北师大版九年级数学上册第二章《一元二次方程》训练试题和答案
第二章 一元二次方程 分类提升训练(含答案) 2024--2025学年 北师大版 九年级数学上册

第二章 一元二次方程分类提升训练 2024--2025学年 北师大版 九年级数学上册一、单选题1.关于x 的一元二次方程有两个不相等的实数根,则m 的值可能是( )A .9B .6C .4D .2.下列方程是一元二次方程的是( )A .B .C.D .3.已知关于x 的方程有两个相等的实数根,则()A .10B .25C .D .4.设,是关于x 的一元二次方程x 2−2(m +1)x +m 2+2=0的两个实数根,且(x 1+1)(x 2+1)=13,则m 的值为( )A .2B .4C .2或D .或45.某厂家今年一月份的口罩产量是50万个,三月份的口罩产量是80万个,若设该厂家一月份到三月份口罩产量的月平均增长率为x ,则所列方程为( )A .B .C .D .6.如图,一次函数的图象交轴于点,交轴于点,点在线段上不与点,重合,过点分别作和的垂线,垂足为,.当矩形的面积为时,点的坐标为( )A .B .C .或D .或7.一个研究小组有若干人,互送研究成果,若全组共送研究成果72个,这个小组共有( )人A .8B .9C .10D .72240x x m ++=1-22510x y ++=20ax bx c +-=212x x +=20x =2100x x m -+=m =25-25±1x 2x 4-2-250(1)80x +=250(1)80x -=()501280x +=()250180x +=26y x =-+x A y B P AB (A B)P OA OB C D OCPD 4P ()2,21,52⎛⎫ ⎪⎝⎭()1,41,52⎛⎫ ⎪⎝⎭()1,4()2,28.将方程化为一元二次方程的一般形式,其中二次项系数为,则一次项系数、常数项分别是( )A .、B .、C .、D .、9.已知、是关于的一元二次方程的两个不相等的实数根,且满足,则的值是( )A .B .C .或D .或二、填空题10.已知,是一元二次方程的两根,则 .11.数字下乡,农货上行,直播逐渐成为农户销售农产品的重要渠道,某地农村网商年为家,年达到家,设年到年农村网商的月平均增长率为,根据题意可列方程为 .12.关于的一元二次方程的两实数根分别为,,且,则的值为 .13.已知关于的 方程 有两个实数根,则 的取值范围是 .14.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为 .15. 二次项系数为,且两根分别为,的一元二次方程为 .(写成的形式)16.如图,在等边三角形中,D 是的中点,P 是边上的一个动点,过点P 作,交于点E ,连接.若是等腰三角形,则的长是 .2316x x +=36-16161-6-1-αβx 22(23)0x m x m +++=111αβ+=-m 3131-3-11x 2x 2320220x x --=2111234x x x x --+=202115002023216020212023x x 210x kx k +++=1x 2x 22121x x +=k x 21(1)02m x --=m x 211x =212x =20ax bx c ++=ABC AC AB PE AB ⊥BC ,DP DE 8,AB PDE =V BP三、解答题17.“一盔一带”安全守护行动在全国各地积极开展某品牌头盔的销量逐月攀升,某超市以每个元的进价购进一批该品牌头盔,当该头盔售价为元个时,七月销售个,八九月该品牌头盔销量持续上涨,在售价不变的基础上,九月的销量达到个.(1)求八,九两月销量的月平均增长率;(2)十月该超市为了减少库存,开始降价促销,经调查发现,该品牌头盔售价每降低元,月销量在九月销量的基础上增加个,当该品牌头盔售价为多少元时,超市十月能获利元?18.解方程:(1)(2)19.已知关于x 的一元二次方程 有两个不相等的实数根 m ,n.(1)求t 的取值范围.(2)当t=3时,解这个方程.(3)若m ,n 是方程的两个实数根,设Q=(m-2)(n-2),试求Q 的最小值.20.某水果超市以每千克元的价格购进一批水果,然后以每千克元的价格出售,一天可以售出千克.通过调查发现,每千克的售价每降低元,一天可以多售出千克.(1)若将这种水果每斤的售价降低元,则每天的销售量是______千克,每千克盈利______元(用含x 的代数式表示);.2030/2002881318002531x x x -=+3(2)2(2)x x x -=-222tx t 2t 40x -+-+=9121000.120x(2)要想一天盈利元,且保证一天销售量不少于千克,商店需将每千克的售价降低多少元?21.若是关于x 一元二次方程ax 2+bx+c=0(a≠0)的两个根,则方程的两个根和系数a 、b 、c有如下关系:,,把它们称为一元二次方程根与系数关系定理.已知是关于x 的一元二次方程x 2−2(m+1)x+m 2+5=0的两实数根.(1)求的取值范围;(2)若,求的值;(3)已知等腰三角形的一边长为,若、恰好是另外两边的长,求这个角形的周长.22.某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:进货批次A 型水杯(个)B 型水杯(个)总费用(元)一1002008000二20030013000(1)求A 、B 两种型号的水杯进价各是多少元?(2)在销售过程中,A 型水杯因为物美价廉而更受消费者喜欢.为了增大B 型水杯的销售量,超市决定对B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B 型水杯降价多少元时,每天售出B 型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A 型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A 型水杯就为当地“新冠疫情防控”捐b 元用于购买防控物资.若A 、B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b 为多少?利润为多少?50025012x x 、12x x 、12b x x a +=-12cx x a=12x x 、m ()()121119x x --=m ABC 71x 2x ABC ∆23.某网店准备销售一种多功能旅行背包,计划从厂家以每个120元的价格进货.(1)经过市场调查发现,当每个背包的售价为140元时,月均销量为980个,售价每增长10元,月均销量就相应减少30个,若使这种背包的月均销量不低于800个,每个背包售价应不高于多少元?(2)在实际销售过程中,由于原材料涨价和生产成本增加的原因,每个背包的进价为150元,而每个背包的售价比(1)中最高售价减少了a%(a>0),月均销量比(1)中最低月均销量800个增加了5a%,结果该店销售该背包的月均利润达到了40000元,求在实际销售过程中每个背包售价为多少元?答案解析部分1.【答案】D 2.【答案】D 3.【答案】B 4.【答案】A 5.【答案】A 6.【答案】D 7.【答案】B 8.【答案】A 9.【答案】A 10.【答案】404811.【答案】1500(1+x )2=216012.【答案】13.【答案】0≤m≤2且m≠114.【答案】15.【答案】16.【答案】或或.17.