)中两数和的绝对值与绝对值的和相等 .猜想:同号两数和的绝对值等于其绝对值的和,异号两数和的绝对值小于其绝对值的和 .17.【答案】解:(1)规定向北为正,向南为负,则路程为:(+10)+(−4)+(+6)+(+2)+(−5)+(+12)+(−3)+(+9)+(−10)+(+7)=10−4+6+2−5+12−3+9−10+7=46−22,=24.所以J地与起点之间的路程有24km.(2)10+4+6+2+5+12+3+9+10+7=68,68×0.12=8.16≈8.2(升).所以一共耗油8.2升.【解析】(1)规定向北为正,向南为负,把所有的数据相加,然后根据有理数的加法运算法则进行计算即可得解;(2)求出行驶的路程的和,然后乘以每千米耗油0.12升,进行计算即可得解.【解答】解:(1)规定向北为正,向南为负,则路程为:(+10)+(−4)+(+6)+(+2)+(−5)+(+12)+(−3)+(+9)+(−10)+(+7)=10−4+6+2−5+12−3+9−10+7=46−22,=24.所以J地与起点之间的路程有24km.(2)10+4+6+2+5+12+3+9+10+7=68,68×0.12=8.16≈8.2(升).所以一共耗油8.2升.18.【答案】解:根据题意得,a+b=0,cd=1,e=−1,(a+b)−2cd+3e=0−2×1+(−3)=−5.【解析】答案未提供解析。

(完整版)第一章《有理数》测试题(含答案)

(完整版)第一章《有理数》测试题(含答案)

