深基坑支护施工技术的应用-
建筑施工中深基坑支护技术的应用

建筑施工中深基坑支护技术的应用基坑开挖与支护施工技术是建筑施工中一个十分重要的技术之一。
该技术施工的好坏直接关系到建筑施工的安全性和稳定性。
虽然我国建筑施工领域在基坑开挖与支护施工技术方面已经有了一定的研究,但是随着技术的发展,以及人们对建筑质量的逐步提高,对于基坑开挖与支护施工技术的研究还不能完全的满足今后建筑的需要。
标签:建筑施工;深基坑;支护技术引言作为建筑行业中应用较为广泛的一项技术,深基坑支护技术对于建筑质量的保证是非常有利的。
将深基坑支护技术应用到具体的施工过程中,能够有效的保证施工过程的顺利进行,同时由于其具有较强的安全性,因此对于施工人员人身及财产安全的保证也是非常有利的。
1、选择深基坑开挖与支护的方案在采用深基坑的开挖和支护技术之前,相关技术人员要到施工现场进行勘察,将施工现场的水质情况进行有效的了解,以及深基坑的具体深度会和施工地点的土质情况,还要结合工作经验和相关理论,制定出一个科学合理的深基坑的开挖和支护方案。
一般情况下,选择深基坑方案主要有三种因素进行影响:第一种,在现场勘查中,如果发现在5米以下是无水的土质,其地下水位较低,而在基坑上面的位置,不会受到地下水的影响,在設计方案时,应该选择分级放坡开挖,在此基础要设置开挖平台,使用无支挡的技术方案进行挖掘。
第二种,如果在5米以下是有水土质,其地下水位比较高的情况下,在基坑的上部会受到地下水的影响,这就要求施工单位在选择方案的时候,可以选择分级放坡开挖,这就需要设置开挖平台。
在具体施工过程中,由于涌水量的不同,设置的排水方案也不同。
第三种,在5米以下的土质,其中存在着很多的石头,属于土质加石质基坑,可以采用分级放坡开挖方式,同样需要设计开挖平台,不需要支挡操作。
2、建筑施工中深基坑支护技术的应用2.1土钉支护施工技术以全面稳固深基坑边坡为目的,利用土钉支护作业技术,使土体与土钉产生接触的摩擦作用,提升整体深基坑支护土层的安全性及整体性。
深基坑支护技术的应用与风险评估

深基坑支护技术的应用与风险评估深基坑支护技术在现代建筑领域中起着至关重要的作用。
随着城市化进程的不断推进,土地资源越来越紧张,高层建筑成为解决问题的主要方式。
然而,在建筑过程中,深基坑支护技术是必不可少的,因为它可以确保施工过程中周围环境的安全,防止土方塌方等事故的发生。
然而,深基坑支护技术并非没有风险,因此在应用过程中需要进行风险评估。
本文将介绍深基坑支护技术的应用及其风险评估方法。
一、深基坑支护技术的应用1.1锚杆支护技术锚杆支护技术是一种常用的深基坑支护方法,通过在基坑周围土体中钻孔,然后将钢筋锚杆放入孔中,并注入水泥浆固定,从而达到加固土体的目的。
锚杆支护技术具有施工简单、成本较低等优点。
1.2地下连续墙技术地下连续墙技术是在基坑周围挖掘一条连续的深槽,然后在槽内注入混凝土,形成一道坚固的墙体,以防止土方塌方。
这种方法适用于深基坑支护,具有较高的安全性和可靠性。
1.3土钉支护技术土钉支护技术是通过在基坑周围土体中钻孔,然后安装钢筋土钉,并注入水泥浆固定,从而达到加固土体的目的。
土钉支护技术施工速度快,对周边环境影响较小。
二、深基坑支护技术的风险评估2.1地质条件风险地质条件是影响深基坑支护技术安全性的重要因素。
地质条件复杂,如土层稳定性差、地下水位高等,都会增加施工风险。
因此,在进行深基坑支护设计前,需要对地质条件进行详细调查和评估。
2.2设计风险深基坑支护设计不合理会导致施工过程中的安全隐患。
设计风险主要包括支护结构强度不足、支护体系不稳定等。
因此,在进行设计时,需要充分考虑土体性质、地下水位、施工工艺等因素,确保设计方案的安全可靠。
2.3施工风险施工风险主要是指在施工过程中由于操作不当、施工工艺不成熟等原因导致的事故。
如锚杆施工质量不达标、地下连续墙施工裂缝等问题。