【答案】(1)解:设八,九两月销量的月平均增长率为,由题意可得:,解得:,,不符合题意,舍去,答:八,九两月销量的月平均增长率为;(2)解:设该品牌头盔售价降低元,,整理得:,解得:,不符合题意,舍去,元,答:该品牌头盔售价为元时,超市十月能获利元.18.【答案】(1)解:原方程化为,,,,1-2300(1)363x +=22310x x -+=3-+412-x 2200Ω)288%x +=10.220%x ==22x =-()20%a ()()302028831800a a --+=2863600a a +-=14a =290(a =-)3030426(a -=-=)26180025410x x --=5a =4b =-1c =-所以,所以方程有两个不相等的实数根,即,(2)解:原方程可化为,所以,所以,.19.【答案】(1)解:∵ 原方程有两个不相等的实数根,∴b 2-4ac >0即4t 2-4(t 2-2t+4)>0,解之:t>2(2)解:当t=3时,x 2-6x+7=0解之:x₁=3+,x₂=3- (3)解:∵m ,n 是方程的两个实数根,∴m+n=2t ,mn=t 2-2t+4,∴Q=(m-2)(n-2)=mn-2(m+n )+4=t 2-2t+4-4t+4=(t-3)2-1,当t=3时Q 有最小值为-1.20.【答案】(1),(2)商店需将每千克的售价降低元21.【答案】(1)m≥2;(2)m=5;(3)这个角形的周长为17.22.【答案】(1)A 型号水杯进价为20元,B 型号水杯进价为30元;(2)超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元;(3)A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元.23.【答案】(1) 200元;(2) 190元22Δ4(4)45(1)360b ac =-=--⨯⨯-=>4610x ±==11x =215x =-3(2)2(2)0x x x -+-=(32)(2)0x x +-=12x =223x =-()100200x +()3x -2。
北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.一元二次方程2x2−4x−5=0的一次项系数是()A.2 B.−4C.5 D.42.关于x的方程x2−mx−6=0的一个根为x=−3,则实数m的值为()A.−1B.1 C.−5D.53.用配方法解方程x2+6x+5=0,配方后所得的方程是()A.y=14x2B.(x−3)2=−4C.(x+3)2=4D.(x−3)2=44.方程中x(x−1)=0的根是()A.x1=0,x2=−1B.x1=0C.x1=x2=0D.x1=x2=15.如果关于x的一元二次方程x2−4x−k=0有两个不相等的实数根,则k的取值范围是()A.k<−4B.k>−4C.k<4且k≠0D.k>−4且k≠06.下列一元二次方程的两个实数根之和为−3的是()A.x2+2x−3=0B.x2−3x+3=0C.x2+3x−5=0D.x2+3x+5=07.毕业前夕,班主任王老师让每一位同学为班级的其他同学发送祝福短信,全班一共发送870条,这个班级的学生总人数是()A.40B.30C.29D.398.已知方程x2−7x+12=0的两根是x1,x2,则1x1+1x2的值是()A.−112B.112C.−712D.712二、填空题(每题2分,共10分)9.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是.10.已知方程x2−6x+q=0可以配方成(x−p)2=7的形式,那么p−q=.11.关于x的一元二次方程(k−1)x2−2x−1=0有两个实数根,则k的取值范围是.12.等腰三角形的底和腰是方程x2−7x+10=0的两根,则这个三角形的周长是.13.已知方程x2−2x−3=0的两个根分别为x1x2,则x1+x2−x1⋅x2的值为.三、计算题(共10分)14.解方程:(1)(x+2)2=x+2(2)3x2+2x−3=0四、解答题(共56分)15.已知关于x的一元二次方程x2−(m+3)x+m+2=0.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.16.关于x的一元二次方程x2+(2m−1)x+m2=0有实数根.(1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.17.淄博烧烤风靡全国.某烧烤店今年5月份的盈利额为15万元,7月份的盈利额达到21.6万元,如果每月增长的百分率相同.(1)求该烧烤店这两个月的月均增长率.(2)若该烧烤店盈利的月增长率继续保持不变,预计8月份盈利多少万元?18.某电商店铺销售一种儿童服装,其进价为每件50元,现在的销售单价为每件80元,每周可卖出200件,双十二期间,商家决定降价让利促销,经过市场调查发现,单价每件降低1元,每周可多卖出20件.(1)若想满足每周销售利润为7500元,同时尽可能让利于顾客,则每件童服装应降价多少元?(2)该店铺每周可能盈利10000元吗?请说明理由.参考答案1.B2.A3.C4.B5.B6.C7.B8.D9.110.111.k≥0且k≠112.1213.514.(1)解:x2+4x+4−x−2=0.x2+3x+2=0(x+1)(x+2)=0.∴x1=−1x2=−2(2)解:a=3b=2c=−3 b2−4ac=4+36=40>0.∴x=−2±√406=−2±2√106∴x1=−1+√103x2=−1−√10315.(1)证明:Δ=(m+3)2−4(m+2)=m2+6m+9−4m−8=m2+2m+1=(m+1)2≥0∴无论m为何值,方程总有两个实数根.(2)解:x=m+3±(m+1)2,则x1=m+2,x2=1,又方程两根均为正整数,则m+2>0m>−2,所以负整数m=−1.16.(1)解:∵关于x的一元二次方程x2+(2m−1)x+m2=0有实数根∴Δ=(2m−1)2−4×1×m2=−4m+1≥0解得:m≤14.(2)解:∵x1,x2是一元二次方程x2+(2m−1)x+m2=0的两个实数根∴x1+x2=1−2m,x1x2=m2∴x12+x22=(x1+x2)2−2x1x2=7,即(1−2m)2−2m2=7整理得:m2−2m−3=0解得:m1=−1,m2=3.又∵m≤14∴m=−1.17.(1)解:设该烧烤店这两个月盈利额的月均增长率为x根据题意得:15(1+x)2=21.6解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:该烧烤店这两个月盈利额的月均增长率为20%;(2)解:根据题意得:21.6×(1+20%)=25.92(万元).答:预计8月份盈利25.92万元.18.(1)解:设每件童服装应降价x元根据题意,得(80﹣50﹣x)(200+20x)=7500整理,得x2﹣20x+75=0解得x1=5,x2=15∵尽可能让利于顾客∴x=15答:每件童服装应降价15元;(2)解:该店铺每周不可能盈利10000元,理由为:设该店铺每周可能盈利10000元,则(80﹣50﹣x)(200+20x)=10000 整理,得x2﹣20x+200=0∵Δ=(﹣20)2﹣4×200=﹣400<0∴所列方程没有实数根故该店铺每周不能盈利10000元.。