第一章《有理数》测试题一、填空题(每小题4分,共20分):1.下列各式-12,323,0,(-4)2,-|-5|,-(+3.2),422,0.815的计算结果,是整数的有________________,是分数的有_________________,是正数的有_________________,是负数的有___________________;2.a 的相反数仍是a ,则a =______;3.a 的绝对值仍是-a ,则a 为______;4.绝对值不大于2的整数有_______;5.700000用科学记数法表示是_ __,近似数9.105×104精确到_ _位,有___有效数字.二、判断正误(每小题3分,共21分):1.0是非负整数………………………………………………………………………( )2.若a >b ,则|a |>|b |……………………………………………………………( )3.23=32………………………………………………………………………………( )4.-73=(-7)×(-7)×(-7)……………………………………………( )5.若a 是有理数,则a 2>0…………………………………………………………( )6. 若a 是整数时,必有a n ≥0(n 是非0自然数) …………………………………………( )7. 大于-1且小于0的有理数的立方一定大于原数……………… …………( )三、选择题(每小题4分,共24分):1.平方得4的数的是…………………………………………………………………( )(A )2 (B )-2 (C )2或-2 (D )不存在2.下列说法错误的是…………………………………………………………………( )(A )数轴的三要素是原点,正方向、单位长度(B )数轴上的每一个点都表示一个有理数(C )数轴上右边的点总比左边的点所表示的数大(D )表示负数的点位于原点左侧3.下列运算结果属于负数的是………………………………………………………( )(A )-(1-98×7) (B )(1-9)8-17(C )-(1-98)×7 (D )1-(9×7)(-8)4.一个数的奇次幂是负数,那么这个数是…………………………………………( )(A )正数 (B )负数 (C )非正数 (D )非负数5.若ab =|ab |,必有………………………………………………………………( )(A )ab 不小于0 (B )a ,b 符号不同 (C )ab >0 (D )a <0 ,b <0 6.-133,-0.2,-0.22三个数之间的大小关系是……………………………( ) (A )-133>-0.2>-0.22 (B )-133<-0.2<-0.22 (C )-133>-0.22>-0.2 (D )-0.2>-0.22>-133 四、计算(每小题7分,共28分)1.(-85)×(-4)2-0.25×(-5)×(-4)3; 2.-24÷(-232)×2+521×(-61)-0.25;3.4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷-; 4.(1876597-+-)×(-18)+1.95×6-1.45×0.4.五、(本题7分)当321-=a ,322-=b 时,求代数式3(a +b )2-6ab 的值.参考答案一、答案:1、-12,0,(-4)2,-|-5|,422; 323,-(+3.2),0.815; 323(-4)2,422,0.815; -12,-|-5|,-(+3.2).2、答案:0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为a =03、答案:负数或0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为负数.4、答案:0,±1,±2.解析:不大于2的整数包括2,不小于-2的整数包括-2,所以不应丢掉±2.5、答案:7×105;十;4个.解析:700000=7×100000=7×105;9.105×104=9.105×1000=91050,所以是精确到十位;最后的0前的数字5直到左面第一个不是0的数字9,共有4个数字,所以有4个有效数字.二、1、答案:√解析:0既是非负数,也是整数.2、答案:×解析:不仅考虑正数,也要考虑负数和0 .当a =0,b <0 时,或a <0且b <0时, |a |>|b |都不成立.3、答案:×解析:23=2×2×2=8,32=3×3=9,所以23≠324、答案:×解析:-73不能理解为-7×3.5、答案:×解析:不能忘记0.当a=0时,a2 ≯0.6、答案:×解析:注意,当a<0时,a的奇次方是负数,如(-3)3 =-27<0.7、答案:√解析:大于-1且小于0的有理数的绝对值都是小于1的正数,它们的乘积的绝对值变小;又,大于-1且小于0的有理数的立方一定是负数,所以大于-1且小于0的有理数的立方一定大于原数.三、1、答案:C.解析:平方得4的数不仅是2,也不仅是-2,所以答2或-2才完整.2、答案:B.解析:虽然每一个有理数都可以用数轴上唯一的一个点来表示,但是数轴上的每一个点不都表示一个有理数.3、答案:B.解析:负数的相反数是正数,所以(A)和(C)是正数;“减去负数等于加上它的相反数(正数)”所以(D)也是正数;只有(B):(1-9)8-17 =-8×8-17 =-64-17 =-81.可知只有(B)正确.4、答案:B.解析:正数的奇次幂是正数,0的奇次幂是0,所以(A)、(C)(D)都不正确.5、答案:A.解析:(B)显然不正确;(C)和(D)虽然都能使ab=|ab|成立,但ab=|ab|成立时,(C)和(D)未必成立,所以(C)和(D)都不成立.6、答案:D.解析:比较各绝对值的大小.由于133-≈0.23,所以有133->22.0->2.0-,则有-0.2>-0.22>-133. 四、1、答案:-90. 解析:注意运算顺序,且0.25 =41. (-85)×(-4)2-0.25×(-5)×(-4)3=(-85)×16-0.25×(-5)×(-64) =(-5)×2-(-16)×(-5)=-10-80=-90.应注意,计算-10-80 时应看作-10 与-80 的和.2、答案:1065. 解析:注意-24=-2×2×2×2 =-16,再统一为分数计算:-24÷(-232)×2+521×(-61)-0.25 =-16÷(-38)×2+211×(-61)-41 =-16×(-83)×2+(-1211)-123 = 12+(-1214) = 12-67 =665. 3、答案:50.解析:注意统一为真分数再按括号规定的顺序计算: 4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷-= 52)491(25)51(12⨯⎥⎦⎤⎢⎣⎡+--÷- = 52452525⨯⎥⎦⎤⎢⎣⎡-÷ = ⎥⎦⎤⎢⎣⎡-÷21125 = 2125÷ = 25×2= 50.注意分配律的运用.4、答案:17.12.解析:注意分配律的运用,可以避免通分. (1876597-+-)×(-18)+1.95×6-1.45×0.4 = 14-15+7+11.7-0.58= 6+11.12= 17.12. 五、答案:389. 解析:3(a +b )2-6ab = 36)322321(2---(-1)322)(32- = 3(-313)2-6)38)(35(--= 3×9169-380= 389.。