为了降低施工风险,需要加强施工现场管理,提高施工人员的安全意识和技术水平。
2.4周围环境风险深基坑支护施工过程中,周围环境的影响也不可忽视。
深基坑工程中喷锚支护施工技术应用

深基坑工程中喷锚支护施工技术应用一、深基坑工程的特点深基坑工程是指地下挖掘深度达到或超过5米的开挖工程,通常用于地铁、地下商业综合体、地下停车场等地下工程的建设。
深基坑工程的特点是地下环境复杂,地下水、土体力学性质等因素对基坑工程的稳定性和安全性影响较大,因此在施工过程中需要采取一系列的支护措施来保证工程的顺利进行。
二、喷锚支护技术的应用在深基坑工程中,由于地下水位高、土壤松软等因素的影响,常常需要采用喷锚支护技术来加固土体,防止基坑失稳。
喷锚支护技术是利用锚杆和浆液等材料构成的固结体系,将基坑周边土体和岩石进行整体加固,提高了基坑的稳定性和安全性。
喷锚支护技术在深基坑工程中应用广泛,成为保障工程安全的重要手段。
1. 施工流程喷锚支护技术施工主要包括四个步骤:孔洞钻担、预埋锚杆、注浆加固、锚杆拉紧。
在基坑周边进行孔洞钻担工作,按照设计要求进行孔洞布置。
然后在孔洞中预埋锚杆,位置和间距按照设计要求进行布置。
接着进行注浆加固,将浆液泵入孔洞中,固结土体和岩石。
最后进行锚杆拉紧,使得基坑周边的土体与锚杆形成整体固结体系,提高了基坑的稳定性。
2. 施工材料喷锚支护技术所使用的施工材料主要包括锚杆、浆液和其他辅助材料。
锚杆是喷锚支护技术的基础材料,一般采用高强度的钢材制成。
浆液是喷锚支护技术中的关键材料,通过浆液的注入和固结可以加固土体和岩石。
在实际施工中,还需要根据工程的具体要求选择其他辅助材料,如增稠剂、防水剂等,以提高施工效果和加固效果。
3. 施工技术喷锚支护技术的施工过程需要严格控制施工参数和操作技术,以保证施工质量和工程安全。
施工参数包括孔洞布置、锚杆预埋深度、浆液注入压力和流量等。
操作技术包括孔洞钻担、锚杆预埋、浆液注入等。
在实际施工中,需要严格按照设计要求和施工规范进行操作,确保施工质量。
喷锚支护技术在深基坑施工中具有以下几个优势:1. 提高了基坑的稳定性和安全性。
喷锚支护技术可以使土体和锚杆形成整体固结体系,提高了基坑的稳定性和安全性,减少了基坑变形和变形引起的安全隐患。
深基坑支护施工技术在建筑工程中应用

深基坑支护施工技术在建筑工程中应用
深基坑支护施工技术是指在建筑工程中对深基坑进行支护和加固的一种施工技术。
深
基坑是指在建筑工程中为了挖掘深度达到一定要求的基础而形成的大型开挖工程。
深基坑
支护施工技术的应用可以有效解决深基坑施工过程中的土体塌方、地面沉降、地下水渗流
等工程问题,确保施工的安全和顺利进行。
深基坑支护施工技术的具体应用包括以下几个方面:
1. 土壤处理:在深基坑施工前,需要对土体进行处理,如坑底清理、软土加固等,
以提高土体的稳定性和承载力,减少施工中的土壤位移和变形。
2. 支护结构设计:根据深基坑的不同要求和土体条件,设计合理的支护结构,如钢
支撑、混凝土支撑、土钉墙等,以提供坚固的支撑力和刚度,防止土体塌方和结构变形。
3. 地下水控制:在深基坑施工中,地下水渗流是一个重要的问题。
需要采取合理的
地下水控制措施,如降水井、挡水墙等,以保持基坑内的地下水位稳定,减少地下水对土
体的影响。
4. 监测与预警:深基坑施工过程中需要进行实时的监测与预警,对土体位移、沉降、地下水位等进行监测,及时发现并解决问题,保证施工的安全性和稳定性。
1. 提高施工效率:采用深基坑支护施工技术可以大大提高施工效率,减少工期,节
省人力资源和成本。
2. 环境保护:深基坑支护施工技术可以有效控制土体塌方、地面沉降等问题,减少
对周边环境的影响,保护生态环境。
3. 施工安全:深基坑支护施工技术可以有效保障施工的安全性,防止事故的发生,
保护工人的生命财产安全。
