贵州省威宁民族中学2019-2020学年度第一学期高一年级数学科9月月考试题无答案
24-25九年级数学第一次月考卷(考试版A4)【人教版九年级上册第二十一章~第二十二章】(贵州专用)

2024-2025学年九年级数学上学期第一次月考卷(贵州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九年级上册第二十一章~第二十二章。
5.难度系数:0.8。
第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )A.m≠2B.m=2C.m≥2D.m≠02.将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为( )A.(﹣4,﹣1)B.(﹣4)C.(2,1)D.(2,﹣2)3.若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是( )A.0B.﹣1C.1D.不能确定4.延时课上,4个同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是( )A.小张B.小王C.小李D.小赵5.关于x的一元二次方程x2+bx﹣8=0的根的情况,下列判断正确的是( )A.只有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根6.已知a,b,c为实数,且b+c=5﹣4a+3a2,c﹣b=1﹣2a+a2,则a,b,c之间的大小关系是( )A.a<b≤c B.b<a≤c C.b≤c<a D.c<a≤b7.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3月份的生产成本为12.8万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x,则根据题意所列方程正确的是( )A.13(1﹣x)2=12.8B.13(1﹣x2)=12.8C.12.8(1﹣x2)=13D.13(1+x)2=12.88.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为( )A.B.C.D.9.已知抛物线y=ax2﹣2ax+b(a<0)的图象上三个点的坐标分别为A(3,y1),,C,则y1,y2,y3的大小关系为( )A.y3<y1<y2B.y2<y1<y3C.y1<y3<y2D.y1<y2<y310.点A(a,b1),B(a+2,b2)在函数y=﹣x2+2x+3的图象上,当a≤x≤a+2时,函数的最大值为4,最小值为b1,则a的取值范围是( )A.0≤a≤2B.﹣1≤a≤2C.﹣1≤a≤1D.﹣1≤a≤011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论有( )A.1个B.2个C.3个D.4个12.如图所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是( )A.4B.C.3D.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。
贵州省毕节市威宁民族中学2022-2023学年高一下学期第一次月考政治试卷

威宁民族中学2022—2023学年度第二学期第一次月考试卷高一政治时间:2023年3月)班级:姓名:考号:(满分:100分时间:90分钟)一、选择题(共24小题,每小题2分,共48分)1.1921年中国共产党的诞生是中国历史上开天辟地的大事件。
中国共产党的诞生()①使中国人民的解放斗争有了主心骨②为中国革命和独立送来了马列主义③让中华民族在危难之中看到了希望④是中国新旧民主主义革命的分水岭A.①②B.①③C.②④D.③④2.2022年11月4日,第五届中国国际进口博览会在上海举行。
习近平指出,中国坚持对外开放的基本国策,坚定奉行互利共赢的开放战略,不断以中国新发展为世界提供新机遇,推动建设开放型世界经济。
这也充分表明了中国坚定不移扩大对外开放的信心和决心,对此理解正确的是()①改革开放只有进行时,没有完成时②改革开放是世界各国共同的心愿③改革开放是坚持和发展中国特色社会主义的必由之路④改革开放是中国人民从此站起来的重要转折点A.①②B.①③C.②④D.③④3.邓小平指出,我们现在所干的事业是一项全新事业,马克思没有讲过,我们的前人没有做过,其他社会主义国家也没有干过,所以,没有现成的经验可学。
我们只能在干中学,在自己的实践中摸索。
这表明,改革开放以来党的全部理论和实践的主题是()A.实现一个伟大的梦想B.建设一个伟大的党C.建设中国特色社会主义D.建设现代化强国4.实现中华民族伟大复兴的历史使命,必须进行伟大斗争、建设伟大工程、推进伟大事业。
伟大斗争、伟大工程、伟大事业、伟大梦想紧密联系、相互贯通、相互作用,其中起决定性作用的是()A.伟大斗争B.中国特色社会主义伟大事业C.伟大梦想D.党的建设新的伟大工程5.2022年5月10日,习近平在庆祝中国共产主义青年团成立100周年大会上强调,新时代的中国青年,生逢其时、重任在肩,施展才干的舞台无比广阔,实现梦想的前景无比光明。
实现中国梦是一场历史接力赛,当代青年要在实现民族复兴的赛道上奋勇争先。
2024-2025学年湖北省高一年级9月月考数学试题(含答案)

2024-2025学年湖北省高一年级9月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“∃x∈R,x2+x−1=0”的否定为( )A. ∃x∉R,x2+x−1=0B. ∃x∈R,x2+x−1≠0C. ∀x∈R,x2+x−1≠0D. ∀x∉R,x2+x−1=02.已知集合A={x|−3≤x≤1},B={x||x|≤2},则A∩B=( )A. {x|−2≤x≤1}B. {x|0≤x≤1}C. {x|−3≤x≤2}D. {x|1≤x≤2}3.下列命题为真命题的是( )A. ∀a>b>0,当m>0时,a+mb+m >abB. 集合A={x|y=x2+1}与集合B={y|y=x2+1}是相同的集合.C. 若b<a<0,m<0,则ma >mbD. 所有的素数都是奇数4.已知−1<a<5,−3<b<1,则以下错误的是( )A. −15<ab<5B. −4<a+b<6C. −2<a−b<8D. −53<ab<55.甲、乙、丙、丁四位同学在玩一个猜数字游戏,甲、乙、丙共同写出三个集合:A={x|0<Δx<2},B={x|−3≤x≤5},C={x|0<x<23},然后他们三人各用一句话来正确描述“Δ”表示的数字,并让丁同学猜出该数字,以下是甲、乙、丙三位同学的描述,甲:此数为小于5的正整数;乙:x∈B是x∈A的必要不充分条件;丙:x∈C是x∈A的充分不必要条件.则“Δ”表示的数字是( )A. 3或4B. 2或3C. 1或2D. 1或36.已知不等式ax2+bx+c<0的解集为{x|x<−1或x>3},则下列结论正确的是( )A. a>0B. c<0C. a+b+c<0D. cx2−bx+a<0的解集为{x|−13<x<1}7.已知m<8,则m+4m−8的最大值为( )A. 4B. 6C. 8D. 108.向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成;赞成B的比赞成A的多3人,其余的不赞成;另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人.则下列说法错误的是( )A. 赞成A的不赞成B的有9人B. 赞成B的不赞成A的有11人C. 对A,B都赞成的有21人D. 对A,B都不赞成的有8人二、多选题:本题共3小题,共18分。
高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)

2024-2025学年高一上学期第一次月考数学试卷(基础篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效;4.测试范围:必修第一册第一章、第二章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤03.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<14.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.45.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-46.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
2020-2021学年高一上学期第一次月考数学试卷含答案