北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案知识点总结:①配方法和十字叉乘法求解一元二次方程{二次项系数为±1二次项系数不是±1配方法:(a±b)2=a2+b2±2ab十字叉乘法:化简成(x±a)(x±b)=0的形式,解得x=∓a或∓b②公式法求解一元二次方程公式法:x=−b±√b2−4ac2a③因式分解法求解一元二次方程因式分解法:{(a±b)2=a2+b2±2ab a2−b2=(a−b)(a+b)④一元二次方程的根与系数的关系关系:x1+x2=−ba ;x1∙x2=ca⑤应用一元一次方程应用题第二章一元二次方程测试1(拔高题)1、下列方程为一元二次方程,求a的取值范围或者具体值:①2ax2−2bx+a=4x2②(a−1)x|a|+1−2x−7=0③ax2+6x+1=0没有实数根2、已知一元二次方程x2+k+3=0有一个根为1,则k的值为.3、已知一元二次方程为5x2+x=0,其中二次项系数为,一次项系数为,常数项为,x1x2=,x1+x2=.x2+3x−2=0 的两根,则(x1−x2)2的值为.4、设x1与x2为一元二次方程−125、关于x的一元二次方程x2−(k−3)x−k+1=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.实数根的个数由k的值确定6、已知关于x的一元二次方程x2+2mx+m2−m=0的两实数根为x1,x2,且满足x1x2=2,则x1+x2的值为()A.4B.−4C.4或−2D.−4或27、配方法解方程x2+6x+9=23x2−2=5x8、公式法解方程(x−2)(3x−5)=19x2+6x+1=49、直接开平方法解方程2(x−1)2 −18=010、因式分解法解方程3x(x−1)=3(x+2)(1−x)3(4−x)2=x2−16(1−2x)(x−8)=8x−411、如图,在矩形ABCD 中,AB =10 cm ,AD =8 cm ,点P 从点A 出发沿AB 以2cm /s 的速度向点B 运动,同时点Q 从点B 出发沿BC 以1cm /s 的速度向点C 运动,点P 到达终点后,P ,Q 两点同时停止运动。
北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一.一元二次方程的定义1.若关于x的方程4x3m﹣1﹣mx+1=0是一元二次方程,则m的值为.二.一元二次方程的解2.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.3.若m是方程x2﹣2x﹣1=0的根,则m2+=.4.已知m是方程x2﹣x﹣3=0的一个实数根,则代数式(m2﹣m)(m﹣+1)的值为.三.解一元二次方程-公式法5.利用公式法可得一元二次方程式3x2﹣11x﹣1=0的两解为a、b,且a>b,求a值为何()A.B.C.D.6.解方程:2x2+3x﹣1=0.四.解一元二次方程-因式分解法7.解方程:x2﹣4x+3=0.8.用适当的方法解下列方程:(1)x2+5x﹣1=0;(2)7x(5x+2)=6(5x+2);五.根的判别式9.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0 C.k≥﹣D.k≥﹣且k≠010.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k≥﹣1C.k≠0D.k<1且k≠011.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.12.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.13.已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于.14.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.15.关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.16.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.六.根与系数的关系17.已知,实数x1,x2(x1≠x2)是关于x的方程kx2+2kx+1=0(k≠0)的两个根.若,则k的值为()A.1B.﹣1C.D.18.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则=.19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=.20.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.21.已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是.22.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=.23.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=.24.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.参考答案与试题解析一.一元二次方程的定义1.若关于x的方程4x3m﹣1﹣mx+1=0是一元二次方程,则m的值为1.【解答】解:∵关于x的方程4x3m﹣1﹣mx+1=0是一元二次方程,∴3m﹣1=2,解得:m=1∴m的值为1.二.一元二次方程的解2.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于2028.【解答】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=20283.若m是方程x2﹣2x﹣1=0的根,则m2+=6.【解答】解:∵m是方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,即m2﹣1=2m,∴m2+=(m﹣)2+2=()2+2=22+2=6.4.已知m是方程x2﹣x﹣3=0的一个实数根,则代数式(m2﹣m)(m﹣+1)的值为6.【解答】解:∵m是方程x2﹣x﹣3=0的一个实数根,∴m2﹣m﹣3=0,∴m2﹣m=3,m2﹣3=m∴(m2﹣m)(m﹣+1)=3×(+1)=3×(1+1)=6.三.解一元二次方程-公式法(共2小题)5.利用公式法可得一元二次方程式3x2﹣11x﹣1=0的两解为a、b,且a>b,求a值为何()A.B.C.D.【解答】解:3x2﹣11x﹣1=0,这里a=3,b=﹣11,c=﹣1,∴Δ=(﹣11)2﹣4×3×(﹣1)=133>0∴x==,∵一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,∴a的值为.故选:D.6.解方程:2x2+3x﹣1=0.【解答】解:这里a=2,b=3,c=﹣1,∵△=9+8=17>0,∴x=解得:x1=,x2=.四.解一元二次方程-因式分解法7.解方程:x2﹣4x+3=0.【解答】解:x2﹣4x+3=0(x﹣1)(x﹣3)=0x﹣1=0或x﹣3=0x1=1,x2=3.8.用适当的方法解下列方程:(1)x2+5x﹣1=0;(2)7x(5x+2)=6(5x+2);【解答】解(1)∵x2+5x﹣1=0,∴a=1,b=5,c=﹣1,∴Δ=b2﹣4ac=52﹣4×1×(﹣1)=29>0∴,解得;(2)∵7x(5x+2)=6(5x+2),∴7x(5x+2)﹣6(5x+2)=0,∴(7x﹣6)(5x+2)=0,∴7x﹣6=0或5x+2=0解得;五.