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.一个数的相反数是它本身,则该数为()A.0B.1C.﹣1D.不存在3.根据世界卫生组织的统计,截止10月28日,全球新冠确诊病例累计超过4430万,用科学记数法表示这一数据是()A.4.43×107B.0.443×108C.44.3×106D.4.43×1084.下列各组的两个数中,运算后的结果相等的是()A.23和32B.﹣33和(﹣3)3C.﹣22和(﹣2)2D.﹣|﹣2|和|﹣2|5.把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣26.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣37.下列各式比较大小正确的是()A.﹣<﹣B.﹣100>0.1C.|﹣|<D.|﹣7|>|﹣8|8.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷=36×﹣12×=16丁:(﹣3)2÷×3=9÷1=9A.甲B.乙C.丙D.丁9.已知a、b、c大小如图所示,则的值为()A.1B.﹣1C.±1D.010.等边△ABC在数轴上的位置如图所示,点A,C对应的数分别是0和﹣1,若△ABC绕顶点A沿顺时针方向连续翻转,翻转一次后点B对应的数为1,则翻转2021次后点B对应的数是()A.不对应任何数B.2019C.2020D.2021二.填空题11.的倒数等于.12.用四舍五入法将0.00519精确到千分位的近似数是.13.101﹣102+103﹣104+…+199﹣200=.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a,如1☆3=1×32+2×1×3+1=16.则(﹣2)☆3的值为.15.已知a<b,且|a|=6,|b|=3,则a+b的值为.三.解答题16.计算:(1)13+(﹣15)﹣(﹣23).(2)﹣17+(﹣33)﹣10﹣(﹣16).17.计算:(1)﹣14﹣(﹣2)3÷4×[5﹣(﹣3)2];(2).18.(6分)已知|a﹣2|与(b+2)2互为相反数,c、d互为倒数,x的绝对值为4,求的值.19.淇淇在计算:时,步骤如下:解:原式=﹣2022﹣(﹣6)+6÷﹣6………………①=﹣2022+6+12﹣18………………………②=﹣2048…………………………………③(1)淇淇的计算过程中开始出现错误的步骤是;(填序号)(2)请给出正确的解题过程.20.已知点A、B、C、D、E在数轴上分别对应下列各数:0,|﹣3.5|,(﹣1)2,﹣(+4),﹣2.(1)如图所示,在数轴上标出表示其余各数的点.(标字母)(2)用“<”号把这些数连接起来.21.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?22.定义一种新的运算:x★y=(x+2)×(y+2).(1)计算(﹣3)★(﹣4)与(﹣4)★(﹣3),此运算满足乘法交换律吗?(2)计算[(﹣3★(4)]★(﹣5)与(﹣3)★[(﹣4)★(﹣5)],此运算满足乘法结合律吗?23.已知|a|=5,|b|=2,回答下列问题:(1)由|a|=5,|b|=2,可得a=,b=;(2)若a+b>0,求a﹣b的值;(3)若ab<0,求|a+b|的值.24.如图,半径为1个单位长度的圆形纸片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,π取值为3.14)(1)把圆形纸片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是;(2)圆形纸片在数轴上向右滚动的周数记为正数,圆形纸片在数轴上向左滚动的周数记为负数,依次运动周数记录如下:+2,﹣1,﹣5,+4,+3,﹣2.当圆形纸片结束运动时,Q点运动的路程共是多少?此时点Q所表示的数是多少?参考答案一.选择题1.解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C.2.解:∵0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A.3.解:4430万=44300000=4.43×107.故选:A.4.解:A.23=8,32=9,∴23≠32,故此选项不符合题意;B.﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C.﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2,故此选项不符合题意;D.