数学试卷考试时间:120分钟;一、单选题(12小题,每小题5分,共60分)1.设集合{}3A x x =<,{}2,B x x k k ==∈Z ,则AB =( ) A .{}0,2 B .{}2,2-C .2,0,2D .{}2,1,0,1,2-- 2.下列各组函数表示同一函数的是( )A .()2f x x =()2f x x = B .(),0,0x x f x x x ≥⎧=⎨-<⎩与()g t t = C .21y x =-11y x x =+-D .()1f x =与()0g x x = 3.已知函数()1f x +的定义域为[]2,1-,则函数()()122g x f x x =+--的定义域为 A .[1,4] B .[0,3] C .[1,2)(2,4]⋃ D .[1,2)(2,3]⋃4.已知函数1,2()(3),2x x f x f x x ⎧≥⎪=⎨+<⎪⎩,则(1)(9)f f -=( ) A .1- B .2- C .6 D .75.下列四个函数中,在()0,∞+上为增函数的是( ).A .()3f x x =-B .()23f x x x =-C .()11f x x =-+D .()f x x =-6.在映射f :M N →中,(){},,,M x y x y x y R =<∈,(){},,N x y x y R =∈,M 中的元素(),x y 对应到N 中的元素(),xy x y +,则N 中的元素()4,5的原象为( ) A .()4,1 B .()20,1C .()1,4D .()1,4和()4,1 7.已知全集U =R ,集合91A x x ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个 8.函数24y x x -+ )A .(],4-∞B .(],2-∞C .[]0,2D .[]0,49.已知函数()()()22,12136,(1)x ax x f x a x a x ⎧-+⎪=⎨--+>⎪⎩,若()f x 在(),-∞+∞上是增函数,则实数a 的取值范围是( )A .1(,1]2 B .1(,)2+∞ C .[1,)+∞ D .[1,2]10.函数()f x 是奇函数,且在∞(0,+)内是增函数,(3)0f -=,则不等式()0xf x <的解集为( )A .∞(-3,0)(3,+)B .∞(-,-3)(0,3)C .∞∞(-,-3)(3,+)D .(-3,0)(0,3)11.已知函数24y x x =-+-的最小值为( )A .6B .2-C .6-D .212.已知()f x 是定义在[]1,1-上的奇函数,对任意的1x ,[]21,1x ∈-,均有()()()()11221221x f x x f x x f x x f x +≥+.且当[]0,1x ∈时,()25x f f x ⎛⎫= ⎪⎝⎭,()()11f x f x =--,那么表达式1901913193202020202020202020f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-+-++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .654- B .65- C .1314- D .1312-二、填空题(共4小题,每小题5分,共20分)13.已知幂函数()f x 的图象经过3,3),则函数2)f =_____14.已知函数f(x),g(x)分别由下表给出:则满足f(g(x))=g(f(x))的x 的值为________. x 1 23 4f(x)1 3 1 3 g(x)3 2 3 215.已知32()(2)5f x m x nx =+++是定义在[,4]n n +上的偶函数,则2m n +等于_______. 16.某同学在研究函数 f (x )=1x x+(x ∈R ) 时,分别给出下面几个结论: ①等式f (-x )=-f (x )在x ∈R 时恒成立;②函数f (x )的值域为(-1,1);③若x 1≠x 2,则一定有f (x 1)≠f (x 2);④方程f (x )=x 在R 上有三个根.其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)三、解答题(共70分)17(10分).已知集合{|121}A x a x a =-<<+,{}B 03x x =<≤,U =R . (1)若12a =,求A B ⋃;()U A C B ⋂. (2)若A B φ⋂=,求实数a 的取值范围. 18(12分).设函数()1,00,01,0x D x x x >⎧⎪==⎨⎪-<⎩,()()()42D x f x x =-.(1)写出x ∈R 时分段函数()f x 的解析式;(2)当()f x 的定义域为[]3,3-时,画出()f x 图象的简图并写出()f x 的单调区间.19(12分).已知函数2()21f x x ax a =-++-,(1)若2a =,求()f x 在区间[0,3]上的最小值;(2)若()f x 在区间[0,1]上有最大值3,求实数a 的值.20(12分).已知函数()m f x x x=+,()12f =. (1)判定函数()f x 在[)1,+∞的单调性,并用定义证明;(2)若()a f x x -<在()1,+∞恒成立,求实数a 的取值范围.21(12分).已知函数()1f x x x =-(1)求()f x 单调区间(2)求[0,]x a ∈时,函数的最大值.22(12分).已知()f x 是定义在R 上的奇函数,且当0x >时,2()2f x x x =+. (1)求(0)f 的值;(2)求此函数在R 上的解析式;(3)若对任意t R ∈,不等式22(2)(2)0f t t f k t -+-<恒成立,求实数k 的取值范围. 23(12分).函数()f x 的定义域为R ,且对任意,x y R ∈,有()()()f x y f x f y +=+,且当0x >时()()0,12f x f <=-.(1)证明:()f x 是奇函数;(2)证明:()f x 在R 上是减函数;(3)求()f x 在区间[]3,3-上的最大值和最小数学试卷参考答案1.C{}{}333A x x x x =<=-<<,{}2,B x x k k ==∈Z ,因此,{}2,0,2A B =-. 故选:C.2.B选项A :()f x =R ,()2f x =的定义域为[)0+,∞,两函数的定义域不同,故不是同一函数.选项B :()00t t g t t t t ≥⎧==⎨-<⎩和函数(),0,0x x f x x x ≥⎧=⎨-<⎩的定义域、法则和值域都相同,故是同一函数.选项C :y =(][)11+-∞-⋃∞,,,y =的定义域为[)1+∞,,两函数的定义域不同,故不是同一函数.选项D :()1f x =的定义域为R ,()0g x x =的定义域为{}|0x x ≠,两函数的定义域不同,故不是同一函数.故选:B【点睛】本题考查判断两个函数是否是同一函数,属于基础题.3.C【解析】【分析】首先求得()f x 定义域,根据分式和复合函数定义域的要求可构造不等式求得结果.【详解】()1f x +定义域为[]2,1- 112x ∴-≤+≤,即()f x 定义域为[]1,2-由题意得:20122x x -≠⎧⎨-≤-≤⎩,解得:12x ≤<或24x <≤ ()g x ∴定义域为:[)(]1,22,4本题正确选项:C本题考查函数定义域的求解问题,关键是能够通过复合函数定义域确定()f x 定义域,从而利用分式和复合函数定义域的要求构造不等式.4.A【解析】【分析】由题意结合函数的解析式分别求得()()19,f f 的值,然后求解两者之差即可.【详解】由题意可得:()()1413f f ===,()914f ==, 则(1)(9)341f f -=-=-.故选A.【点睛】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.5.C【解析】【分析】A ,B 可直接通过一次函数的单调性和二次函数的单调性进行判断;C 利用1y x =-以及平移的思路去判断;D 根据y x =-的图象的对称性判断.【详解】A .()3f x x =-在R 上是减函数,不符合;B .()23f x x x =-在3,2⎛⎫-∞ ⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭上是增函数,不符合; C .()11f x x =-+可认为是1y x=-向左平移一个单位所得,所以在()1,-+∞上是增函数,符合; D .()f x x =-图象关于y 轴对称,且在(),0-∞上是增函数,在()0,∞+上是减函数,不符合;【点睛】(1)一次函数()0y kx b k =+≠、反比例函数()0k y k x=≠的单调性直接通过k 的正负判断; (2)二次函数的单调性判断要借助函数的对称轴和开口方向判断;(3)复杂函数的单调性判断还可以通过平移、翻折等变换以及图象进行判断.6.C【解析】【分析】由题意得4 5xy x y =⎧⎨+=⎩,再由x y <,能求出N 中元素()45,的原像. 【详解】由题意得4 5xy x y =⎧⎨+=⎩,解得1 4x y =⎧⎨=⎩或4 1x y =⎧⎨=⎩, ∵x y <,∴N 中元素()45,的原像为()1,4, 故选:C .【点睛】本题考查象的原象的求法,考查映射等基础知识,考运算求解能力,考查函数与方程思想. 7.B【解析】【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果.【详解】 因为91(0,9)A x x ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B【点睛】 本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.【解析】【分析】配方即可得到()224=24x x x -+--+,从而得出≤2,即得出y 的范围,从而得出原函数的值域.【详解】∵()224=24x x x -+--+,∴0≤()224x --+≤4;∴≤2;∴函数y =的值域为[0,2].