根的判别式9.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0 C.k≥﹣D.k≥﹣且k≠0【解答】解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,∴Δ=b2﹣4ac≥0,即:9+4k≥0解得:k≥﹣,∵关于x的一元二次方程kx2+3x﹣1=0中k≠0,则k的取值范围是k≥﹣且k≠0.故选:D.10.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k≥﹣1C.k≠0D.k<1且k≠0【解答】解:,解得k<1且k≠0.故选:D.11.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【解答】解:根据题意得k﹣1≠0且Δ=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.12.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0解得:k≤5且k≠113.已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于2.【解答】解:Δ=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:c﹣2=﹣,则+c=214.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.【解答】解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴Δ=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;15.关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,Δ=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.16.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.【解答】解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵Δ=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.六.根与系数的关系17.已知,实数x1,x2(x1≠x2)是关于x的方程kx2+2kx+1=0(k≠0)的两个根.若,则k的值为()A.1B.﹣1C.D.【解答】解:根据根与系数的关系得x1+x2=﹣=﹣2,x1x2=,∵+=2,∴x1+x2=2x1x2,∴﹣2=2×解得k=﹣1,方程化为﹣x2﹣2x+1=0,∵Δ=(﹣2)2﹣4×(﹣1)×1=8>0,∴方程有两个不相等的实数解∴k的值为﹣1.故选:B.18.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则=﹣2.【解答】解:根据根与系数的关系得x1+x2=2,x1x2=﹣3,所以则====﹣2.19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=8.【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=820.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.【解答】解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=321.已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是2.【解答】解:∵x2﹣6x+k=0的两个解分别为x1、x2,∴x1+x2=6,x1x2=k,+===3,:k=222.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=2026.【解答】解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,所以m,n是x2﹣x﹣3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,则2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021=2×1﹣(﹣3)+2021=2+3+2021=2026.23.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=5.【解答】解:∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=524.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【解答】解:(1)根据题意得Δ=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.。
九年级数学上册第二章《一元二次方程》测试卷-北师大版(含答案)

九年级数学上册第二章《一元二次方程》测试卷-北师大版(含答案)一.选择题(共10小题,满分40分)1.下列方程中是一元二次方程的是()A.ax2+bx+c=0B.x﹣1=7C.7x2+6=0D.2x2﹣5y=02.关于x的一元二次方程(m﹣3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A.0B.±3C.3D.﹣33.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或24.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣15.2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.96.有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是()A.14B.11C.10D.97.受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格三月底是6.2元/升,五月底是8.9元/升.设该地92号汽油价格这两个月平均每月的增长率为x,根据题意列出方程,正确的是()A.6.2(1+x)2=8.9B.8.9(1+x)2=6.2C.6.2(1+x2)=8.9D.6.2(1+x)+6.2(1+x)2=8.98.设a,b是方程x2+x﹣2022=0的两个实数根,则a2+3a+2b的值为()A.2020B.2021C.2022D.20239.若关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实数根,则整数k的最大值为()A.4B.5C.6D.710.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或3二.填空题(共10小题,满分40分)11.方程(x+1)2=9的根是.12.一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,则k的值是.13.