深基坑支护施工技术在建筑工程中应用

深基坑支护施工技术在建筑工程中应用深基坑支护施工技术是建筑工程中的一项重要技术,它主要是为了保证基坑的安全和稳定,以及施工过程中的人员安全和施工效率。
随着城市建设的不断发展,越来越多的建筑工程需要进行深基坑支护施工,下面就来详细介绍一下深基坑支护施工技术在建筑工程中的应用。
一、深基坑支护的定义深基坑支护就是在建筑工程中挖掘深度超过3米的坑洞时,为了防止坑洞塌陷,需要采取一定的支护措施的技术。
一般来说,深基坑支护工程需要经过设计、施工、验收等多个阶段,其中包括了各种施工材料、工具和技术。
1、钢支撑技术钢支撑技术是深基坑支护中最常见的一种技术,它主要是使用一些钢材框架或钢钢管支撑来支撑土壤、混凝土或砖墙等结构体,以便于工人们进入基坑进行施工。
钢支撑可以适应各种不同的地质环境和施工需求,广泛应用于不同地区范围内的土建工程中。
2、预应力锚杆支护技术预应力锚杆支护技术是另一种比较常见的深基坑支护技术,它主要是通过锚杆将深基坑墙体加固,从而达到防止墙体失稳和坍塌的目的。
预应力锚杆支护技术主要适用于高压水平、强烈的土体压力和高风险等情况下的基坑工程,它具有施工效率高、施工工期短、占地面积少等特点。
3、梯形支护技术梯形支护技术也是深基坑支护中比较常见的一种技术,它主要是使用一些钢板和支撑杆来构成梯形间隙,从而支撑基坑的周围土壤,并加大了梯形间隙的面积。
梯形支护可以适应各种不同的地质环境和施工要求,例如在软土和富水层地质环境下,使用梯形支护可以有效地抵制基坑的侧向压力和水压力。
岩锚支护技术主要是使用锚杆将岩体加固,从而保证基坑周围的岩层不会崩溃、开裂或滑坡。
岩锚支护在针对具有高风险的基坑工程中具有很高的应用价值,例如在建设高层建筑、桥梁和隧道工程中。
深基坑支护施工技术在建筑工程中具有广泛的应用价值,例如在地铁、高速公路、水库、桥梁和隧道等工程中,它可以提高施工效率,保证人员安全,减少土体变形和基础沉降等问题。
此外,深基坑支护施工技术也可以适用于一些比较特殊的工程项目中,例如在建设船舶和造船厂、港口工程和矿山工程等。
深基坑支护技术在房屋建筑施工中的具体应用

深基坑支护技术在房屋建筑施工中的具体应用随着城市化进程的加快和土地资源的有限,越来越多的建筑项目需要在有限的土地上进行高密度、多功能的开发建设。
而伴随着建筑项目的开展,对于地下空间的利用需求也越来越大,特别是在一些大城市中,地下空间的利用已经成为一种常见的现象。
在这种情况下,深基坑支护技术就显得格外重要了。
深基坑支护技术在房屋建筑施工中的具体应用,不仅可以确保地下空间的稳定和安全,还可以为建筑项目提供更多的土地利用空间,提高土地资源的利用效率,增加城市地下空间的利用率。
一、深基坑支护技术概述深基坑支护技术是指在建筑施工中,为了开挖深基坑所采取的保护地下构筑物和周围环境安全的技术措施。
深基坑支护技术主要用于承受和分担开挖的土体和地下水压力,防止土体坍塌和地下水的渗入,从而确保深基坑周边的建筑物和地下管线的安全。
深基坑支护技术的主要目的是保护施工现场周围的建筑物和地下结构设施,保证施工安全和施工进度。
二、深基坑支护技术在房屋建筑施工中的具体应用1. 地基处理在房屋建筑施工中,地基处理是深基坑支护技术的重要组成部分。
通过对地基进行处理,可以提高地基承载力和稳定性,为深基坑的支护提供可靠的土体支撑。
地基处理包括土体加固和地基处理,常见的土体加固方法包括灌浆加固、复合土工布加固、土钉墙等;地基处理主要包括挖土加固、压实处理、土体改良等。
地基处理可以有效提高地基的承载能力,保证深基坑施工期间的工程安全。
2. 支护结构深基坑支护结构的设计和施工对于房屋建筑施工来说至关重要。
一般情况下,深基坑支护结构采用的支护形式有钢支撑桩、混凝土支撑桩、地下连续墙、嵌岩式边坡支护等。