故选:C .【点睛】本题考查函数的值域,利用配方法即可,属于简单题.9.D【解析】【分析】根据分段函数单调性的性质进行求解即可.【详解】∵当1x ≤时,函数f (x )的对称轴为x a =,又()f x 在(),-∞+∞上为增函数, ∴ 1210125a a a a ≥⎧⎪-⎨⎪-+≤-⎩>,即1122a a a ≥⎧⎪⎪>⎨⎪≤⎪⎩,得1≤a 2≤, 故选D .【点睛】本题主要考查函数单调性的应用,根据分段函数单调性的性质建立不等式关系是解决本题的关键,注意分段处保证单调递增.10.D【解析】【分析】易判断f (x )在(-∞,0)上的单调性及f (x )图象所过特殊点,作出f (x )的草图,根据图象可解不等式.【详解】∵f (x )在R 上是奇函数,且f (x )在(0,+∞)上是增函数,∴f (x )在(﹣∞,0)上也是增函数,由f (-3)=0,得f (﹣3)=﹣f (3)=0,即f (3)=0,作出f (x )的草图,如图所示:由图象,得()0xf x <()()0000x x f x f x ><⎧⎧⇔⎨⎨<>⎩⎩或 解得0<x <3或﹣3<x <0,∴xf (x )<0的解集为:(﹣3,0)∪(0,3),故选D .【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.11.D【解析】【分析】用绝对值三角不等式求得最小值.【详解】24(2)(4)2y x x x x =-+-≥---=,当且仅当(2)(4)0x x --≤,即24x ≤≤时取等号.所以min 2y =.故选:D .【点睛】本题考查绝对值三角不等式,利用绝对值三角不等式可以很快求得其最值,本题也可以利用绝对值定义去掉绝对值符号,然后利用分段函数性质求得最值.12.C【解析】【分析】由()f x 是定义在[1-,1]上的奇函数,且()1(1)f x f x =--,推出()1f ,12f ⎛⎫ ⎪⎝⎭,再结合当(0,1)x ∈时,2()()5xf f x =,推出1()5f ,1()25f ,4()5f ,4()25f ,由题意可得x 对任意的1x ,2[1x ∈-,1],均有2121()(()())0x x f x f x --,进而得1903193201()()()2020202020204f f f =⋯===,再由奇函数的性质()()f x f x -=-算出最终结果.【详解】解:由()()11f x f x =--,令0x =,得()11f =,令12x =,则1122f ⎛⎫= ⎪⎝⎭﹐ 当[]0,1x ∈时,()25x f f x ⎛⎫= ⎪⎝⎭,()152x f f x ⎛⎫∴= ⎪⎝⎭, 即()1111522f f ⎛⎫== ⎪⎝⎭,111125254f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 且4111552f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,414125254f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 11903204252020202025<<<, 19031932012020202020204f f f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 对任意的1x ,[]21,1x ∈-,均有()()()()21210x x f x f x --≥,190120204f ⎛⎫∴= ⎪⎝⎭,同理19031932012020202020204f f f ⎛⎫⎛⎫⎛⎫====⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.()f x 是奇函数, 1901913193202020202020202020f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴-+-++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭19019131932013120202020202020204f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++++=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 故选:C 【点睛】本题考查函数的奇偶性,函数值计算,属于中档题. 13.2 【解析】 【分析】设幂函数()f x x α=,将点代入求出α,即可求解.【详解】设()f x x α=,()f x 的图象经过,23,2,(),2f x x f αα=∴==∴=.故答案为:2. 【点睛】本题考查幂函数的定义以及函数值,属于基础题. 14.2或4 【解析】 【分析】对于x 的任一取值,分别计算()()f g x 和()()g f x 的值若两个值相等,则为正确的值. 【详解】当1x =时,()()()()()()131,113f g f g f g ====,不合题意.当2x =时,()()()()()()223,233f g f g f g ====,符合题意.当3x =时,()()()()()()331,313f g f g f g ====,不合题意.当4x =时,()()()()()()423,433f g f g f g ====,符合题意.故填2或4.【点睛】本小题主要考查函数的对应法则,考查复合函数求值.在计算这类型题目的过程中,往往先算出内部函数对应的函数值,再计算外部函数的函数值.属于基础题. 15.-6 【解析】 【分析】由函数是偶函数,则定义域关于原点对称、()()f x f x -=即可求出参数m 、n 的值; 【详解】解:已知32()(2)5f x m x nx =+++是定义在[,4]n n +上的偶函数,所以40n n ++=,解得2n =-,又()()f x f x -=,()3232(2)5(2)5m x nx m x nx ∴+-++=+++302(2)m x +=∴解得2m =-,所以26m n +=- 故答案为:6- 【点睛】本题考查函数的奇偶性的应用,属于基础题. 16.①②③ 【解析】 【分析】由奇偶性的定义判断①正确,由分类讨论结合反比例函数的单调性求解②;根据单调性,结合单调区间上的值域说明③正确;由1xx x=+只有0x =一个根说明④错误. 【详解】对于①,任取x ∈R ,都有()()11x xf x f x x x--==-=-+-+,∴①正确;对于②,当0x >时,()()110,111x f x x x==-∈++, 根据函数()f x 的奇偶性知0x <时,()()1,0f x ∈-, 且0x =时,()()()0,1,1f x f x =∴∈-,②正确; 对于③,则当0x >时,()111f x x=-+, 由反比例函数的单调性以及复合函数知,()f x 在()1,-+∞上是增函数,且()1f x <;再由()f x 的奇偶性知,()f x 在(),1-∞-上也是增函数,且()1f x >12x x ∴≠时,一定有()()12f x f x ≠,③正确;对于④,因为1xx x=+只有0x =一个根, ∴方程()f x x =在R 上有一个根,④错误. 正确结论的序号是①②③. 故答案为:①②③. 【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题. 17.(1)1|32AB x x ⎧⎫=-<≤⎨⎬⎩⎭,()1|02U AC B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭;(2)1|24a a a ⎧⎫≤-⎨⎬⎩⎭≥或. 【解析】 【分析】 (1)当12a =,求出集合A ,按交集、并集和补集定义,即可求解; (2)对A 是否为空集分类讨论,若A =∅,满足题意,若A ≠∅,由A B φ⋂=确定集合A 的端点位置,建立a 的不等量关系,求解即可. 【详解】(1)若12a =时1|22A x x ⎧⎫=-<<⎨⎬⎩⎭,{}|03B x x =<≤, ∴1|32AB x x ⎧⎫=-<≤⎨⎬⎩⎭,由{|0U C B x x =≤或3}x >,所以()1|02U A C B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭(2)由AB =∅知当A =∅时121a a -≥+∴2a ≤-当A ≠∅时21113a a a +>-⎧⎨-≥⎩或211210a a a +>-⎧⎨+≤⎩∴4a ≥或122a -<≤-综上:a 的取值范围是1|24a a a ⎧⎫≤-⎨⎬⎩⎭≥或. 【点睛】本题考查集合间的运算,以及集合间的关系求参数范围,不要忽略了空集讨论,属于基础题.18.(1)()48,04,04,02x x f x x x x ⎧⎪->⎪==⎨⎪⎪<-⎩; (2)图见解析;单调递增区间为(]0,3,单调递减区间为[)3,0- 【解析】 【分析】(1)代入()1,00,01,0x D x x x >⎧⎪==⎨⎪-<⎩求解即可. (2)根据一次函数与分式函数的图像画图,再根据图像判断单调区间即可. 【详解】(1)()48,0 4,04,02x xf x xxx⎧⎪->⎪==⎨⎪⎪<-⎩;(2)()f x的图象如下图所示:单调递增区间为(]0,3,单调递减区间为[)3,0-.