一元二次方程3x2=4﹣2x的解是.14.方程2x2+1=3x的解为.15.方程x2﹣4x=0的实数解是.16.三角形两边的长分别为2和5,第三边的长是方程x2﹣8x+15=0的根,则该三角形的周长为.17.若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则+的值为.18.如图,在一块长为30米,宽为24米的矩形空地上,修建同样宽的两条互相垂直的小路,其余部分建成花园,已知小路的占地面积为50平方米,设小路的宽为x米,则可列方程为.19.疫情期间,学校利用一段已有的围墙(可利用的围墙长度仅有5米)搭建一个矩形临时隔离点ABCD,如图所示,它的另外三边所围的总长度是10米,矩形隔离点的面积为12平方米,则AB的长度是米.20.一花户,有25m长的篱笆,要围成一边靠住房墙(墙长12m)的面积为100m2的长方形花园,且垂直于住房墙的一边留一个1m的门,设垂直于住房墙的其中一边长为xm,则可列方程为.三.解答题(共5小题,满分40分)21.解下列方程:(1)2(x+1)2=8;(2)x(x+1)=3(x+1);(3)x2+6x﹣16=0.22.已知关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0.(1)求m的值;(2)求此时一元二次方程的解.23.已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.24.幸福小区规划在一个长为40米,宽为26米的矩形场地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种草,若要使草坪的面积为864平方米,求通道的宽度.25.由于新冠疫情的影响,口罩需求量急剧上开,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包14.4元.(1)求出这两次价格上调的平均增长率;(2)在有关部门调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包,当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?参考答案一.选择题(共10小题,满分40分)1.解:A.当a=0时,方程ax2+bx+c=0不是一元二次方程,故本选项不符合题意;B.x﹣1=7,是一元一次方程,不是一元二次方程,故本选项不符合题意;C.7x2+6=0是一元二次方程,故本选项符合题意;D.2x2﹣5y=0是二元二次方程,不是一元二次方程,故本选项不符合题意;故选:C.2.解:(m﹣3)x2+m2x=9x+5,(m﹣3)x2+(m2﹣9)x﹣5=0,由题意得:m﹣3≠0,m2﹣9=0,解得:m=﹣3,故选:D.3.解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.4.解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.5.解:设共有x支队伍参加比赛,根据题意,可得,解得x=10或x=﹣9(舍),∴共有10支队伍参加比赛.故选:B.6.解:设每轮传染中平均一个人传染了x个人,依题意得1+x+x(1+x)=144,即(1+x)2=144,解方程得x1=11,x2=﹣13(舍去),故选:B.7.解:依题意得6.2(1+x)2=8.9,故选:A.8.解:∵a是方程x2+x﹣2022=0的实数根,∴a2+a﹣2022=0,∴a2+a=2022,∵a,b是方程x2+x﹣2022=0的两个实数根,∴a+b=﹣1,∴a2+3a+2b=a2+a+2a+2b=2022+2×(﹣1)=2020.故选:A.9.解:∵关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实数根,∴,解得:k≤且k≠5.∵k为整数,∴k的最大值为4.故选:A.10.解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.二.填空题(共10小题,满分40分)11.解:(x+1)2=9,x+1=±3,x1=2,x2=﹣4.故答案为:x1=2,x2=﹣4.12.解:∵x2﹣4x+3=0,∴x2﹣4x=﹣3,∴x2﹣4x+4=﹣3+4,∴(x﹣2)2=1,∵一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,∴k=1,故答案为:1.13.解:3x2=4﹣2x3x2+2x﹣4=0,则b2﹣4ac=4﹣4×3×(﹣4)=52>0,故x=,解得:x1=,x2=.故答案为:x1=,x2=.14.解:2x2+1=3x,2x2﹣3x+1=0,(x﹣1)(2x﹣1)=0,解得:x1=1,x2=.故答案为:x1=1,x2=.15.解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.16.解:解方程x2﹣8x+15=0得:x=3或5,当第三边为3时,2+3=5,不符合三角形三边关系定理,不能组成三角形,舍去;当第三边为5时,符合三角形三边关系定理,能组成三角形,此时三角形的周长是2+5+5=12,故答案为:12.17.解:∵实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,∴a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,则a+b=4,ab=3,则原式==,故答案为:.18.解:依题意得30x+24x﹣x2=50,故答案为:30x+24x﹣x2=50.19.解:设AB=x米,则BC=(10﹣2x)米,根据题意可得,x(10﹣2x)=12,解得x1=3,x2=2(舍去),∴AB的长为3米.故答案为:3.20.解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26﹣2x)m,根据题意得:x(26﹣2x)=100.故答案为:x(26﹣2x)=100.三.解答题(共5小题,满分40分)21.解:(1)2(x+1)2=8,(x+1)2=4,x+1=±2,x+1=2或x+1=﹣2,x1=1,x2=﹣3;(2)x(x+1)=3(x+1),x(x+1)﹣3(x+1)=0,(x+1)(x﹣3)=0,x+1=0或x﹣3=0,x1=﹣1,x2=3;(3)x2+6x﹣16=0,(x+8)(x﹣2)=0,x+8=0或x﹣2=0,x1=﹣8,x2=2.22.解:(1)由题意,得:m2﹣3m+2=0解之,得m=2或m=1①,由m﹣1≠0,得:m≠1②,由①,②得:m=2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0,得x2+5x=0,x(x+5)=0解得:x1=0,x2=﹣5.23.解:(1)把x=2代入方程得4﹣4m+3m=0,解得m=4;(2)当m=4时,原方程变为x2﹣8x+12=0,解得x1=2,x2=6,∵该方程的两个根恰好是等腰△ABC的两条边长,且不存在三边为2,2,6的等腰三角形∴△ABC的腰为6,底边为2,∴△ABC的周长为6+6+2=14.24.解:设通道的宽为x米,则种草部分可合成长为(40﹣2x)米,宽为(26﹣x)米的矩形,依题意得:(40﹣2x)(26﹣x)=864,整理得:x2﹣46x+88=0,解得:x1=2,x2=44(不符合题意,舍去).答:通道的宽为2米.25.解:(1)设这两次价格上调的平均增长率为x,依题意得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:这两次价格上调的平均增长率为20%.(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,依题意得:(10﹣m)(30+5m)=315,整理得:m2﹣4m+3=0,解得:m1=1,m2=3.又∵要让顾客获得更大的优惠,∴m的值为3.答:每包应该降价3元.。