这些支护结构不仅可以提供稳固的支撑和保障施工现场的安全,还可以为未来的地下室空间提供更多的利用空间和发展潜力。
3. 地下管线的保护在深基坑支护技术中,对地下管线的保护尤为重要。
地下管线是城市地下综合管廊的重要组成部分,涉及到供水、排水、电力、通讯等诸多方面,一旦在施工过程中受到破坏,会给城市的正常运行造成严重影响。
深基坑支护技术在城市建设中的应用
深基坑支护技术在城市建设中的应用随着城市建设和土地利用的不断扩张,深基坑成为了现代城市建设过程中常见的一种工程形式。
对于土地资源有限的城市来说,深基坑提供了一种合理利用土地的方式,但同时也带来了土地开发和施工上的挑战。
为了确保工程安全和土地利用的高效性,深基坑支护技术的应用变得至关重要。
首先,深基坑支护技术在城市建设中的应用可以提高工程的安全性。
在城市建设过程中,基坑的开挖深度可能超过10米甚至更深。
这样的深度对于土层的稳定性提出了更高的要求,而支护技术的应用可以增强土体的稳定性,以防止土体塌方和地下水渗入。
常见的支护技术包括梁板支护、桩墙支护和钢支撑等,它们可以承受土压力和水压力,确保基坑周边区域的安全。
此外,一些高级支护技术,如复合锚杆和喷射混凝土支护,可以进一步增强基坑的稳定性,确保工程施工过程的安全性。
其次,深基坑支护技术的应用也可以提高土地的利用效率。
在城市中,土地是一项宝贵的资源,有效地利用土地成为了城市建设的一项重要任务。
深基坑支护技术可以帮助开发商在有限的土地上实现更高的建筑密度,提高土地的利用效率。
通过合理设计支护结构,可以减少基坑的占地面积,从而释放出更多的土地用于建设。
此外,深基坑支护技术还可以在地下利用空间的开发中发挥重要作用。
例如,在地铁建设中,基坑的开挖深度通常较大,因此深基坑支护技术可以为地下站台和通道的建设提供必要的支撑结构,将地下空间充分利用起来。
然而,深基坑支护技术在城市建设中的应用也面临一些挑战和难题。
首先,基坑施工往往影响到周边建筑物和地下设施的安全。
由于基坑施工会对地下土层施加压力,可能引发地表塌陷和地下管线的破坏。
因此,在基坑支护工程的规划和设计中,需要仔细评估周边地下设施的情况,采取相应的土方支护措施,保障周边建筑和设施的安全。
其次,在城市建设过程中,由于土地资源的紧缺,基坑施工往往与周边居民和商家的生活与经营活动产生冲突。
因此,在基坑施工过程中,需要加强与周边利益相关方的沟通和合作,确保施工对周边环境的影响最小化。
深基坑支护技术
深基坑支护技术深基坑支护技术是建筑工程中的重要环节,旨在确保深基坑的稳定和安全施工。
本文将介绍深基坑支护技术的原理、常用方法以及其在实际工程中的应用。
一、深基坑支护技术的原理深基坑支护技术的原理是通过合理的结构设计和施工方法,将基坑周围的土体加固,减少土体位移和塌方的风险。
其主要目的是保持基坑的稳定,防止土体滑移和坍塌。
二、常用的深基坑支护方法1. 土钉墙支护技术土钉墙支护技术是一种常用且有效的深基坑支护方法。
其原理是在基坑周围的土壤中预埋钢筋,形成一个稳定的土体-钢筋复合结构,以提高土体的抗侧力能力和整体稳定性。
2. 钢支撑技术钢支撑技术是另一种常见的深基坑支护方法。
它采用钢板桩或钢梁等构件,将基坑周围的土体封围住,形成一个稳定的支撑结构。
这种方法适用于基坑较深或土体较松散的情况。
3. 喷射混凝土墙支护技术喷射混凝土墙支护技术是在基坑周围喷射混凝土,形成一道坚固的墙壁,以达到保持土体稳定的目的。
这种方法适用于较深的基坑或土体较坚实的情况。
4. 桩基支护技术桩基支护技术是通过在基坑周围预埋桩基,使其承担土壤的承载作用,从而达到支撑基坑的目的。
桩基可以分为钻孔灌注桩、钢管桩、预制桩等不同类型。
三、深基坑支护技术的应用深基坑支护技术在实际工程中得到广泛应用。
比如在地铁、大型商业建筑和地下停车场等项目中,深基坑支护技术可以有效地确保基坑的安全施工。