【点睛】本题主要考查了分段函数的应用与一次函数、分式函数的图像与性质等.属于基础题. 19.(1)min()(0)1f x f==-;(2)2a=-或3a=.【解析】试题分析:(1)先求函数对称轴,再根据对称轴与定义区间位置关系确定最小值取法(2)根据对称轴与定义区间位置关系三种情况分类讨论最大值取法,再根据最大值为3,解方程求出实数a的值试题解析:解:(1)若2a=,则()()224123f x x x x=-+-=--+函数图像开口向下,对称轴为2x=,所以函数()f x在区间[]0,2上是单调递增的,在区间[]2,3上是单调递减的,有又()01f=-,()32f=()()min01f x f∴==-(2)对称轴为x a =当0a ≤时,函数在()f x 在区间[]0,1上是单调递减的,则 ()()max 013f x f a ==-=,即2a =-;当01a <<时,函数()f x 在区间[]0,a 上是单调递增的,在区间[],1a 上是单调递减的,则()()2max 13f x f a a a ==-+=,解得21a =-或,不符合;当1a ≥时,函数()f x 在区间[]0,1上是单调递增的,则()()max 11213f x f a a ==-++-=,解得3a =;综上所述,2a =-或3a =点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式. 20.(1)单调递增,证明见解析.(2)3a ≤ 【解析】 【分析】(1)先根据()12f =求得m 的值,得函数解析式.进而利用作差法证明函数单调性即可. (2)构造函数()()g x f x x =+.根据(1)中函数单调性,结合y x =的单调性,可判断()g x 的单调性,求得()g x 最小值后即可求得a 的取值范围. 【详解】(1)函数()mf x x x=+,()12f = 代入可得211m=+,则1m = 所以()1f x x x =+函数()1f x x x=+在[)1,+∞上单调递增.证明:任取12,x x 满足121x x ≤<,则()()21f x f x -212111x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭212111x x x x =-+- 122112x x x x x x -=-+()()2112121x x x x x x --=因为121x x ≤<,则21120,10x x x x ->->所以()()21121210x x x x x x -->,即()()210f x f x ->所以()()21f x f x > 函数()1f x x x=+在[)1,+∞上单调递增. (2)若()a f x x -<在()1,+∞恒成立 则()a f x x <+, 令()()g x f x x =+ 由(1)可知()1f x x x=+在()1,+∞上单调递增,y x =在()1,+∞上单调递增 所以()()g x f x x =+在()1,+∞上单调递增 所以()()13g x g >=所以3a ≤即可满足()a f x x -<在()1,+∞恒成立 即a 的取值范围为3a ≤ 【点睛】本题考查了利用定义证明函数单调性的方法,根据函数单调性解决恒成立问题,属于基础题.21.(1)单调增区间是()11,2∞∞-+,和,单调减区间为112(,);(2)当10a 2<<时,函数的最大值为()2f a a a =-+., 当112a 2+≤≤时,函数的最大值为11f 24⎛⎫= ⎪⎝⎭, 当12a +≥时,函数的最大值为()2f a a a =-. 【解析】 【分析】(1)对函数()f x 去绝对值,表示成分段函数模型并作出图像,由函数图像进行判断. (2)令()12f x f ⎛⎫= ⎪⎝⎭(1x >),解出122x +=,对实数a 的范围分类讨论求解. 【详解】(1)()22,1f x ,1x x x x x x ⎧-+≤=⎨->⎩, 由分段函数的图象知,函数的单调增区间是()11,2∞∞-+,和,单调减区间为112(,). (2)当10a 2<<时,函数的最大值为()2f a a a =-+ 当112a 22+≤≤时,函数的最大值为11f 24⎛⎫= ⎪⎝⎭; 当12a +>()2f a a a =-. 【点睛】(1)考查了分段函数单调性问题,结合分段函数图像可直接判断单调区间.(2)主要考查了分类讨论思想,结合分段函数图像,对区间端点的范围讨论,自变量的范围不同,对应的函数的最值也不同.22.(1);(2);(3).【解析】试题分析:(1)利用奇函数的特性,定义在的奇函数必过原点,易得值;(2)当,则,根据函数为奇函数及当时,,可得函数在时的解析式,进而得到函数在上的解析式;(3)根据奇函数在对称区间上单调性相同,结合二次函数图象和性质,可分析出函数的单调性,进而将原不等式变形,解不等式可得实数的取值范围.试题解析:(1)为上的奇函数,;(2)设,则,,又为奇函数,,即,.(3)在上为增函数,且,为上的奇函数,为上的增函数,原不等式可变形为:即,对任意恒成立,(分离参数法)另法:即,对任意恒成立,∴解得:,取值范围为.考点:函数的奇偶性;函数的解析式;解不等式. 【方法点晴】(1)由奇函数的特性,在时必有,,故定义在的奇函数必过原点;(2)当,则,根据函数为奇函数及当时,,可得函数在时的解析式,进而得到函数在上的解析式;(3)根据奇函数在对称区间上单调性相同,结合二次函数图象和性质,可分析出函数的单调性,进而将原不等式变形,解不等式可得实数的取值范围.23.(1)证明见解析;(2)证明见解析;(3) 最大值是6,最小值是-6. 【解析】 【分析】(1)令x =y =0,则可得f (0)=0;y =﹣x ,即可证明f (x )是奇函数,(2)设x 1>x 2,由已知可得f (x 1﹣x 2)<0,再利用f (x +y )=f (x )+f (y ),及减函数的定义即可证明.(3)由(2)的结论可知f (﹣3)、f (3)分别是函数y =f (x )在[﹣3、3]上的最大值与最小值,故求出f (﹣3)与f (3)就可得所求值域. 【详解】(1)因为()f x 的定义域为R ,且()()()f x y f x f y +=+,令y x =-得()()()f x x f x f x +-=+-⎡⎤⎣⎦,所以()()()0f x f x f +-=; 令0x y ==,则()()()0000f f f +=+,所以()00f =,从而有()()0f x f x +-=,所以()()f x f x -=-,所以()f x 是奇函数. (2)任取,x y R ∈,且12x x <,则()()()()121121f x f x f x f x x x -=-+-⎡⎤⎣⎦()()()()112121f x f x f x x f x x =-+-=--⎡⎤⎣⎦,因为12x x <,所以210x x ->,所以()210f x x -<,所以()210f x x -->, 所以()()12f x f x >,从而()f x 在R 上是减函数.(3)由于()f x 在R 上是减函数,故()f x 在区间[]3,3-上的最大值是()3f -,最小值是()3f ,由于12f ,所以()()()()()()()31212111f f f f f f f =+=+=++()()31326f ==⨯-=-,由于()f x 为奇函数知, ()()3-36f f -==,从而()f x 在区间[]3,3-上的最大值是6,最小值是-6.【点睛】本题考查了抽象函数的奇偶性和单调性,深刻理解函数奇偶性和单调性的定义及充分利用已知条件是解决问题的关键.。
高一数学月考试题及答案

第一学期10月检测考试高一年级数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:第一大题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试卷上.一.选择题(共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项)1. 已知{}{}|24,|3A x x B x x =-<<=>,则A B =( )A. {}|24x x -<<B. {}|3x x >C. {}|34x x <<D. {}|23x x -<<2.设集合A 和集合B 都是自然数集N ,映射:f A B →把集合A 中的元素n 映射到集合B 中的元素2n n +,则在映射f 下,B 中的元素20是A 中哪个元素对应过来的( )A.2B.3C.4D.53.满足关系{}1{1,2,3,4}B ⊆⊆的集合B 的个数 ( )A.5个B.6个C.7个D.8个4.方程260x px -+=的解集为M,方程260x x q +-=的解集为N,且M ∩N={2},那么p q +等于( )A.21B.8C.6D.75. 在下列四组函数中,()()f x g x 与表示同一函数的是 ( )A. ()()211,1x f x x g x x -=-=+ B. ()()()01,1f x g x x ==+C. ()(),f x x g x ==D. 4)(,22)(2-=-⋅+=x x g x x x f6. 函数13()f x x =-的定义域是( ) A. [)23, B.()3,+∞ C.[)()233,,+∞ D.()()233,,+∞7. 设0abc>,二次函数2()f x ax bx c=++的图象可能是8.