北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案

北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.方程3x2−5=4x中,关于a、b、c的说法正确的是()A.a=3,b=4,c=−5B.a=3,b=−5,c=4C.a=−3,b=−4,c=−5D.a=3,b=−4,c=−52.已知关于x的方程x2+bx−a=0有且只有一个根x=a(a≠0),则b的值为()A.2B.−2C.±2D.以上都不是3.用配方法解方程x2+4x+3=0,变形后的结果正确的是()A.(x+2)2=−1B.(x+2)2=1C.(x+2)2=3D.(x+2)2=74.若α,β是一元二次方程3x2+x−1=0的两个实数根,则3α2+4α+3β+1的值是()A.−1B.1C.2D.−25.方程(m−2)x2−√3−mx+14=0有两个实数根,则m的取值范围()A.m≤52B.m≤52且m≠2C.m≥3D.m≤3且m≠26.关于x的方程a(x+m)2+b=0的解是x1=−2,x2=1(a,m,b均为常数a≠0),则方程a(x+3+m)2+ b=0的解是()A.−1或−4B.−2或1C.1或3D.−5或−27.已知关于x的一元二次方程x2−kx+2k−1=0的两个实数根分别为x1、x2,且x12+x22=7,那么(x1−x2)2的值为()A.13或−11B.13C.−11D.118.如果△ABC有两边的长是方程x2−7x+12=0的根,第三边的长是方程x2−12x+35=0的根,那么△ABC的周长为()A.14B.12C.12或14D.以上都不对二、填空题9.已知关于x的一元二次方程2x2−4x+3=0的两个实数根分别是α,β;则(α+1)(β+1)=.10.某等腰三角形的一边长为3,另外两边长是关于x的方程x2−12x+k=0的两根,则k=;11.若a是一元二次方程x2−2023x+1=0的一个根,则代数式a2−2022a+2023a2+1的值为。
北师大版九年级上册数学第二章 一元二次方程含答案【可修改】

北师大版九年级上册数学第二章一元二次方程含答案一、单选题(共15题,共计45分)1、若一元二次方程x2+x﹣1=0的较大根是m,则()A.m>2B.m<﹣1C.1<m<2D.0<m<12、方程的左边配成完全平方后所得方程为 ( )A. B. C. D.以上答案都不对3、用配方法解方程x2﹣6x+3=0,下列变形正确的是()A.(x﹣3)2=6B.(x﹣3)2=3C.(x﹣3)2=0D.(x﹣3)2=14、用配方法法解方程,则方程可变形为()A. B. C. D.5、把x2﹣5x=31配方,需在方程的两边都加上()A.5B.25C.2.5D.6、用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7B.(x+4)2=﹣9C.(x+4)2=7D.(x+4)2=257、用配方法解一元二次方程的过程中,变形正确的是()A. B. C. D.8、用配方法解一元二次方程-4x=5时,此方程可变形为().A. =1B. =1C. =9D. =99、将一元二次方程x2-6x-5=0化成(x+a)2=b的形式,则b等于A.-4B.4C.-14D.1410、方程配方后,下列正确的是()A. B. C. D.11、方程x2=x+1的解是()A.x=B.x=C.x=±D.无实数根12、用配方法解一元二次方程x2﹣8x﹣11=0时,下列变形正确的是()A.(x﹣4)2=5B.(x+4)2=5C.(x﹣4)2=27D.(x+4)2=2713、用配方法解方程,配方正确的是()A. B. C. D.14、将方程化成的形式是()A. B. C. D.15、用配方法解一元二次方程x2+8x+7=0,则方程可变形为( )A.(x-4) 2=9B.(x+4) 2=9C.(x-8) 2=16D.(x+8) 2=57二、填空题(共10题,共计30分)16、分式值为0,则x=________17、设m,n分别为一元二次方程的两个实数根,则=________.18、若一人患了流感,经过两轮传染后共有121人感染了流感.按照这样的传染速度,若2人患了流感,第一轮传染后患流感的人数共有________人.19、设,是方程的两个根,则________.20、已知a,b是方程x2﹣x﹣3=0的两个根,则代数式a2﹣(a+b)+b2的值为________.21、已知,是一元二次方程的两个实数根,如果,满足不等式,且为整数,则________.22、方程:(2x+1)(x-1)=8(9-x)-1的根为________。
第二章 一元二次方程 单元测试(含答案) 2024-2025学年北师大版九年级数学上册

第二章一元二次方程一、选择题(每题3分,共24分)1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A.m≥-1B.m≤1C.m≥-1且m≠0D.m≤1且m≠06.下列一元二次方程中,有两个不相等的实数根的是( )A.x2−2x+3=0B.x2+6x+9=0C.4x2=3x+2D.3x2−x+2=07.一次同学聚会,每两人之间互赠1件礼物,共有礼物30件.设x人参加聚会,则可列方程为( )A.12x(x+1)=30B.12x(x−1)=30C.x(x+1)=30D.x(x−1)=308.已知m,n是一元二次方程x2+x−2023=0的两个实数根,则代数式m2+2m+n的值等于( )A.2020B.2021C.2022D.2023二、填空题(每题4分,共20分)9.已知关于x的方程(m+2)x m2−2+3x−1=0为一元二次方程,则m的值是 .10.用配方法解一元二次方程x2+4x−3=0,配方后的方程为(x+2)2=n,则n的值为 .11.一个等腰三角形的底边长为10,腰长是一元二次方程x2−11x+30=0的一个根,则这个三角形的周长是 .12.若m,n是一元二次方程x2−3x−1=0的两个根,则m+n+3mn的值为 13.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价,据测算,每箱每降价1元平均每天可多售出20箱,若要使每天销售饮料获利1440元,则每箱应降价 元.三、计算题(共10分)14.解方程:(1)x2−8x−9=0;(2)x2−x−1=0.四、解答题(共46分)15.已知关于x的一元二次方程x2−(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m的值及另一个根.16.已知关于x的一元二次方程x2−2x−m=0有实数根.(1)求m的取值范围;(2)若两实数根分别为x1和x2,且x12+x22=6,求m的值.17.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?18.