﹣|﹣2|=﹣2,|﹣2|=2,∴﹣|﹣2|≠|﹣2|,故此选项不符合题意;故选:B.5.解:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C.6.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.7.解:A.∵|﹣|=,|﹣|=,而,∴,故本选项不合题意;B.﹣100<0.1,故本选项不合题意;C.|﹣|==,而,∴,故本选项符合题意;D.∵|﹣7|=7,|﹣8|=8,∴|﹣7|<|﹣8|,故本选项不合题意;故选:C.8.解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷=36×﹣12×=16,做对了;丁:(﹣3)2÷×3=9÷×3=81,原来没有做对.故选:C.9.解:根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选:A.10.解:由题意得:2021÷3=673•2,所以:翻转2021次后点B对应的数是2020,故选:C.二.填空题11.解:的倒数是:2.故答案为:2.12.解:将0.00519精确到千分位的近似数是0.005.故答案为:0.005.13.解:原式=(﹣1)+(﹣1)+…+(﹣1)=﹣50,故答案为:﹣5014.解:∵a☆b=ab2+2ab+a,∴(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32.15.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a+b=﹣9或a+b=﹣3,故答案为:﹣9或﹣3.三.解答题16.解:(1)13+(﹣15)﹣(﹣23)=13+(﹣15)+23=21.(2)﹣17+(﹣33)﹣10﹣(﹣16)=﹣17+(﹣33)+(﹣10)+16=﹣44.17.解:(1)原式=﹣1﹣(﹣8)÷4×(5﹣9)=﹣1﹣(﹣8)÷4×(﹣4)=﹣1﹣8÷4×4=﹣1﹣8=﹣9;(2)原式===﹣9+(﹣)×12=﹣9+(﹣13)=﹣22.18.解:由题意得:|a﹣2|+(b+2)2=0,cd=1,x=4或﹣4,则a﹣2=0,b+2=0,解得a=2,b=﹣2,则当x=4时,原式=0+(﹣1﹣1)×4﹣5=﹣8﹣5=﹣13;当x=﹣4时,原式=0+(﹣1﹣1)×(﹣4)﹣5=8﹣5=3.故的值是﹣13或3.19.解:(1)∵(﹣1)2022=1,(﹣2)3=﹣8,6÷(﹣)=6÷=36,∴原式=1﹣(﹣8)+6÷,∴开始出现错误的步骤是①,故答案为:①;(2)原式=1﹣(﹣8)+6÷=1+8+6×6=1+8+36=45.20.解:(1)如图所示:(2)用“<”号把这些数连接起来:﹣(+4)<﹣2<0<(﹣1)2<|﹣3.5|.21.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm),所以,小虫共可得到54粒芝麻.22.解:(1)此运算满足乘法交换律,理由如下:(﹣3)★(﹣4)=(﹣3+2)×(﹣4+2)=(﹣1)×(﹣2)=2;(﹣4)★(﹣3)=(﹣4+2)(﹣3+2)=(﹣2)×(﹣1)=2.故此运算满足乘法交换律.(2)运算不满足乘法结合律,理由如下:[(﹣3)★(﹣4)]★(﹣5)=[(﹣3+2)(﹣4+2)]★(﹣5)=2★(﹣5)=(2+2)(﹣5+2)=4×(﹣3)=﹣12;(﹣3)★[(﹣4)★(﹣5)]=(﹣3)★[(﹣4+2)(﹣5+2)]=(﹣3)★6=(﹣3+2)(6+2)=﹣1×8=﹣8.故此运算不满足乘法结合律.23.解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2.故答案为:±5,±2;(2)∵a+b>0,∴a=5,b=±2,当a=5,b=2时,a﹣b=5﹣2=3;当a=5,b=﹣2时,a﹣b=5﹣(﹣2)=5+2=7;综上,a﹣b=3或7.(3)∵ab<0,∴a=5,b=﹣2或a=﹣5,b=2.当a=5,b=﹣3时,|a+b|=|5﹣2|=3;当a=﹣5,b=3时,|a+b|=|﹣5+2|=3;∴|a+b|=3.24.解:(1)∵2πr=2×3.14×1=6.28,∴点A表示的数是﹣6.28,故答案为:﹣6.28;(2)∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,∴17×2π×1=106.76,∴当圆片结束运动时,Q点运动的路程共有106.76,∵2﹣1﹣5+4+3﹣2=1,∴1×2π×1≈6.28,∴此时点Q所表示的数是6.28.答:当圆片结束运动时,Q点运动的路共是106.76,此时点Q所表示的数是6.28.。