设集合22{2,3,1},{,2,1}M a N a a a=+=++-且{2}M N =,则a值是( )A.1或-2B. 0或1C.0或-2D. 0或1或-29. 设全集,,则下列结论正确的是A.B. C. D.10. 已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是( )A.[1,+∞) B.[0,2] C.(-∞,2] D.[1,2]11. 若()f x是偶函数,且对任意x1,x2∈),0(+∞(x1≠x2),都有f(x2)-f(x1)x2-x1<0,则下列关系式中成立的是()ABC D12.已知函数,1()(32)2,1axf x xa x x⎧-≤-⎪=⎨⎪-+>-⎩,在(—∞,+∞)上为增函数,则实数a的取值范围是( ) A.30,2⎛⎤⎥⎝⎦B.30,2⎛⎫⎪⎝⎭C.31,2⎡⎫⎪⎢⎣⎭D.31,2⎡⎤⎢⎥⎣⎦第Ⅱ卷(共90分)二.填空题(本题共4个小题,每小题5分,共20分)13. 已知集合{(,)|2},{(,)|4},A x y x y N x y x y M N =+==-==则_____________.14. 已知3()4f x ax bx =+-,其中b a ,为常数,若4)3(=-f ,则)3(f =___________.15. 已知函数⎪⎩⎪⎨⎧≥<+=-323)2()(x x x f x f x ,则()=-2f .16.设奇函数()f x 在(0,)+∞上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为___________.三.解答题(本题共6个题,共70分.要求写出必要的文字说明和解题过程.)17.(本题满分10分)已知全集U R =,集合A=}023{2>+-x x x ,集合B=}13{≥-<x x x 或,求A ∪B ,A C U ,()U C A B .18.(本题满分12分) 设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果A B A =,求实数a 的取值范围.19.(本题满分12分)若函数)(x f 是定义在[-1,1]上的减函数,且0)12()1(<---a f a f ,求实数a 的取值范围.20. (本题满分12分)定义域为(-1,1) 证明:(1)函数f (x)是奇函数;(2)若1,a = 试判断并证明f (x)在(-1,1) 上的单调性.21.(本题满分12分)已知定义在R 上的奇函数()f x ,当0x <时2()21f x x x =++.(I )求函数()f x 的表达式;(II )请画出函数()f x 的图象;(Ⅲ)写出函数()f x 的单调区间.22.(本题满分12分)若二次函数满足(1)()2(0)1+-==且.f x f x x f(1) 求()f x的解析式;(2) 若在区间[-1,1]上不等式()2x mf x>+恒成立,求实数m的取值范围.高一年级数学参考答案一、CCDA CCDC BDAC二.13. {}(3,1)- 14.-12 15.11616.(1,0)(0,1)- 三.解答题 17.解:A={}21|}023{2><=>+-x x x x x x 或, 分2∴A ∪B=R , 分4A C U =}21{≤≤x x , 分6B A ⋂={}23|>-<x x x 或 8分 )(B AC U ⋂={}23|≤≤-x x 10分18.解:A={}4,0-,B B A =⋂ A B ⊆∴1o当B=ϕ时,0<∆ ∴[]0)1(4)1(222<--+a a 1-<∴a ---------------------------------------3分 2o当B={}0时,由韦达定理 22(1)0010a a -+=+⎧⎨-=⎩ 得a= -1----------------------------------------------6分 3o当B={}4-时,由韦达定理 ⎩⎨⎧=--=+-018)1(22a a 得到a 无解-------------------------------------------9分 4o当B={}4,0-时,由韦达定理 ⎩⎨⎧=--=+-014)1(22a a 得到a=1 综上所述a 1-≤或者a=1---------------------------------------------------------12分19.解:因为0)12()1(<---a f a f所以)12()1(-<-a f a f ………………………………1分又因为)(x f 是定义在[-1,1]上的减函数………………………………2分所以有⎪⎩⎪⎨⎧≤-≤-≤-≤-->-1121111121a a a a ……………………………………8分 解得⎪⎪⎩⎪⎪⎨⎧<≤≤≤≤321020a a a ……………………………………………………11分 所以320<≤a 即满足条件的a 的取值范围为20<≤a ……………………………………12分 112211(1)((1)(x x x x -<<+∴-()f x ∴-21.解:设20,0,()21x x f x x x >-<∴-=-+则又()f x 是定义在R 上的奇函数,故()()f x f x ∴-=-所以2()21,(0)f x x x x =-+->当0x =时,(0)0f = 所以()f x =2221,00,021,0x x x x x x x ⎧++<⎪=⎨⎪-+->⎩………………………………6分图象………………………10分 递增区间是(1,0),(0,1)-递减区间是(,1),(1,)-∞-+∞………………………………12分 22. 解:(1)设二次函数)0()(2≠++=a c bx ax x f ,则c x b x a x f ++++=+)1()1()1(2 11)0(=∴=c f ……………………………2分又x x f x f 2)()1(=-+∴-++++c x b x a )1()1(2x c bx ax 22=--即x b a ax 22=++⎩⎨⎧=+=∴022b a a 解得1,1-==b a …………………………4分 1)(2+-=∴x x x f …………………………6分(2)不等式()f x >2x+m 化为m x x >+-132在区间[-1,1]上不等式()f x >2x+m 恒成立∴在区间[-1,1]上不等式m x x >+-132恒成立………………………8分只需min 2)13(+-<x x m在区间[-1,1]上,函数45)23(1322--=+-=x x x y 是减函数 ∴ 1)13(min 2-=+-x x ………………………10分所以,1-<m .………………………12分谢谢观看! 欢迎您的下载,资料仅供参考,如有雷同纯属意外。
贵州省贵阳市贵州大学附属中学2024-2025学年高一上学期10月月考数学试卷(无答案)
贵州大学附属中学高一年级数学考试试卷2024年10月注意事项:1.本试题共150分,考试时长120分钟。
2.答卷前,考生务必将自己的姓名、报名号填写在答题卡上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.)1.已知集合,,则()A. B. C. D.2.已知集合,集合,则集合B 的子集个数为()A.7B.8C.16D.323.,,若,则实数x 的取值集合为( )A. B. C. D.4.设,则“”是“”的( )A.充分非必要条件 B.必要非充分条件C.充分必要条件D.既非充分也非必要条件5.如图,已知矩形U 表示全集,A ,B 是U 的两个子集,则阴影部分可表示为()A. B. C. D.6.已知实数,则函数的最小值为( )A.5B.6C.7D.87.已知不等式成立的充分条件是,则实数m 的取值范围是( )A. B.{}219A x x =<<{}2,1,0,1,2B =--A B = {}0,1,2{}1,2{}2,2-{}2,1,1,2--{}1,1,2,3A =-{}2,B y y x x A ==∈{}1,,A x y ={}21,,2B x y =A B =12⎧⎫⎨⎬⎩⎭11,22⎧⎫-⎨⎬⎩⎭10,2⎧⎫-⎨⎬⎩⎭110,,22⎧⎫-⎨⎬⎩⎭0ab >a b <11a b>()U A B ð()U A B ð()U B Að()U A Bð1x >221y x x =+-11m x m -<<+1132x -<<1223m m ⎧⎫⎨-<⎩<⎬⎭1223m m ⎧⎫⎨-≤⎩≤⎬⎭C. D.8.持续的高温干燥天气导致某地突发山火,现需将物资运往灭火前线.从物资集散地到灭火前线共40km ,其中靠近灭火前线5km 的山路崎岖,需摩托车运送,其他路段可用汽车运送.已知在可用汽车运送的路段,运送的平均速度为60km/h ,设需摩托车运送的路段平均速度为x km/h ,为使物资能在1小时内到达灭火前线,则x 应该满足的不等式为( )A.B. C. D.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知全集,集合A ,B 满足,则下列选项正确的有( )A. B. C. D.10.下列不等式恒成立的是( )A. B.若,则C.若,则 D.若a ,,则11.下列命题正确的是()A.命题“,”的否定是“,”B.的充要条件是C.,D.,是的充分不必要条件三、填空题(本题共3小题,每小题5分,共15分。
贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案