此外,深基坑支护技术还可以应用于地下管线施工、土木工程以及挖掘工程等领域。
通过采用合适的支护技术,可以降低基坑工程带来的风险和困难,提高工程的顺利进行。
四、深基坑支护技术的发展趋势随着科技的进步和施工技术的不断发展,深基坑支护技术也在不断创新和改进。
未来的发展趋势主要包括以下几个方面:1. 数字化技术的应用:通过引入数字化技术,可以更加准确地模拟基坑工程的施工过程和土体的行为,以便更好地指导实际施工。
2. 环境友好型支护材料:绿色环保已经成为施工行业的一个重要关键词,未来的深基坑支护技术将更加注重使用环境友好型的支护材料,减少对环境的影响。
土建工程中深基坑支护技术的应用与实践研究
0 引言在当前的城市建设和基础设施建设浪潮中,深基坑工程作为城市建设中不可或缺的一部分,其安全性、稳定性及质量控制问题日益受到工程界的广泛关注。
然而,深基坑工程的特殊性使其施工过程中常常遭遇各种复杂挑战,这就要求工程技术人员不断探索和创新支护技术,以适应不同条件下的工程需求。
近年来,国内外许多学者对深基坑支护施工技术进行了深入研究,并取得了一系列成果。
例如,李冰和汝鹏伟[1]在其研究中探讨了PLC 工法桩在富水深基坑支护中的应用,并展示了该工法在提高施工效率和工程安全性方面的优势。
江焕钊等[2]针对超大环形支撑深基坑支护设计与监测进行了分析,提出了一套完整的设计和监测方案,为类似工程提供了宝贵的参考。
此外,饶邦政等[3]基于可靠性理论,对地铁深基坑支护方案进行了优化研究,发现并解决了现有方案中存在的问题,为深基坑工程支护方案的优化提供了新的视角。
本文在前人研究的基础上,对深基坑工程支护技术的发展现状进行了全面总结,并通过综合分析最新的研究成果,揭示了当前技术发展中存在的关键问题和挑战。
同时,本文提出了一系列创新点,包括针对特定地质条件优化支护结构设计的新方法、提高深基坑工程安全监测的技术手段以及基于数字化手段的施工管理策略,旨在为深基坑工程的安全施工和质量控制提供更有效的技术支持和解决方案。
1 深基坑支护施工技术的作用1.1 保障施工安全在深基坑工程施工过程中,保障施工安全是首要任务。
深基坑支护技术通过各种支撑和固定手段,如横梁、钢筋混凝土墙等,有效避免了基坑坍塌和滑移,减少了安全事故的发生。
此外,该技术还包括了严格的监测体系,实时监控基坑的稳定性,及时发现潜在的风险,确保施工人员的生命安全和施工设备的安全。
1.2 提升结构稳定性深基坑支护技术在提升工程结构稳定性方面发挥着至关重要的作用。
通过引入地下连续墙、锚固系统等先进支护结构,这些技术有效地承担了周围土壤及地下水带来的压力,确保了基坑在施工过程中的稳固性。
深基坑支护施工技术在建筑工程中应用
深基坑支护施工技术在建筑工程中应用深基坑支护施工技术是指在建筑工程中对深基坑进行支护的一种技术。
随着城市建设的发展和土地资源的有限,各类高层建筑、地下综合体和地铁等工程的建设对深基坑的需求也在不断增加。
深基坑的施工过程中往往会遇到土壤松软、地下水位高等复杂环境,因此需要采取相应的支护措施来确保施工安全和基坑稳定。
深基坑支护施工技术主要包括土方开挖、基坑支撑、地下连续墙施工和地下连续墙与地下室结合等几个方面。
土方开挖阶段是深基坑支护的首要环节,主要通过土方开挖设备进行挖土施工。
在土方开挖过程中,需要根据地质情况选择合适的开挖方式和支撑措施,以确保土方开挖的安全和顺利进行。
土方开挖后,需要对基坑进行支撑。
常见的基坑支撑方式有垂直支撑和水平支撑两种。
垂直支撑包括桩基、悬挂墙和预应力锚杆等,通过这些支撑措施来抵抗由于土方开挖引起的基坑周围土体的水平和竖向变形。
水平支撑主要包括水平架梁和水平支撑墙等,通过这些支护措施来保证基坑的稳定和安全施工。
地下连续墙施工是深基坑支护的重要环节。
地下连续墙的施工主要包括钢模板安装、钢筋构筑和混凝土浇筑等工艺。
