火电机组功率快速调节及深度调峰技术分析
660MW火电机组深度调峰运行分析

660MW火电机组深度调峰运行分析摘要:随着我国社会的发展,国民经济逐渐步入到发展的新常态,加之电网结构的变化,电网的峰谷差越来越大,调峰压力与日俱增,火电机组的深度调峰任务也越来越重,甚至很多电厂需要频繁进行深度调峰,使火电机组能够到达最低安全稳定运行负荷以下。
本文就对660MW火电机组的深度调峰运行进行了分析,旨在共享运行操作的经验,规范调峰操作的要点,为相关电厂提高火电机组运行的安全性和可靠性提供参考。
关键词:660MW火电机组;深度调峰;安全稳定运行前言当前,随着我国社会经济的快速发展,工业化进程不断加速,对电能的需求越来越多,与此同时,我国的电网结构也发生了较大的转变,电网的峰谷差越来越大。
电网调度对于660MW火电机组的“深度调峰”能力的需求日益凸显。
在运用660MW火电机组进行深度调峰时,稍有不慎,就会造成机组出现非停的状况,因此,研究660MW火电机组深度调峰运行问题具有十分重要的意义。
一、火电机组深度调峰的必要性分析随着科学技术的发展,我国的新能源发电得到了迅猛的发展,同时,煤电产能逐渐出现过剩的现象,对火电机组进行灵活性改造就显得势在必行。
因为电能无法有效贮存,同时,在实际生活中,白天与晚上的用电量也各不相同,因此,为了更好地满足人们群众的生产和生活用电,相关电厂必须根据电网调度的命令,减少或增加发电机出力,以满足电网负荷变化的波动需求。
在电网运行中,一般的调峰调频任务均是由水电站承担的,作为我国重要发电组成的火电站则承担着基荷和腰荷的重任,这是因为火电站的气轮机从锅炉起炉一直到汽轮机并网发电,需要的时间相对较长,而且,并网后还需要较长的时间才会停机,运用火电调节电力峰荷,需要不停地开关机过改变出力,这样会影响到燃煤的利用效率。
但随着新能源电厂的建设,并在电网中占据越来越多的比例时,电网调度对于调峰电源的需求也逐渐升高。
与新能源电源相比较,火电机组具有良好的调峰性能。
而且,我国的煤炭储量相对较多,在面对电网峰谷差的逐年增加的情况时,提高火电机组的灵活性,依次进行深度调峰就成为最为现实的可行选择。
火电机组深度调峰控制技术探讨

火电机组深度调峰控制技术探讨摘要:近年来,随着新能源产业的持续壮大,风电和太阳能逐渐改变了目前电网格局,由于新能源的不稳定性,各高参数机组如何频繁高效地解决调频调峰问题、实现机炉间的协调控制、进一步提高调节负荷的深度成为各电厂的主要任务。
超临界机组的协调控制系统是将锅炉、汽机及辅机作为整体加以控制的多变量、强耦合、非线性的时变系统,目前传统且广泛的协调控制系统,在低负荷下容易出现煤水配比失衡,导致汽温汽压偏差过大,影响机组安全经济运行。
因此针对超临界机组深度调峰的安全性和经济性的问题,提出了一种基于多目标粒子群的协调优化控制方案,并在炼油化工企业#2机组进行应用,较好地适应了机组在低负荷下的运行工况,对同类型机组有较高的推广价值。
关键词:超临界机组;深度调峰;多目标粒子群;协调控制优化本文提出基于模糊指标函数的受限预测控制方法,但计算量大,过程复杂,且在目前的控制方法中还考虑安全性和经济性指标;针对协调控制系统中的锅炉主控、汽机主控和给水主控分别进行了分析和优化,相当于解耦进行控制;根据模糊控制的思想研究了自使用模糊PID控制器在机组协调控制系统中的应用,都是为PID控制器建立模糊规则表以提高其鲁棒性和智能性,但缺少了模糊规则表中参数量化的具体方法;提出一种基于仿人智能控制的协调系统优化方法,对协调系统控制参数的优化有较大提高,但未考虑到机组运行的经济性。
针对上述提到的问题,提出一种基于多目标粒子群的协调优化控制方案,首先对DCS中原有的协调控制系统结构进行优化,再利用多目标粒子群算法对其中参数进行寻优,得到最优的控制参数,最终可在考虑多种约束的同时提高机组运行的经济性,保证控制的快速性和准确性。
为提高电网消纳清洁能源的能力,火电机组的调峰宽度需要进一步提高,因此越来越多的超临界机组参与到深度调峰中,但在低负荷下机组的主蒸汽温度、压力等参数不稳定会对机组运行的安全性带来更大的风险,同时如何在低负荷运行时提高运行的经济性,也是超临界机组参与深度调峰的一个重要影响因素。
火电机组的功率快速调节和深度调峰技术