第一章 有理数 章末检测卷含答案(人教版)

第一章 有理数 章末检测卷注意事项:本试卷满分120分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题:本题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.数轴的原型来源于生活实际,数轴体现了( )的数学思想,是我们学习和研究有理数的重要工具. A .整体 B .方程C .转化D .数形结合【答案】D【分析】数轴是数学的重要内容之一,它体现的数学思想是数形结合的思想.故选:D2.2021年5月11日,第七次全国人口普查结果公布,全国人口共1411778724人.用科学记数法表示1411778724精确到亿位的近似值为( ). A . B .C .D .【答案】B【分析】根据“四舍五入”法和科学记数法的定义,即可得到答案. 【详解】解:1411778724≈,故选B .3.给出下列等式:①;②;③;④.其中正确的个数是( ) A .4 B .3C .2D .1【答案】C【分析】①按有理数的乘法法则计算即可;②按有理数的除法法则计算即可;③先算乘法再算除法即可;④先算除法再算乘法即可. 【详解】①,故错误;②,故错误;③,故正确;④,故正确.∴正确的个数为2.故选择:C . 4.下列说法中正确的有( )①若两数的差是正数,则这两个数都是正数;②任何数的绝对值一定是正数;101.410⨯91.410⨯81.410⨯71.410⨯91.410⨯()()()1236-⨯-⨯-=()()3694-÷-=-()2931342⎛⎫⨯-÷-= ⎪⎝⎭()4-÷()12162⨯-=()()()123-⨯-⨯-()()369-÷-()29134⎛⎫⨯-÷- ⎪⎝⎭()1422-÷⨯-()()()1236-⨯-⨯-=-()()3694-÷-=()2931342⎛⎫⨯-÷-= ⎪⎝⎭()142162-÷⨯-=③零减去任何一个有理数,其差是该数的相反数;④在数轴上与原点距离越远的点表示的数越大. ⑤正数的倒数是正数,负数的倒数是负数,任何数都有倒数. A .0个B .1个C .2个D .3个【分析】利用数轴、相反数、绝对值及有理数的减法的有关性质进行判断即可得到答案. 【答案】解:①若两数的差是正数,则这两个数不一定都是正数,如1﹣(﹣2),故错误; ②0的绝对值是0,故错误;③零减去任何一个有理数,其差是该数的相反数,故正确; ④在数轴上与原点距离越远的点表示的数越大,如﹣1和﹣6,故错误. ⑤0没有倒数,故错误.故选:B .5.生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:121102=⨯+,212210101102=⨯⨯+⨯+;计算机也常用十六进制来表示字符代码,它是用0~F 来表示0~15,满十六进一,它与十进制对应的数如下表:例:十六进制2B 对应十进制的数为2161143⨯+=,10C 对应十进制的数为1161601612268⨯⨯+⨯+=,那么十六进制中14E 对应十进制的数为( ) A .28 B .62C .238D .334【答案】D【分析】在表格中找到字母E 对应的十进制数,根据满十六进一计算可得.【详解】由题意得,十六进制中14E 对应十进制的数为:1×16×16+4×16+14=334,故选D .6.计算2019202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23 B .32C .23-D .32-【答案】D【分析】根据乘方的意义进行简便运算,再根据有理数乘法计算即可.【详解】解:2019202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭,=201920202 1.513⎛⎫-⨯⨯ ⎪⎝⎭=2020201922 1.5 1.533-⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个, =2019221.5 1.51.533-⨯⋅⋅⋅⨯⨯⨯个,=32-,故选:D .7.若“!”是一种数学运算符号,并且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则2021!2020!的值等于( ) A .2021 B .2020C .2021!D .2020!【答案】A【分析】根据题意列出有理数混合运算的式子,进而可得出结论. 【详解】解:1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,∴2021!202120202019 (1)==20212020!20202019 (1)⨯⨯⨯⨯⨯⨯⨯故选A . 8.若a ,b 为有理数,下列判断正确的个数是( )(1)12a ++总是正数;(2)()224a ab +-总是正数;(3)()255ab +-的最大值为5;(4)()223ab -+的最大值是3. A .1 B .2 C .3 D .4【答案】B【分析】根据绝对值,偶次方的非负性进行判断即可.【解析】∵10a +≥,∴12a ++>0,即12a ++总是正数,(1)正确; ∵20a ≥, ()240ab -≥,∴当20a =即a=0时,()240ab ->,故()224a ab +-是正数;当()240ab -=时,则0a ≠,即20a >,故()224a ab +-是正数;故(2)正确;()255ab +-的最小值为5,故(3)错误;()223ab -+的最大值是2,故(4)错误.故选:B.9.如果四个不同的正整数m ,n ,p ,q 满足(4)(4)(4)(4)9m n p q ----=,则m n p q +++等于( )A .12B .14C .16D .18【答案】C【分析】由题意确定出m ,n ,p ,q 的值,代入原式计算即可求出值.【详解】解:∵四个互不相同的正整数m ,n ,p ,q ,满足(4-m )(4-n )(4-p )(4-q )=9, ∴满足题意可能为:4-m =1,4-n =-1,4-p =3,4-q =-3,解得:m =3,n =5,p =1,q =7, 则m +n +p +q =16.故选:C .10.若不等式|4||2||1|||x x x x a -+-+-+≥,对一切实数x 都成立,则a 的取值范围是( )A .5a <B .5a ≤C .5a ≥D .5a >【答案】B【分析】先得出代数式|4||2||1|||x x x x -+-+-+的意义,从而得出结论.【详解】解:由数轴知,|4||2||1|||x x x x -+-+-+表示x 到4,2,1,0这四个点的距离之和. 当1≤x ≤2时,距离之和最小,此时|4||2||1|||x x x x -+-+-+=5,即不等式|4||2||1|||x x x x -+-+-+≥5对一切数x 都成立,∴a ≤5,故选B . 二、填空题:本题共8个小题,每题3分,共24分。

人教版数学七年级上册第一章《有理数》检测试试题(含答案)

人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。

第1章《有理数》期末复习试卷(含答案)