钢模板安装是地下连续墙施工的第一步,通过设置合适的钢模板来固定混凝土,保证连续墙的稳定性和强度。
然后,需要进行钢筋构筑,通过设置合适的钢筋来增加连续墙的抗拉和抗弯强度。
进行混凝土浇筑,将混凝土倒入模板中,待混凝土凝结后,完成地下连续墙的施工。
地下连续墙与地下室的结合是深基坑支护的最后一步。
地下连续墙和地下室的结合主要通过施工节点处理和防水处理来完成。
施工节点处理需要将地下连续墙与地下室进行紧密的连接,保证连接处的稳定性和密封性。
防水处理则需要采用合适的防水材料来对地下室进行防水处理,以防止水的渗透和侵入。
深基坑支护施工技术在建筑工程中的应用十分重要。
通过合理选择支护措施和采取科学的施工方法,可以保证深基坑施工的安全和顺利进行。
这不仅能够满足城市建设对基坑的需求,还能为后续的土地利用提供可靠的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深基坑支护施工技术的应用摘要:当代社会城市的建设发展步伐急速加快,基本上各大城市的建筑都以高、大、深、重为发展方向。
从而深基坑工程也就越来越密集,并且不完全集中在传统的建筑物,现在已经在地铁隧道、地下管线、道路桥梁等工程中有广泛应用,这些工程基础结构和技术要求都很复杂,因此深基坑支护施工技术在工程中应用的成败也就决定了整个工程的成败。
本文对深基坑支护技术方式作以简单介绍,并结合高层建筑、明挖城市隧道等工程为例对深基坑技术在实际工程中的应用予以探讨,对深基坑支护技术在土木工程中应用时需要注意的问题提出了几点建议。
关键词:深基坑、支护、施工技术、土钉墙、构造要求、引言:伴随着国民经济建设的迅猛发展,社会经济得到了高速发展,人民生活水平有很大提升,我国城市化建设步伐也不断加快,建筑业科技的进步已经居于世界领先地位。
为了保证工程的顺利进行,提高企业的竞争力,减少施工过程中对周边环境的影响,采用深基坑支护的施工技术已经势在必行。
现代建筑的要求很高,对地下空间的利用非常注重,由于目前的环境条件的限制,深基坑的面积不能再扩大,那么就给深基坑支护技术带来了更高的技术难度。
由于对深基坑支护工程质量不够重视,带来了很多问题,因此加强深基坑支护技术在土木工程中的应用,对建筑的强度和稳定性有重要的影响,对保证工程质量具有重要意义。
一、深基坑支护结构选型当深基坑工地的实际施工现场不具备常规放坡条件时,这时一般会用支护结构进行临时支撑,以保证深基坑坑壁的稳定。
深基坑支护结构的选型包括自立式支护、喷锚支护、桩锚支护、组合型支护等。
1、自立式支护自立式支护中又包括悬臂式排桩支护和水泥搅拌桩挡墙支护。
悬臂式排桩支护采用人工挖孔灌注桩或冲、钻孔。
它的优点是在深基坑内无支撑,以便机械挖土和地下工程施工,但当坑基较深或地质条件较差时,会加大支护桩顶部的水平位移,增加工程造价。
因此这种支护方式主要都用于坑深不大于6米且地质条件较好的施工地。
它的优点是稳定性高,整体性强,坑基挡墙厚度大,施工效率高,且深基坑隔水效果好,造价一般也较低。
水泥搅拌桩挡墙支护在坑内也无支撑结构,也便于机械化挖土和地下室工程施工。
但其挡墙面积大,且施工土层含水量和有机质含量的多少会严重影响支护的强度。
2、喷锚支护喷锚支护是钢丝网、锚杆、喷射混凝土组成的联合支护型式。
这种方式主要适用于在地下水位以上或经过人工降水后的人工填土、粘性土和弱胶结砂土。
不能用于施工场地土壤条件极差的淤泥层,而是常用在单层地下室,要求淤泥较少、地下水较少,且深基坑深度不能大于12m。
它能最大限度地利用支护基坑壁土体的自稳能力,可自行调节处于最佳状态,不会造成局部过载,灵活性较强。
但该方式会使基坑壁变形较大而且锚杆会超出建筑用地红线,需征得施工场地业主的同意。
3、桩锚支护这种方式适用于施工场地的土层性能较好或软土层较薄的施工场地。