火电机组的功率快速调节和深度调峰技术论文首先根据甘肃电网的特点,深入研究大规模新能源接入后对系统调频、调峰能力产生的影响,并通过分析风电的反调峰特性,以及并网水、火电机组应对电网峰谷变化的能力,对系统调峰能力与常规电源,尤其是火电机组的开机方式之间的关系进行分析研究。
然后,针对目前火电机组的常规控制策略,剖析影响机组功率快速响应能力和深度调峰的要素,并设计一套配置双进双出磨煤机的锅炉入炉煤量实时计算表征方法,解决锅炉入炉煤量难以准确计量和表征的问题,克服因风量测量不准确及容量风门线性差等因素产生的较大误差,并实现了磨煤机启动、停止及正常运行等工况下燃料量的全程精确控制,为此类机组协调控制的精确控制提供基础。
在此基础上,依据现有的机炉直接能量平衡(DEB)控制方案,引入先进的控制思想,提出了基于非线性PID控制与模糊规则控制的机炉DEB协调控制系统优化控制方案,并设计了考虑变负荷速率、变负荷宽度、不同负荷段等多因素的变负荷智能加速信号,完善、优化机组AGC控制、协调控制策略,以提高机组快速调节和调峰深度能力,并在典型机组开展了试验验证。
经过对试验数据进行对比分析发现,在保证机组各控制指标安全、稳定的基础上,火电机组的负荷响应速度和负荷变化范围有了明显的提升,示范效果明显。
最后,通过对火电机组目前采用的一次调频常规控制方案进行设计优化,加入主汽压力修正、负荷段修正、阀门流量特性修正、单/顺阀修正等控制策略,并付诸实践,实践效果表明,该方案能够有效削弱由于主汽压力波动、机组阀门流量特性及重叠度差等因素对一次调频动作性能的影响。
综上所述,通过该课题的研究分析及现场的实施应用,实现火电机组对电网负荷变化的快速响应及深度调
峰的要求,对甘肃电网的安全、平稳运行具有实际意义。
300MW火力发电机组深度调峰的技术措施及运行注意事项

300MW 火力发电机组深度调峰的技术措施及运行注意事项摘要:近年来,风电、光伏等清洁能源大规模并网,在电网的日常运行中,峰谷负荷偏差不断增大。
是电网机组深度调峰的主要原因之一,在日负荷调度过程中,当负荷小于额定负荷的50%时,调峰时间将会不断增加。
当某一时刻调峰深度达到70%以上时,调峰负荷深度明显变大。
如果正常改变调峰减载方式,运行量大,需要燃油喷射稳定燃烧。
本文论述了火电机组运行灵活性调峰深度的现状,分析了现阶段火电机组的几种控制策略及优化控制技术。
关键词:火力发电厂;优化与控制;策略;深度调峰;前言近年来,随着《可再生能源法》的颁布实施,我国新能源产业得到快速发展,可再生能源在能源总量中的比重进一步提高。
由于新能源发电波动性大,电网支持政策的缺失和不完善,电厂深度调峰方式成为亟待解决的问题。
2016年和2017年平均弃风率约为15%,北方集中供热地区火电厂调压符合仅为10%~20%。
探索实现火电厂峰谷深度的技术途径,对适应能源发展战略的需要具有重要意义。
逐步提高新能源利用率,大容量火电厂深度调峰可以节能降耗,提高火电厂的运行灵活性和火电厂的深峰容量,提高经济效益。
1、火电机组控制系统现状为保证机组安全经济运行,提高火电机组的灵活性和深度调峰能力,对协调控制系统的要求非常高。
大型火电机组DCS及控制系统,负荷响应快,主蒸汽压力和温度稳定。
为了提高深度调峰的灵活性和性能,有必要研究和开发新的深度调峰控制策略和算法,使主蒸汽压力、主蒸汽温度等主要参数安全、稳定、经济地运行。
在电力市场化改革的背景下,提高电厂的竞争力有利于深化国家电力体制改革。
由于DCS厂家对应用软件的设计和配置投入较少,早期采用的国外控制方案和算法较多,现场调试不够详细。
火电厂大多数控制系统基本能满足小负荷变化或低速负荷变化的调节要求,但是在机组深度调整运行的情况下,主蒸汽压力、功率、主蒸汽温度、水位等主要运行参数波动频繁。
2、安全性影响分析如果发电机组的调峰深度过大,特别是全厂只有一台机组运行时,一旦机组发生故障,处理不当将导致全厂停电。
火电机组深度调峰的难点分析和运行优化建议