数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。
贵州省贵阳市2024-2025学年高一上学期教学质量监测卷(一)数学试题(含解析)
贵阳2024级高一年级教学质量监测卷(一)数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷第1页至第3页,第II 卷第3页至第4页.考试结束后,请将答题卡交回.满分150分,考试用时120分钟.第I 卷(选择题,共58分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.一、单项选择题(本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的)1.已知集合,则( )A.B.C. D.2.命题,则的否定是( )A.B.C.D.3.下列四组函数中,是同一个函数的是( )A. B.C.D.4.已知函数,则()A.3B. C. D.95.已知幂函数的图象过点,则下列说法正确的是()A.为偶函数B.为奇函数C.为单调递增函数D.为单调递减函数6.已知集合,则“”是“”的( )A.充分不必要条件B.必要不充分条件{}{15},1,0,1,2A x x B =∈-<<=-N∣A B ⋂={}1,2{}1,0,1,2,3,4-{}0,1,2{}1,0,1,2-[]2:"0,2,11"p x x ∀∈+…p []20,2,11x x ∀∉+<[]20,2,11x x ∀∈+<[]20,2,11x x ∃∉+<[]20,2,11x x ∃∈+<()()21,1x f x x g x x=-=-()()24,f x x g x ==()(),f x x g x ==()()2,f x x g x ==()221461f x x x +=+-()3f -=3-1-()y f x =(()f x ()f x ()f x ()f x {}{}220,2,210A B xx ax a ==++-=∣{}2A B ⋂=1a =-C.充要条件D.既不充分也不必要条件7.已知是定义在上的偶函数,且在区间单调递减,若,则实数的取值范围为( )A.B.C.D.8.已知函数,则的取值范围为( )A.B.C.D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列不等式中取等条件无法满足的是()B.D.10.已知不等式的解集为,函数,则下列说法正确的是()A.函数的图象开口向上B.函数的图象开口朝下C.无论为何值,必有D.不等式的解集为或11.已知定义在上的函数,对任意实数满足,均有.函数在的最大值和最小值分别为,.则下列说法正确的是( )A.必为奇函数B.可能为偶函数C.不一定为定值,且与的单调性有关D.为定值,且定值为6()f x R [)0,∞+()()12f m f m -<m 1,3∞⎛⎫+ ⎪⎝⎭1,3∞⎛⎫- ⎪⎝⎭1,13⎛⎫ ⎪⎝⎭()1,1,3∞∞⎛⎫-⋃+ ⎪⎝⎭()f x =[)0,∞+a []0,1(]0,1{}1[)1,∞+2221222x x +++≧21222x x +++…20ax bx c ++<{23}xx -<<∣()2f x ax bx c =++()f x ()f x ,,a b c a c b +<20cx bx a ++<12x x ⎧<-⎨⎩13x ⎫>⎬⎭R ()y f x =,,a b c 222a b c +=()()()0f a f b f c ++=()()23g x f x x =++[]2,2x ∈-M m ()f x ()f x M m +()f x M m +第II 卷(非选择题,共92分)注意事项:第II 卷用黑色碳素笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.三、填空题(本题共3小题,每小题5分,共15分)12.已知集合,则__________.13.已知函数的定义域为,则的定义域为__________.14.已知函数,若,则__________,的取值范围为__________.四、解答题(共77分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分13分)已知集合.(1)若,求的取值范围;(2)若,求的取值范围.16.(本小题满分15分)已知定义在上的奇函数满足,当时,.(1)求在上的解析式;(2)若,求的取值范围.17.(本小题满分15分)已知正实数满足:.(1)求的最小值;(2)求的最小值.18.(本小题满分17分)已知函数.(1)若,使得,求的取值范围;(2)若,都有恒成立,求的取值范围;(3)当时,,满足,求的取值范围.19.(本小题满分17分)对于数集,定义点集,若对任意,都{210},{23}A xx B x x =+<=-<<∣∣()A B ⋂=R ð()21f x +[)5,3-()3f x +()(){}()(){}21,0,0f x x ax b x A x f x B x f f x =+++=∈==∈=R R ∣∣A B =≠∅b =a {}{}2{27},21,320A xx B x m x m C x x x =<<=+=-+<∣∣∣……B C C ⋂=m A B A ⋃=m R ()f x [)0,x ∞∈+()22f x x x =+()f x R ()()121f m f m +<-m ,a b ab a b =+2a b +222a b a b++()()()210,2f x mx m g x x x k =+≠=++x ∃∈R ()0g x …k []1,2x ∀∈-()0f x >m 3k =[][]121,2,1,2x x ∀∈∃∈-()()12f x g x …m {}()123,,,,2n A a a a a n = …(){},,B x y x A y A =∈∈∣()11,x y B ∈存在使得,则称数集是“正交数集”.(1)判断以下三个数集是否是“正交数集”(不需要说明判断理由,直接给出判断结果即可);(2)若,且是“正交数集”,求的值;(3)若“正交数集”满足:,,求的值.高一数学参考答案第I 卷(选择题,共58分)()22,x y B ∈12120x x y y ⋅+⋅=A {}{}{}1,11,2,31,1,4---、、4a >{}2,2,4,a -a {}1232024,,,,A a a a a = 12320243,0a a a a =-<<<< 20241012a =2a一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案CDCACDDA【解析】1.由已知集合,所以,故选C.2.改变量词,否定结论,所以命题的否定为,故选D.3.对于A 选项,的定义域为的定义域为,定义域不同,故不是同一个函数;对于B 选项,的定义域为的定义域为,定义域不同,故不是同一个函数;对于C 选项,的定义域为的定义域为,且,对应关系相同,故是同一个函数;对于D 选项,的定义域为的定义域为,定义域不同,故不是同一个函数,故选C.4.令,解得,故,故选A.5.由幂函数的图象过点,解得,故幂函数为函数,且为增函数,故选C.6.由已知,若,则有或,解得或,当时,满足,当时,不满足,所以是的既不充分也不必要条件,故选D.7.由已知是定义在上的偶函数,且在区间单调递减得函数在上单调递增,若要有则需,即,解得或,故选D.8.若函数,则内函数有定义,故内函数大于或等于0.当时,函数其定义域为,值域为符合题意;当时,内函数开口向上,若要满足题意则需,解得;当时,内函数开口向下,不可能符合题意,综上所述:,故选A.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项是{}{}0,1,2,3,4,1,0,1,2A B ==-{}0,1,2A B ⋂=[]2:0,2,11p x x ∀∈+…[]20,2,11x x ∃∈+<()f x (),g x R {}0xX ≠∣()f x (),g x R [)0,∞+()f x (),g x R R ()g x x ==()f x (),g x R [)0,∞+213x +=-2x =-()()234(2)6213f -=⨯-+⨯--=y x α=(2α=12α=y =()(){}1,1B a a =-+--{}2A B ⋂=()12a -+=()12a --=3a =-1a =-3a =-{}2,4B ={}2A B ⋂=1a =-{}0,2B ={}2A B ⋂={}2A B ⋂=1a =-()f x R [)0,∞+()f x (),0∞-()()12f m f m -<12m m ->22(12)m m ->13m <1m >()f x =[)0,∞+221ax x ++0a =()f x =1,2∞⎡⎫-+⎪⎢⎣⎭[)0,∞+0a >221ax x ++Δ440a =-…01a <…0a <221ax x ++[]0,1a ∈符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)题号91011答案ABDACDABD【解析】9.对于A无实数解;对于B 选项,不等式取等条件为,即,即,无实数解;对于C 选项,不等式取等条件为;对于D 选项,不等式取等条件为,即,即或,无实数解,综上,故选ABD.10.