据某市车管部门统计,2020年底全市汽车拥有量为150万辆,而截至到2022年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.(1)求年平均增长率;(2)如果不加控制,该市2024年底汽车拥有量将达多少万辆?参考答案1.B2.A3.D4.D5.D6.C7.D8.C9.210.711.2212.013.3或414.(1)解:x2−8x−9=0 (x−9)(x+1)=0,x1=9,x2=−1;(2)解:x2−x−1=0x2−x=1,x2−x+14=1+14,x2−x+14=54,(x−12)2=54,x−12=±52,x 1=52+12=1+52,x2=−52+12=1−52.15.(1)证明:由题意得,Δ=[−(2m+1)]2−4m(m+1)=4m2+4m+1−4m2−4m=1>0,∴无论m取何值,方程总有两个不相等的实数根:(2)解:∵关于x的一元二次方程x2−(2m+1)x+m(m+1)=0的一个根为1,∴1−(2m+1)+m(m+1)=0,∴m2−m=0,解得m=0或m=1;当m=0时,原方程为x2−x=0,解得x=0或x=1;当m=1时,原方程为x2−3x+2=0,解得x=1或x=2;综上所述,当m=0时,方程的另一个根为x=0;当m=1时,方程的另一个根为x=2.16.(1)解:∵关于x的一元二次方程x2−2x−m=0有实数根,∴△=b2﹣4ac=4+4m≥0,解得:m≥﹣1;(2)解:∵x1和x2是方程x2−2x−m=0的两个实数根,∵x1+x2=2,x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=6,∴22+2m=6,解得:m=1.17.(1)解:当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元;(2)解:设每件商品降价x元,根据题意,得:(50-x)(30+2x)=2000,整理,得:x2−35x+250=0,解得:x=10,x2=25,1∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.18.(1)解:设该市汽车拥有量的年平均增长率为x.根据题意,得150(1+x)2=216.解得:x=0.2或x=﹣2.2(不合题意,舍去).∴年平均增长率为20%.(2)解:216(1+20%)2=311.04(万辆).答:如果不加控制,该市2024年底汽车拥有量将达311.04万辆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九上专题训练《一元二次方程》含答案一.选择题(共8小题)1.下列方程中,一定是一元二次方程的是()A.2x2﹣+1=0 B.(x+2)(2x﹣1)=2x2C.5x2﹣1=0 D.ax2+bx+c=02.用配方法解方程x2﹣6x﹣7=0,下列配方正确的是()A.(x﹣3)2=16 B.(x+3)2=16 C.(x﹣3)2=7 D.(x﹣3)2=23.利用求根公式求的根时,a,b,c的值分别是()A.5,,6 B.5,6,C.5,﹣6,D.5,﹣6,﹣4.已知关于x的一元二次方程(k+1)x2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣2 B.k≥﹣2且k≠﹣1 C.k≥2 D.k≤﹣25.a是方程x2+x﹣1=0的一个根,则代数式a3+2a2+2018的值是()A.2018 B.2019 C.2020 D.20216.若(a2+b2﹣3)2=25,则a2+b2=()A.8或﹣2 B.﹣2 C.8 D.2或﹣8 7.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a (x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,5 8.《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.3﹣3 C.3﹣2 D.3﹣二.填空题(共5小题)9.用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac=,x1=,x2=.10.关于x的方程(m2﹣1)x3+(m﹣1)x2+2x+6=0,当m=时为一元二次方程.11.填上适当的数,使下列各式配方成立:(1)x2﹣x+ =(x﹣)2;(2)x2+ +=(x+ )2;(3)x2﹣2x+ =(x﹣)2;(4)2x2﹣12x+5=2(x﹣)2﹣.12.若m为实数,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,则x2﹣3x+m=0的根是.13.对于实数p、q,我们用符号min{p,q}表示p、q两数中较小的数,如min{1,2}=1,若min{(x﹣1)2,x2}=1,则x=.三.解答题(共8小题)14.按要求解下列方程(1)用配方法解方程:2x2﹣3x﹣3=0;(2)用公式法解方程:(x+1)(x﹣3)=2x﹣5.15.当m是何值时,关于x的方程(m2+2)x2+(m﹣1)x﹣4=3x2(1)是一元二次方程;(2)是一元一次方程;(3)若x=﹣2是它的一个根,求m的值.16.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=,=,=;(2)2x2﹣7x+2=0(x≠0),求的值.17.阅读下列两则材料,回答问题材料一:我们将(+)与(﹣)称为一对“对偶式”因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对俩式”相乘可以有效地将(+)和(﹣)中的“”去掉例如:已知﹣=2,求+的值.解:(﹣)×(+)=(25﹣x)﹣(15﹣x)=10 ∵﹣=2,∴+=5材料二:如图,点A(x1,y1),点B(x2,y2),以AB为斜边作Rt△ABC,则C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,所以AB= 1反之,可将代数式的值看作点(x1,y1)到点(x2,y2)的距离.例如===.所以可将代数式的值看作点(x,y)到点(1,﹣1)的距离.(1)利用材料一,解关于x的方程:﹣=2,其中x≤4;(2)①利用材料二,求代数式的最小值,并求出此时y与x的函数关系式,写出x的取值范图;②将①所得的y与x的函数关系式和x的取值范围代入y=+中解出x,直接写出x的值.专题训练:一元二次方程参考答案与试题解析一.选择题(共8小题)1.下列方程中,一定是一元二次方程的是()A.2x2﹣+1=0 B.(x+2)(2x﹣1)=2x2C.5x2﹣1=0 D.ax2+bx+c=0【解答】解:A,2x2﹣+1=0,不是整式方程,故不是一元二次方程;B,原方程变形为:3x﹣2=0,故不是一元二次方程;C,5x2﹣1=0是一元二次方程;D,ax2+bx+c=0,当a=0时,不是一元二次方程;故选:C.2.用配方法解方程x2﹣6x﹣7=0,下列配方正确的是()A.(x﹣3)2=16 B.(x+3)2=16 C.(x﹣3)2=7 D.(x﹣3)2=2 【解答】解:由原方程移项,得x2﹣6x=7,等式两边同时加上一次项系数一半的平方32,得x2﹣6x+32=7+32,∴(x﹣3)2=16;故选:A.3.利用求根公式求的根时,a,b,c的值分别是()A.5,,6 B.5,6,C.5,﹣6,D.5,﹣6,﹣【解答】解:由原方程,得5x2﹣6x,根据一元二次方程的定义,知二次项系数a=5,一次项系数b=﹣6,常数项c=;故选:C.4.