期末复习一 有理数一、必备知识:1.规定了____________、____________和____________的直线叫做数轴.2.在数轴上,表示互为相反数(0除外)的两个点,位于原点的____________,并且到原点的距离____________.3.一个正数的绝对值是____________;一个负数的绝对值是它的相反数;0的绝对值是0.____________的两个数的绝对值相等.4.在数轴上表示的两个数,____________的数总比____________的数大;两个负数比较大小,绝对值大的数____________.二、防范点:1.到数轴上的某点距离等于a 的点所表示的数有两种情况,已知某数的绝对值求某数时也要注意有两个答案.2.两个负数比较大小时,注意绝对值大的数反而小.用正数、负数表示相反意义的量例1 (1)如果南湖的水位升高0.4m ,水位变化记做+0.4m ,那么水位下降0.3m 时,水位变化可以记做________m .(2)在下列各组中,哪个选项表示互为相反意义的量( ) A .足球比赛胜5场与负2场 B .向东走3千米与向南走4千米 C .长大1岁和减少2公斤 D .下降与上升【反思】实际生活中具有相反意义的词语还是比较多的,如:北与南,上升与下降,运进与运出,增加与减少等等.在表示时往往先规定其中一个量为正,那么另一个量就可以用负来表示了.有理数的分类例2 把下列各数分别填在题后相应的集合中: -52,0,-1,0.73,2,-5,78,-29.52,+28. 正数集合:{ } 负整数集合:{ } 分数集合:{ } 非负整数集合:{ } 【反思】注意非负整数概念是正整数和零.相反数与绝对值例3 (1)-32的相反数是________,-14的倒数是________,2-5的绝对值是________.(2)若实数a 、b 满足|a +2|+b -4=0,则ab=________.(3)绝对值小于4的整数有________个,它们的和是________,积是________. 【反思】绝对值的意义是一个数在数轴上对应的点到原点的距离,所以任何有理数的绝对值都是非负数.而相反数是只有符号不同的两个数,互为相反数的两个数(除0外)符号一定是一正一负.有理数的大小比较例4 (1)比较大小:-23________-34.(2)如图,在数轴上有a ,b 两个有理数,则下列结论中,不正确的是( )A.a+b<0 B.a-b<0 C.ab<0 D.(-ab)3>0【反思】两个有理数的大小比较往往运用法则,注意两个负数比较大小时,绝对值大的反而小;而多个数的大小比较往往通过画数轴比较,左边的点表示的数总比右边的点表示的数小.绝对值相关问题例5(1)检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是()A.-2 B.-3 C.3 D.5(2)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b| B.1<-a<bC.1<|a|<b D.-b<a<-1(3)x是2的相反数,|y|=3,则x-y的值是________.【反思】绝对值等于一个正数的数有两个,注意解题时不要遗漏.涉及字母的绝对值问题关键是关注字母所表示数的正负性,有时还可以用绝对值在数轴上的几何意义来形象的解决这类问题.数轴相关问题例6(1)把表示下列各数的点画在数轴上,再按从小到大的顺序,用”<”把这些数连接起来:3,-1,5,0,-|-4|.(2)如果数轴上的两点A,B,它们与原点O的距离分别是:A到O有3个单位,B到O 有5个单位,则A,B两点之间的距离等于________个单位.(3)一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),数轴上的原点对应刻度尺上的3.6cm,A点和B点分别对应刻度尺上的”15cm”和”0cm”,则A点和B点在数轴上分别表示数________和________.【反思】数轴是数学中一个很重要的工具,解决很多问题时往往会用到数轴,并且很多情况下要用到分类讨论思想,考虑多种情况.用正、负数解决生活实际问题例7根据《青少年生长参考》的身高标准表,一个13周岁的男生的标准身高为156.0cm,若记该标准身高为0,高于该标准记为”+”,低于该标准记为”-”.某校七年级一组男生共有8名13周岁的学生,在体检中测得他们的身高汇总如下表:(1)哪位学生的身高最高?哪位学生的身高最矮?(2)张民身高多少?李志伟呢?(3)该组男生中身高最高的比最矮的高多少?【反思】用正、负数解决问题时,往往定某一个数为基准,高于基准的为正,低于基准的则用负数表示,那样就可以用正、负数的相关知识解决实际问题了.1.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么北京时间1月4日20时应是()第1题图A.伦敦时间1月4日11时B.巴黎时间1月4日13时C.纽约时间1月4日5时D.首尔时间1月4日19时2.数轴上到-3的距离等于2的数是____________.3.甲、乙两支同样的温度计如图所示放置,如果向左移动甲温度计,使其度数20正对着乙温度计的度数-10,那么此时甲温度计的度数-5正对着乙温度计的度数是____________.第3题图4.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第7个图形的小圆个数是____________.第4题图5.在数轴上,点A与点B表示的数分别为a和2(a<2),已知点C是线段AB的三等分点,且点C表示的数为1,则a的值是____________.6.如图,已知数轴的单位长度为1.