由不等式的解集为,则可知一元二次方程的两根为和3,且二次函数开口向上,,故A 正确,B 错误;当时有,即,故C 正确;由韦达定理得,故,函数的开口向上,对于方程,若是方程的根则有,等式两边同时除以,则有,故是方程的根,故的根为与,则不等式的解集为或,故选ACD.11.令,满足,则有,则;令,满足,则有,即,且定义域为关于原点对称,故函数为奇函数;若,则符合题意且为偶函数;因为与为奇函数,故也为奇函数,设其在的最大值与最小值分别为与,由奇函数的性质,对于函数,其最大值与最小值分别为,故,D 正确,故选ABD.第II 卷(非选择题,共92分)三、填空题(本大题共3小题,每小题5分,共15分)=231x +=22122x x +=+()2221x +=()221x +=±=1x =122x x +=+2(2)1x +=21x +=21x +=-20ax bx c ++<{23}xx -<<∣20ax bx c ++=2-2y ax bx c =++0a >1x =-0a b c -+<a c b +<2360ca=-⨯=-<0c <2y cx bx a =++20ax bx c ++=0x 2000ax bx c ++=20x 200110c b a x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭01x 20cx bx a ++=20cx bx a ++=12-1320cx bx a ++<12x x ⎧<-⎨⎩13x ⎫>⎬⎭0a b c ===222a b c +=()()()0000f f f ++=()00f =,0,a x b c x =-==222a b c +=()()()00f x f f x -++=()()f x f x -=-R ()f x ()0f x =()f x ()f x 2x ()2f x x +[]2,2-0M 0m 000M m +=()()23g x f x x =++003,3M M m m =+=+6M m +=题号121314答案【解析】12.由已知得,则,则.13.已知的定义域为,则的定义域为,故,即,故的定义域为.14.由已知是由函数的所有实数零点构成的集合,,令,是由所有满足且的所有实数构成的集合.若,当满足且因为,则有,即,解得;当时,,此时,符合题意;当时,有,于是,若要使得,只需方程无实数根,故有,解得.综上,的取值范围为.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)解:(1)易得,,于是有,解得,故当时,.(2),则,①当时,有,解得,符合题意;132x x ⎧⎫-<⎨⎬⎩⎭…[)12,4-[)0,0,41,{23}2A x x B xx ⎧⎫=<-=-<<⎨⎬⎩⎭∣R 12A x x ⎧⎫=-⎨⎬⎩⎭…ð()R 132A B x x ⎧⎫⋂=-<⎨⎬⎩⎭…ð()21f x +[)5,3-()f x [)9,7-937x -+<…124x -<…()3f x +[)12,4-()(){}21,0f x x ax b x A x f x =++-=∈=R∣()f x ()(){}0B x f f x =∈=R ∣()t f x =()0f t =()t f x =A B =1x A ∈()10f x =1x B ∈()()10f f x =()00f =0b =0a =()()()24,f x x f f x x =={}0A B ==0a ≠()()()()()()()22220,f x x ax x x a a f f x x ax a x ax=+=+≠=+++()()()()222x ax x ax a x x a x ax a =+++=+++{}0,A a =-A B =2x ax a ++2Δ40a a =-<04a <<a [)0,4{12}C xx =<<∣,B C C C B ⋂=∴⊆ 1212m m ⎧⎨+⎩ (1)12m ……1,12m ⎡⎤∈⎢⎥⎣⎦B C C ⋂=A B A ⋃= B A ⊆B =∅21m m +<1m <-②当时,有,解得,综上所述,的取值范围为.16.(本小题满分15分)解:(1)令,则,又在上为奇函数,故有故在上的解析式为.(2)与在上单调递增,在上单调递增.又,故当时,.是奇函数,时,且单调递增,故为增函数,若要使得,只需,即,故的取值范围为.17.(本小题满分15分)解:(1)由可得,,当且仅当时等号成立,故的最小值为.(2)由已知得,当且仅当时等号成立,故的最小值为.B ≠∅212217m mm m +⎧⎪>⎨⎪+<⎩…23m <<m ()(),12,3∞--⋃0x <0x ->()f x R ()()()22()22,f x f x x x x x ⎡⎤=--=--+-=-+⎣⎦()f x R ()222,02,0x x x f x x x x ⎧+=⎨-+<⎩…2x 2x [)0,∞+()f x ∴[)0,∞+()00f = [)0,x ∞∈+()0f x …()f x (),0x ∞∴∈-()0f x <()f x ()()121f m f m +<-121m m +<-2m >m ()2,∞+ab a b =+111a b+=()112221233a b a b a b a b b a ⎛⎫∴+=++=++++=+ ⎪⎝⎭…1,a b ==2a b +3+2222222a b a b a b a b ab b a ++==+=+…1a b ==+222a b a b++18.(本小题满分17分)解:(1)若,有成立,只需,解得.(2)若对,都有恒成立,则,解得,综上所述,的取值范围为.(3)当时,,若对,满足,只需,有,当时,,故,有,则有,解得或,综上所述,的取值范围为.19.(本小题满分17分)解:(1)是正交数集,不是正交数集.(2)若,且是正交数集,则对于有序数对能使得其满足条件的有序数对只能为或.若为,则有,解得与矛盾,舍去;故只能是,于是有,解得,经检验符合题意.(3)先证:若集合为正交数集,则至少要有一对相反数,对于,且,有有序数对,故,使得,所以,故集合中至少有一对相反数.因为且是唯一负数,故,x ∃∈R ()0g x …Δ440k =-…1k …[]1,2x ∀∈-()0f x >()()1020f f ⎧->⎪⎨>⎪⎩112m -<<m ()1,00,12⎛⎫-⋃ ⎪⎝⎭3k =()223g x x x =++[][]121,2,1,2x x ∀∈∃∈-()()12f x g x …[]11,2x ∀∈()()12max f x g x <[]21,2x ∈-()max ()211g x g ==[]11,2x ∀∈()111f x <()()111211f f ⎧⎪⎨⎪⎩……0m <05m <…m ()(],00,5∞-⋃13,B B 2B 4a >{}2,2,4,a -()4,a 12120x x y y +=()2,2-()4,2-()2,2-820a -=4a =4a >()4,2-1620a -=8a =8a =A 0a ∀≠a A ∈(),a a B ∈()11,x y B ∃∈110x a y a +=110x y +=A 13a =-3A ∈下证3为最小正数:反证法:若3不为最小正数,则,对于有序数对是最大正数,则与之相匹配的有序数对设为,故有,即,与是最大正数相矛盾,故3为最小正数,综上所述,.23a <()220242024,,a a a ()(),30x x ->2101230a x -⨯=231012a x =⨯23,1012a x <∴> 2024a 23a =。
贵州省部分学校2024-2025学年高一上学期第一次联考数学试题
贵州省部分学校2024-2025学年高一上学期第一次联考数学试题一、单选题1.已知集合{}0,1,2A =,{}1,2,3B =,则A B = ()A .{}1,2B .{}0,1,2C .{}1,2,3D .{}0,1,2,32.已知,A B 为给定的集合,命题p :“对于x A ∀∈,都有220x x -≥”,则p 的否定为()A .对于x A ∀∈,都有220x x -<B .x A ∃∈,使得220x x -<C .对于x A ∀∉,都有220x x -<D .x A ∃∈,使得220x x -≥3.已知a 为实数,且2,21,,P a Q a P Q ==-的大小关系是()A .P Q >B .P Q<C .P Q ≥D .P Q≤4.下列表示同一函数的是()A .||,{1,0,1}y x x =∈-与{1,0,1}y x =∈-B .1y x =-与211x y x -=+C .1y =与0y x =D .y x =与2y =5.下列命题正确的是()A .“a b >”是“22a b >”的充分条件B .“a b >”是“22a b >”的必要条件C .“a b >”是“22ac bc >”的充分条件D .“a b >”是“22ac bc >”的必要条件6.已知集合{}21,2,,{1,2}A a B a ==+,若B A ⊆,则a 的取值构成集合()A .{}1-B .{0,2}C .{1,0}-D .{1,0,2}-7.集合{}41,P x x k k ==-∈Z ,{}43,Q x x k k ==+∈Z ,{}83,M x x k k ==+∈Z 的关系为()A .MP Q B .P Q ⊆MC .M P Q =D .P Q =M 8.二次函数222y x ax =-+的图象恒在直线y x =上方,则实数a 的取值范围是()A .(3,8)B .()5,3-C .(,3)(8,)-∞⋃+∞D .