已知关于x的一元二次方程(k+1)x2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣2 B.k≥﹣2且k≠﹣1 C.k≥2 D.k≤﹣2【解答】解:根据题意得k+1≠0且△=22﹣4×(k+1)×(﹣1)≥0,解得k≥﹣2且k≠﹣1.故选:B.5.a是方程x2+x﹣1=0的一个根,则代数式a3+2a2+2018的值是()A.2018 B.2019 C.2020 D.2021【解答】解:由题意可知:a2+a﹣1=0,∴a2+a=1,∴原式=a3+a2+a2+2018=a(a2+a)+a2+2018=a+a2+2018,=1+2018=2019,故选:B.6.若(a2+b2﹣3)2=25,则a2+b2=()A.8或﹣2 B.﹣2 C.8 D.2或﹣8【解答】解:由(a2+b2﹣3)2=25,得a2+b2﹣3=±5,所以a2+b2=3±5,解得a2+b2=8或a2+b2=﹣2(不合题意,舍去).故选:C.7.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a (x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,5【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.8.《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.3﹣3 C.3﹣2 D.3﹣【解答】解:x2+6x+m=0,x2+6x=﹣m,∵阴影部分的面积为36,∴x2+6x=36,4x=6,x=,同理:先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为36+()2×4=36+9=45,则该方程的正数解为﹣3=3﹣3.故选:B.二.填空题(共8小题)9.用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac=41 ,x1=,x2=.【解答】解:2x2﹣7x+1=0,a=2,b=﹣7,c=1,∴b2﹣4ac=(﹣7)2﹣4×2×1=41,∴x==,∴x1=,x2=,故答案为:41,,.10.关于x的方程(m2﹣1)x3+(m﹣1)x2+2x+6=0,当m=﹣1 时为一元二次方程.【解答】解:∵关于x的方程(m2﹣1)x3+(m﹣1)x2+2x+6=0,为一元二次方程,∴,解得:m=﹣1.11.填上适当的数,使下列各式配方成立:(1)x2﹣x+=(x﹣)2;(2)x2+ p +=(x+)2;(3)x2﹣2x+=(x﹣)2;(4)2x2﹣12x+5=2(x﹣ 3 )2﹣13 .【解答】解:(1)x2﹣x+=(x﹣)2;(2)x2+p+=(x+)2;(3)x2﹣2x+=(x2﹣x+)=(x﹣)2;(4)2x2﹣12x+5=2(x2﹣6x+9﹣9)+5=2(x﹣3)2﹣13.故答案为:(1),;(2)p,;(3),;(4)3,13.12.若m为实数,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,则x2﹣3x+m=0的根是.【解答】解:解方程x2+3x﹣3=0的根是x=,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,因而方程x2+3x﹣3=0的一个根的相反数是方程x2﹣3x+m=0的一个根,则x2﹣3x+m=0的根是﹣即.故本题答案为x2﹣3x+m=0的根是.13.对于实数p、q,我们用符号min{p,q}表示p、q两数中较小的数,如min{1,2}=1,若min{(x﹣1)2,x2}=1,则x=2或﹣1 .【解答】解:∵min{(x﹣1)2,x2}=1,当x=0.5时,x2=(x﹣1)2,不可能得出最小值为1,∴当x>0.5时,(x﹣1)2<x2,则(x﹣1)2=1,x﹣1=±1,x﹣1=1,x﹣1=﹣1,解得:x1=2,x2=0(不合题意,舍去),当x<0.5时,(x﹣1)2>x2,则x2=1,解得:x1=1(不合题意,舍去),x2=﹣1,综上所述:x的值为:2或﹣1.故答案为:2或﹣1.三.解答题(共8小题)14.按要求解下列方程(1)用配方法解方程:2x2﹣3x﹣3=0;(2)用公式法解方程:(x+1)(x﹣3)=2x﹣5.【解答】解:(1)x1=+,x2=﹣.(2)(x+1)(x﹣3)=2x﹣5,由原方程,得x2﹣4x+2=0,则a=1,b=﹣4,c=2,所以x==2±,故x1=2﹣,x2=2+.15.当m是何值时,关于x的方程(m2+2)x2+(m﹣1)x﹣4=3x2(1)是一元二次方程;(2)是一元一次方程;(3)若x=﹣2是它的一个根,求m的值.【解答】解:原方程可化为(m2﹣1)x2+(m﹣1)x﹣4=0,(1)当m2﹣1≠0,即m≠±1时,是一元二次方程;(2)当m2﹣1=0,且m﹣1≠0,即m=﹣1时,是一元一次方程;(3)x=﹣2时,原方程化为:2m2﹣m﹣3=0,解得,m1=,m2=﹣1.16.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则= 4 ,=14 ,=194 ;(2)2x2﹣7x+2=0(x≠0),求的值.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.17.阅读下列两则材料,回答问题材料一:我们将(+)与(﹣)称为一对“对偶式”因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对俩式”相乘可以有效地将(+)和(﹣)中的“”去掉例如:已知﹣=2,求+的值.解:(﹣)×(+)=(25﹣x)﹣(15﹣x)=10 ∵﹣=2,∴+=5材料二:如图,点A(x1,y1),点B(x2,y2),以AB为斜边作Rt△ABC,则C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,所以AB= 1反之,可将代数式的值看作点(x1,y1)到点(x2,y2)的距离.例如===.所以可将代数式的值看作点(x,y)到点(1,﹣1)的距离.(1)利用材料一,解关于x的方程:﹣=2,其中x≤4;(2)①利用材料二,求代数式的最小值,并求出此时y与x的函数关系式,写出x的取值范图;②将①所得的y与x的函数关系式和x的取值范围代入y=+中解出x,直接写出x的值.【解答】解:(1)根据材料一;∵(﹣)×(+)=(20﹣x)﹣(4﹣x)=16∵﹣=2,∴+=8,∴=5=3∴解得:x=﹣5∴y=2x+6(﹣2≤x≤1)(2)①解:由材料二知:=\sqrt{{(x}^{2}﹣2x+1)+({y}^{2}﹣16y+64)}==\sqrt{{(x}^{2}+4x+4)+({y}^{2}﹣4y+4)}==.∴可将的值看作点(x,y)到点(1,8)的距离的值看作点(x,y)到点(﹣2,2)的距离∴=+.∴当代数式取最小值即点(x,y)与点(1,8),(﹣2,2)在同一条直线上,并且点(x,y)位点(1,8)(﹣2,2)的中间∴的最小值===3且﹣2≤x≤1设过(x,y),(1,8),(﹣2,2)的直线解析式为:y=kx+b∴解得:∴y=2x+6(﹣2≤x≤1)②:∵y=+中∵y=2x+6∴+=2x+6 ①又∵(+)(﹣)=2x2+5x+12﹣(2x2+3x+6)=2x+6∴﹣=1 ②由①+②式得:=x+解得:x1=>1(舍)x2=∴x 的值为1﹣。