(1)如果点A,B表示的数是互为相反数,那么点C表示的数是____________;(2)如果点D,B表示的数是互为相反数,那么点C表示的数是____________(填”正数”或”负数”),图中表示的5个点中,表示的数的绝对值最小的一个点是____________,最小的绝对值是____________;(3)若点A为原点,CF=3,求点F表示的数.第6题图7.阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以当a ≥0时,a =a ;当a <0时,a =-a .根据以上阅读完成:(1)|3.14-π|=____________;(2)计算:⎪⎪⎪⎪1-12+⎪⎪⎪⎪12-13+⎪⎪⎪⎪13-14+…+⎪⎪⎪⎪199-1100.8.阅读理解:若A 、B 、C 为数轴上三点,点C 是线段AB 上一点,若点C 到点A 的距离是点C 到点B 的距离的2倍,我们就称点C 是【A ,B 】的好点,如图1,点A 表示的数为-1,点B 表示的数为2,表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的好点;又如,表示0的点D 到点A 的距离是1,到点B 距离是2,那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点.知识运用:如图2,M 、N 为数轴上两点,点M 所表示的数为-2,点N 所表示的数为4.(1)数____________所表示的点是【M ,N 】的好点;(2)如图3,A 、B 为数轴上两点,点A 所表示的数为-20,点B 所表示的数为40,现有一只电子蚂蚁P 从点B 出发,以每秒2个单位的速度向左运动,到达点A 时停止,运动的时间为t 秒.当t 为何值时,点P 、A 和B 中恰有一个点为其余两点的好点?第8题图参考答案期末复习一 有理数【必备知识与防范点】1.原点 单位长度 正方向 2.两侧 相等 3.它本身 互为相反数 4.右边 左边 反而小【例题精析】 例1 (1)-0.3 (2)A例2 正数:0.73,2,78,+28;负整数:-1,-5;分数:-52,0.73,78,-29.52;非负整数:0,2,+28.例3 (1)32-45-2 (2)-12(3)7 0 0 例4 (1)> (2)B例5 (1)A (2)A (3)-5或1例6 (1)画图略 -|-4|<-1<0<3<5 (2)2或8 (3)11.4 -3.6 例7 (1)王峰 张民 (2)154.5cm 156.8cm (3)4.3cm 【校内练习】1.B 2.-5或-1 3.15 4.605.-1或12 【解析】①AC =13AB 时,1-a =13(2-a ),得a =12;②BC =13AB 时,2-1=13(2-a ),得a =-1. 6.(1)-1 (2)正数 C 0.5 (3)5或-17.(1)π-3.14 (2)⎪⎪⎪⎪1-12+⎪⎪⎪⎪12-13+⎪⎪⎪⎪13-14+…+⎪⎪⎪⎪199-1100=1-12+12-13+13-14+…+199-1100=1-1100=99100. 8.(1)2 (2)t 为10秒或20秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城 市 北京 武汉 广州 哈尔滨 平均气温
(单位℃) -4.6 3.8 13.1 -19.4
沙道观中学2014-2015学年《有理数》期末复习题
班级 姓名: 考号 分数:
一、选择题(3分×10分=30分)
1、下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( ). A 、北京 B 、武汉 C 、广州 D 、哈尔滨
2、在有理数-21,+7,-5.3,10%,0,-32中自然数有m 个,分数有n 个,负有
理数有p 个,比较m, n ,p 的大小得( ).
A 、m 最小
B 、n 最小
C 、p 最小
D 、m, n, p 三个一样大 3、有理数-3的倒数是( ).
A 、-31
B 、3
1
C 、-3
D 、3
4、质量检测中抽取标准为100克的袋装牛奶,结果如下(超过标准的质量记为正数)其是最合乎标准的一袋是( ). A 、② B 、③
C 、④
D 、⑤
5、两个有理数a ,b 在数轴上的位置如图,下列四个 式子中运算结果为正数的式子是( ). A 、a+b B 、a -b C 、ab D 、b
a
6、计算(1-2)(3-4)(5-6)……(9-10)的结果是( ). A 、-1 B 、1 C 、-5 D 、10
7、下列计算中正确的是( ).
A 、-9÷2 ×2
1 =-9 B 、6÷(31-21
)=-1
C 、141-141÷65=0
D 、-21÷41÷4
1
=-8
8、国家游泳中心—“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积为260 000平方米,将260 000用科学记数法表示为( ).
A 、0.26×106
B 、26×104
C 、2.6×106
D 、2.6×105
9、按括号内的要求用四舍五入法对1022.0099的近似值,其中错误..
的是( ). A 、1022.01(精确到0.01) B 、1.0×103(精确到千位)
C 、1022(精确到个位)
D 、1022.010(精确到千分位)
10、甲、乙、丙三只电子跳蚤在数轴上分别以每秒9个、7个、6.5个单位长度的速度向右移动,开始时乙在甲、丙两者之间,且丙在甲右边(如图),当x 秒后三只跳蚤的位置变为甲在乙、丙之间,则x 值可能是下列数中 的( ).
A 、11
B 、14
C 、17
D 、20
二、填空题(3分×6=18分)
11、已知两个有理数相加,和小于每一个加数,请写出满足上述条件的 一个算式: .
12、若a 5,2,0,b ab a b ==->+=且则 .
13、若│-5│=4+m ,则m= ;若│x-
2
1
│+(2y+1)2=0,则x 2+y 3 的值= 。