(,5)(3,)-∞-⋃+∞二、多选题9.下列关于集合的说法不正确的有()A .{0}=∅B .任何集合都是它自身的真子集C .若{1,}{2,}a b =(其中,a b ∈R ),则3a b +=D .集合{}2y y x =∣与{}2(,)x y y x =∣是同一个集合10.下列选项正确的是()A .“0b a <<”是“11a b<”的必要不充分条件B .若14,23a b <<<<,则11a b -<-<C 的最大值为5D .若,,x y z 都是正数,则()()()8x y y z z x xyz+++≥11.对于任意的[],x x ∈R 表示不超过x 的最大整数.在十八世纪被“数学王子”高斯采用,称[x ]为高斯函数,人们更习惯称为“取整函数”.则下列说法正确的是()A .[1.5]1-=-B .对任意的,x m ∈∈R Z ,都有[][]m x m x +=+C .不等式2[]4[]30x x -+<的解集为{23}xx ≤<∣D .对任意的,x n +∈∈R Z ,则不超过x 的所有正实数中,是n 的倍数的数共有x n ⎡⎤⎢⎥⎣⎦个三、填空题12.已知函数1()f x x =,则(1)f =_____________.13.已知0x >,则812x x--的最大值为.14.贵阳市清华中学9月份举办了秋季运动会,田赛设置跳高、跳远和掷铅球三个项目.已知高一年级参加跳高的有60人,参加跳远的有81人,参加掷铅球的有44人,三项都参加的有16人,参加两项的有48人,三项都不参加的有970人.则高一年级共有人.四、解答题15.已知集合{}2560,{24}M xx x N x x =+-<=-<<∣∣.(1)求M N ⋂和M N ⋃;(2)求()R N M ⋂ð和()()R R M N ⋂痧.16.求下列函数的解析式.(1)已知函数2(1)243(1)f x x x x +=++≥,求()f x ;(2)已知()f x 是一次函数,且[()]98f f x x =+,求()f x .17.已知全集U 为实数集,集合{23},{212}A xx B x m x m =-<<=-<<+∣∣.(1)若1m =-,求图中阴影部分表示的集合C ;(2)若A B B = ,求实数m 的取值范围.18.已知关于x 的不等式20ax bx c ++<的解集为{13}xx -<<∣.(1)若1a =,求b c 、的值;(2)解关于x 的一元二次不等式23650ax bx c ++≥;(3)解关于x 的一元二次不等式2(21)20ax a x +-->.19.如图,长方形()ABCD AB AD >的周长为8.(1)若点M 在线段AB 上运动,点N 在线段BC 上运动,且满足3,AB AM CN ==,则AMN 面积的最大值是多少?(2)沿AC 折叠使点B 到点B '位置,AB '交DC 于点P ,请解决下面两个问题.(i)若3AB =,求AP 的长;(ii)ADP △的面积是否存在最大值,若存在,求出该最大值,若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州省威宁县民族中学2019-2020学年度第一学期
高一年级数学科9月月考试题(必修一第一章)
(本试卷150分 时间120分钟) 一、选择题(每小题5分,共60分):
1.下列四个命题
(1)“较小的数”可以组成一个集合;(2)任何集合子集的个数都不少于2个; (3)集合A={
}1|+=
x y x 与集合B={}
1|+=x y y 是相等集合
(4)集合{x|ax+b=0}是单元素集合 其中正确命题的个数是( )个 A.0 B.1 C.2 D.3
2.已知集合{}}{
30,3,2,1<<∈==*x N x B A ,则集合B A =( )
A.{
}3,1 B.{}3,2,1 C.{}3,2 D.{}2,1 3.下列对应关系f 中,可以构成从集合M 到集合N 的映射的是( ) A .{}|0M x x =>,N R =,2:f x y x →= B .{}2,0,2M =-,{}4N =,2:f x y x →= C .{}0,2M =,{}0,1N =,:2
x
f x y →=
D .M R =,{}|0N y y =>,21:f x y x
→= 4.已知函数{
0,0
,12)(≤>-=
x x x x x f 则=-))1((f f ( )
A.0
B.1
C.2
D.4 5.设f (x )=(2a -1)x +b 在R 上是减函数,则有 ( )
A .a ≥12
B .a ≤12
C .a >-12
D .a <12
5.下列四组函数中,表示相等函数的一组是( )
A .f (x )=|x |,g (x )=x 2
B .f (x )=x 2
,g (x )=(x )2
C .f (x )=x 2-1
x -1
,g (x )=x +1 D .f (x )=x +1·x -1,g (x )=x 2-1
6.已知函数56)12(+=+x x f ,则)(x f 的解析式是( )
A .23)(+=x x f
B .13)(+=x x f C.13)(-=x x f D .43)(+=x x f 7.设全集U 是实数集R ,M ={x ||x |>2},N ={x |x ≥3或x <1}都是U 的子集,则图中阴影部分所表示的集合是 ( )
A .{x |-2≤x <1}
B .{x |-2≤x ≤2}
C .{x |1<x ≤2}
D .{x |x <2}
8.已知函数)2(1
2)(2≥-+=
x x
x x x f 若f(x)>a 恒成立,则a 的取值范围是( )
A.⎥⎦⎤ ⎝
⎛∞-27, B.⎪⎭⎫⎢⎣⎡+∞,27 C.⎪⎭⎫ ⎝
⎛∞-27, D ⎪⎭
⎫ ⎝⎛+∞,2
7
9.已知函数()()21
0a f x ax a x
+=->,若()()2213f m f m m +>-+,则实数m 的取值范围是( )
A.()2,+∞
B.(),2-∞
C.()2,-+∞
D.(),2-∞-
10.若函数1
3)(--=
a ax
x f 在区间(0,1]上是减函数,则实数a 的取值范围是( ) A.()0,∞- B.()()3,10,⋃∞- C. ()(]3,10,⋃∞- D.()()+∞⋃∞-,10,
11.设,P Q 是两个非空集合,定义集合间的一种运算“⊗”:{}|P Q x x P Q x P Q ⊗=∈⋃∉⋂且.如果{}{}x |0x 2,|1
P Q x x =≤≤=>,则P Q ⊗= ( )
A .[]
()0,14,+∞ B .[]()0,12,+∞ C .[]1,4 D .()4,+∞
12.设集合⎪⎭⎫⎢⎣⎡=21,0A ,⎥⎦⎤
⎢⎣⎡=1,21B ,函数⎪⎩⎪⎨⎧∈-∈+=,),1(2,21)(B x x A x x x f 若A x ∈0,且A x f f ∈))((0,则0x 的取值范围是( ) A.⎥⎦
⎤ ⎝⎛41,0 B.⎪⎭
⎫⎢⎣⎡21,41 C.)21
,41( D.⎥⎦
⎤
⎢⎣⎡83,0
二、填空题(每小题5分,共20分):
13.若集合M 满足{
}{}5432121,,,,,⊆⊆M 的所有集合M 的个数为_________. 14.函数26)(x x x f -+=的单调增区间是 . 15.已知f(x 2
-1)的定义域为[]
3,3-,则f(x)的定义域是
16.已知y=f(x)是偶函数,当0≥x 时,x x x f 42)(2+-=,则当x<0时,f(x)= .
三、解答题(17题10分,其余每题12分,共70分):
17.(1)已知集合U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.
(2)已知R 为全集,}31|{<≤-=x x A ,}32|{≤<-=x x B ,求()R C A ∩B ; 18.为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分按每度0.5元计算.
(1)设月用电x 度时,应交电费y 元.写出y 关于x 的函数关系式;
(2)小明家第一季度交纳电费情况如下:
19.已知函数1
1
)(2
-=
x x f (1)设f (x )的定义域为A ,求集合A ;
(2)判断函数f (x )奇偶性,并用定义加以证明.
(3)判断函数f (x )在(1,+∞)上的单调性,并用定义加以证明.
20.已知函数f(x)的定义域为{}
0≠=x x D ,且对于任意的,,21D x x ∈有
).()()(2121x f x f x x f +=⋅
(1)求f(1)和f(-1)的值,
(2)判断f(x)的奇偶性并证明你的结论;
(3)若f(4)=1.且f(x)在()+∞,0上是增函数,解不等式f(x-1)<2.
21.已知二次函数12)(2++-=n mx mx x g (m>0)在区间[]3,0上有最大值4,最小值0. (1)求g(x)的解析式:
(2)设0)(,2)()(≤--=
kx x f x x x g x f 若在⎥⎦
⎤
⎢⎣⎡∈21,31x 时恒成立,求k 的取值范围. 22.已知奇函数),,()(为常数r q p r x q px x f ++
=,且满足.4
17
)2(,25)1(==f f (1)求函数f(x)的解析式,
(2)试判断函数f(x)在区间⎥⎦
⎤ ⎝
⎛2
1,0上的单调性,并用函数单调性的定义进行证明;
(3)当⎥⎦
⎤ ⎝
⎛∈2
1,0x ,[]1,1-∈m 时,4)(2-+≥mt mt x f 恒成立,求实数t 的取值范围。
(4)。