对基坑深度较大的工程,桩锚杆的一些参数有严格要求,并在锚索锁定时会施加预应力,从设计值的30%到70%不等,一般施加的预应力越大,越容易限制桩顶变位。
4、组合型支护当深基坑内土地环境条件差别较大时,应因地制宣地采用组合型的支护方式,以充分发挥各种支护结构类型的优越性。
主要包括:上部放坡下部钢筋混凝土悬臂排桩(或桩锚)的组合;拱形水泥土墙与钢筋混凝土灌注桩或H型钢的组合;钢筋混凝土排桩与桩间高压旋喷桩的组合;土钉墙与水泥土搅拌桩组合;土钉墙与微型注浆桩组合;土钉墙与预应力锚索组合;各种支护结构与由水泥土搅拌桩或高压旋喷桩形成的封闭止水帷幕组合。
其中,排桩或土钉墙支护是近几年来深基坑支护的主要形式。
二、高层建筑深基坑施工技术高层建筑在施工之前,施工单位必须对施现场进行认真的勘察,充分了解施工场地的实际情况,明确施工项目的目标,并把施工深坑所在地下的管线等因素考虑进去。
施工阶段准备工作应引起高度的重视。
内容多且繁杂,明确周围建筑物的埋深、周围道路建设情况以及地下埋设管线的基本情况等。
在整个准备阶段应将熟悉土层参数作为重要内容,包括土层类型、深度和厚度等参数。
施工阶段首先应针对不同的支护结构选择合理的开挖方式。
以后在整个施工中必须严格控制所使用材料的质量,并按照相关设计要求进行施工,确保工程质量。
其中土方开挖时要及时清理施工现场,将挖出的土方运走减少施工对周围环境的影响。
如遇异常情况应立即停止施工,并采取措施处理,直到恢复施工。
三、深基坑支护技术在土木工程施工中应注意的问题1、遵循深基坑土方开挖原则,施工前详细确定挖土方案和施工方案,并遵循“开槽支撑,先撑后挖,分层开挖,严禁超挖”的原则。
并进行必要的监测和保护。
横向支撑设备必须安装检测仪器,逐日记录。
2、基坑面积过大时,对底板混凝土要进行分段边挖边浇筑,坚持采用分层、均衡等方式进行挖土。
可以解决大体积混凝土在浇注技术上的困难,增加了基坑的稳定性。
3、深基坑开挖时间较长,容易引起边壁不稳突然滑动,加上施工场地排水不良,更会加剧边壁不稳。
此外,及时清理基坑边缘堆料防止发生事故。
4、随时观察地裂与挖土之间的关系,当发现挖土后隆起的现象,必须停止挖土。
如果出现地裂,当检查降水是否达标等问题。
施工单位应及早做好准备,一旦遇到紧急情况,可采用立即回填反压处理,在任何情况下未处理完毕,不允许继续挖土。
5、处理深基坑支护地下水主要有两种形式,即排水或止水。
因地制宜采取不同方法,要根据基坑周边环境而定。
近年来在沿海地区深基坑支护施工中,新兴了以冲孔桩、素混凝土桩与钢筋混凝土桩相咬合搭接分布的混凝土灌注排桩,并与锁口梁、内支撑、喷锚等组成联合支护体系,从而在防止边坡失隐和阻止地下水侧向渗漏方面(止水帷幕),取得较好的效果。
下面通过一项某高层建筑工程中的基坑支护工程实例来简述基坑工程的施工的两种较为常见的支护方法。
一、工程概况某报业大厦位于某市建国路与东安大街路口西南角,交通便利。
该建筑物设计地下1层,地上12层,主体檐口高度为47.050 m,采用框架剪力墙结构,设防烈度7度,场地类别为Ⅱ类,抗震设防为丙类,地基基础设计等级为乙级,设计基础形式为桩基础,采用大直径人工挖孔灌注桩。
在拟建大楼的南侧紧邻某日报社的旧办公楼,主楼6层,侧楼5层,带形基础,砖混结构,1986年建成投入使用。
由于新建大楼基坑开挖深度达7.70 m,并紧邻旧办公楼,因此,在基坑施工及基础施工期间需对与旧办公楼交界处边坡进行支护,以保证施工安全及旧楼不受影响。
此外,在拟建大楼的西侧紧邻市保险公司住宅楼,北侧紧邻东安大街,均不能放坡开挖基坑。
经过多方商议研究决定,在基坑南侧和西侧采用人工挖孔灌注桩支护,基坑北侧采用土钉墙支护,东侧采用放坡开挖,坡度为1∶0.33二、支护桩施工1、构造要求依据《建筑基坑支护技术规程》中排桩的构造要求,本工程支护桩采用直径800 mm人工挖孔灌注桩,并通过计算确定桩长不小于12 m,采用C20混凝土灌注,桩间距应根据排桩受力及桩间土稳定条件确定为1.5 m。