14、一列等式如下排列:-2+5
2=-4÷221,-3+103=-9÷331,-4+174
=
-16÷44
1
,……,根据观察得到的规律,写出第五个等式: .
15、已知|x |=3,()412
=+y , 且xy <0
则x -y 的值是 .
16、如图是一个正方体的平面展开图,每一个面 上写有一个整数并且每两个对面所写数的和都
相等。

若a 、b 、c 都是质数,则a +b +c 的值是 三、计算题(共5小题,共32分)
17、(本题6分)-20+(-17)-(-18)-11 18、(本题6分)(-131)÷0.8×(-7
6

19、(本题6分)简便计算:(241-42
1
-181)×(-98)
袋号 ① ② ③ ④ ⑤ 质量 -5 +3 +9 -1 -6 -1 a 0 1 b
-32 -8 8
甲 乙 丙
-6
-5-10c
b
a
A B C D E F G
-4 8 图21
20、(本题7分)-1+2
|-8|÷(3-5)-(-2)3
21、(本题7分)如图21,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点B 表示8 (1)点B 表示的有理数是 表示原点的是点 (2)图21中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 。

(3)若将原点取在点D ,则点C 表示的有理数是 ,此时点B 与点 表示的有理数互为相反数。

四、解答题(共4小题,共40分)
22、(本题8分)“十一”黄金周,武商家电部大力促销,收银情况一直看好。

下表为当天与前一天的营业额的涨跌情况。

已知9月30日的营业额为26万元.
10月1日
2日 3日 4日 5日 6日 7日 4 3
2
-1
-3
-5
(1)黄金周内收入最低的哪一天?(直接回答,不必写过程)。

(2)黄金周内平均每天的营业额是多少?
23、(本题10分)
(1)已知m 、n 为有理数时,关于2m +n 值的判断正确的是( ) A 、2m +n ≥0 B 、2m +n ≤0 C 、2m +n >0 D 、2m +n >1 (2)已知m 为有理数时,
1
12
2++m m =( )
A 、1
B 、-1
C 、1±
D 、不能确定
(3)已知有理数a 、b 满足(),0212
=-+-b a 另有两个不等于零的有理数n m ,使得
1-=+
+
-=-mn
mn n
n m
m n m n m 且
,试比较bn am 与的大小。

24、(本题10分)阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2
+3+…+100=?我们可以先从简单的几个数开始,计算、观察,寻求规律,得出一般性的结论。

12211=⨯=,;102544321,6243321,323221=⨯=+++=⨯=++=⨯=+……,
(1)计算:1+2+3+…+100= 。

(2)计算:1+2+3+…+n = 。

(3)根据(2)中的结论解答下列问题:某职校准备在校运动会开幕式上进行团体操表演,指导教师需要若干名学生来编排一个队形,先排成一个正方形方队,然后进行队形变化,正好能变成一个正三角形队形(如图所示),若正三角形队形最后一排上的人数与正方形边上的人数之比为4︰3,那么需要多少学生来参加这次团体操表演?
解:设正方形方队边上有3n 人,由题意可知正三角形队形最后一排上有 人; 则用含n 的式子可以表示正方形方队中总共有 人,正三角形队形总共有 人。

列出方程如下:
求出n=
∴参加团体操表演的学生一共有 人。

25、(本题12分)某公司新研发一种办公室用壁挂式电磁日历,底板是一块长方形磁块,再用31枚圆柱形小铁片标上数字吸附在底板上作为日期,如图是2007年10月份日历。

日 一 二 三 四 五 六
① ② ③ ④ ⑤ ⑥
⑦ ⑧ ⑨ ⑩ ○11 ○12 ○13
○14 ○15 ○16 ○17 ○18 ○19 ○20
○21 ○22 ○23 ○24 ○25 ○26 ○27
○28 ○29 ○30 ○31
(3)用平行四边形圈出相邻的四个数
是否存在这样的4个数使得a+b+c+d=114?如果存在就求出来,不存在说明理由。

(4)第一次翻动31枚日历铁片,第二次翻动其中的30枚,第三次翻动其中的29枚,……,第31次只翻动其中的一枚,按这样的方法翻动日历铁片,能否使铁板上所有的31枚铁片原来有数字的一面都朝下,试通过计算证明你的判断。

(1)用长方形和正方形分别圈出相邻的3个数和9个数,若设圈出的数的中心数为a ,用含 a 的整式表示这3个数的和与9个数的和,结果分别为 , 。

(2)用某种图形圈出相邻的5个数,使这5个数的和能表示成5a 的形式,请在图中画出一个这样的图形。

a b c d。

相关文档
最新文档