桩的纵向受力钢筋采用18B22钢筋,纵向受力钢筋保护层厚度不应小于35 mm。
箍筋采用A8@200的螺旋筋,每隔1 500 mm布置一根A12的焊接加强箍筋,以增加钢筋笼的整体刚度,有利于钢筋笼的吊放,钢筋笼一般离孔底200 mm。
排桩顶部应设钢筋混凝土冠梁与桩身连接,冠梁宽度为800 mm,高度为500 mm。
桩顶纵向钢筋应锚入冠梁内,且锚固长度不低于30倍纵向钢筋直径。
桩与冠梁主筋焊接接头必须分散布置,一个截面的接头数不得超过钢筋数的1/2。
2、支护桩施工工艺按设计图纸放线、定桩位→人工取土成孔→测量控制→支设护壁模板→在顶部放置操作平台→浇筑护壁混凝土→拆除护壁模板继续向下一段施工,至设计标高→排除孔底松土、沉渣→吊放钢筋笼→浇筑桩身混凝土。
3、支护桩技术要求施工前必须充分了解现场工程地质与水文地质状况。
2) 根据护壁井圈设计高度,挖至一定孔深后应立即支模,按要求放置钢筋并浇筑混凝土;护壁井圈混凝土达到设计允许的强度后方可进行下一层挖土施工。
3) 每层井圈高度取600 mm,为便于混凝土浇筑,井圈应做成锥形,锥形井圈上口宽度为200 mm,下口宽100 mm。
4) 出土工具:主要有机架、电动葫芦及出渣筒。
5) 孔内施工照明必须采用安全低压防水灯。
6) 要求向孔内送风不小于25 L/s,主要工具为1.5 kW鼓风机,配以直径为100 mm的塑料送风管。
7) 施工桩孔应间隔进行,不得同时施工全部桩孔,基坑开挖应在支护排桩桩体强度达到70%设计强度后进行。
8) 基坑开挖后,建立旧楼变形监测点;发现变形超过规范要求,立即采取紧急加固及支护措施。
三、土钉墙施工1、构造要求依据《建筑基坑支护技术规程》,确定土钉墙墙面坡度为1∶0.1,土钉倾角为12°,土钉孔径为100 mm。
土钉钢筋采用C20钢筋。
2) 面层钢筋网的钢筋为A6,网格尺寸200 mm×200 mm,搭接长度应大于300 mm。
面层中与土钉等间距设置B16的加强钢筋,采用水平垂直设置。
加强钢筋采用焊接连接,且与每根土钉可靠连接。
3) 土钉必须与面层有效连接,本工程设置350 mm×350 mm×50 mm 的水泥承压板,通过螺栓与土钉连接。
4) 土钉孔内注浆材料采用水灰比为1∶0.5的水泥砂浆,强度不低于12 MPa,3 d强度不低于10 MPa。
5) 在坡顶和坡脚设排水措施,坡面设适当数量泄水孔。
6) 本工程共设5排土钉,第一排土钉距离地面0.5 m,土钉水平间距和竖向间距均为1.5 m,自上向下各排土钉的长度分别为8 m,7.5 m,7 m,6.5 m,6 m。
2、土钉墙支护施工工艺土钉墙的施工一般按以下程序进行:施工准备→开挖工作面、修理边坡、坡面排水→喷射第一层混凝土→设置土钉(包括成孔、置筋、安装、注浆等)→安设连接件→绑扎安装钢筋网→喷射第二层混凝土。
1) 施工前的准备。
在进行土钉墙施工前,要认真检查原材料,机具的型号、品种、规格及土钉各部件的质量、主要技术性能是否符合设计和规范要求;平整好场地道路,搭设好钻机平台;做好土钉所用砂浆的配合比及强度试验,各构件焊接的强度试验,验证能否满足设计要求。
2) 土方开挖。
土方开挖必须紧密配合土钉墙施工,严格做到开挖一层,支护一层。
上层土钉注浆体及喷射混凝土面层达到设计强度的70%后方可开挖下层土方及下层土钉施工。
每层开挖深度按设计要求并视现场土质条件而定,开挖要到位,不得欠挖,绝对禁止超挖。
机械开挖后,应及时对壁面进行人工修整。
对较软弱的土体,需采用必要的超前支护措施。
3) 钻孔。
采用螺旋钻机成孔,要掌握好钻进速度,保证孔内干净、圆直,孔径符合设计要求。
严格控制钻孔的偏差,保证水平方向、垂直方向孔距误差,钻孔底部的偏斜误差,钻孔深度误差均在规范允许范围内。