火电机组深度调峰的难点分析和运行优化建议摘要:由于特高压输送电量逐年增加、新能源占比逐渐加大,造成电网峰谷差加大,火电机组需成为电网调峰的重要力量。
但火电机组深度调峰普遍存在机组调峰能力不足、负荷响应速率较低、系统自动投入率低、人员手动操作量大等问题。
为深挖火电机组调峰能力,提高调峰安全性,本文就火电机组深度调峰难点进行分析,并提出运行优化建议。
关键词:火电机组;深度调峰;难点分析;运行优化建议一、难点分析1、机组不投油稳燃负荷高,不能满足调峰至30%需求某电力集团有30万等级以上机组70台,只有4台机组能达到调峰至30%额定负荷,剔除因供热制约未进行调峰运行的8台机组外,58台机组稳定调峰运行负荷不能满足调峰至30%额定负荷需求,占比82.8%。
其中32台机组需投油稳燃。
2、调峰期间自动投入率低某电力集团46台机组提出需对调峰负荷段的协调控制系统开展优化,以适应快速调峰的要求。
主要集中在以下六个方面:1)协调控制只能控制40%负荷以上工况;2)给水泵汽源自动切换;3)自动转态;4)减温水自动;5)给水泵自动切除、自动并泵;6)给水主、旁路自动切换。
3、深度调峰影响经济性梳理某电力集团70台煤电机组,截至目前参与深度调峰共52台煤电机组,其中百万机组11台,60万等级机组20台,30万等级机组21台。
依据这52台煤电机组参与深度调峰期间的DCS数据,计算机组的锅炉效率、汽轮机热耗率、厂用电率影响如下:(1)锅炉效率表1:50%调峰至40%额定负荷工况下锅炉效率变化表1为参考深度调峰的52台机组锅炉效率变化结果,百万机组从50%调峰到40%额定负荷,锅炉效率下降0.15~2.33%,平均下降1.02%。
60万机组从50%调峰到40%额定负荷,锅炉效率下降0.0~1.0%,平均下降0.39%。
30万机组从50%调峰到40%额定负荷,锅炉效率下降0.4~0.9%,平均下降0.48%。
(2)汽轮机热耗率表2:50%调峰至40%额定负荷工况下汽轮机热耗率变化表2为参考深度调峰的52台机组汽轮机热耗率变化结果,百万机组从50%调峰到40%额定负荷,汽轮机热耗率上升137~343kJ/kWh,平均上升213kJ/kWh;60万机组从50%调峰到40%额定负荷,汽轮机热耗率上升82~390kJ/kWh,平均上升256kJ/kWh;30万机组从50%调峰到40%额定负荷,汽轮机热耗率上升80~368kJ/kWh,平均上升198kJ/kWh。
火电机组的功率快速调节和深度调峰技术

火电机组的功率快速调节和深度调峰技术论文首先根据甘肃电网的特点,深入研究大规模新能源接入后对系统调频、调峰能力产生的影响,并通过分析风电的反调峰特性,以及并网水、火电机组应对电网峰谷变化的能力,对系统调峰能力与常规电源,尤其是火电机组的开机方式之间的关系进行分析研究。
然后,针对目前火电机组的常规控制策略,剖析影响机组功率快速响应能力和深度调峰的要素,并设计一套配置双进双出磨煤机的锅炉入炉煤量实时计算表征方法,解决锅炉入炉煤量难以准确计量和表征的问题,克服因风量测量不准确及容量风门线性差等因素产生的较大误差,并实现了磨煤机启动、停止及正常运行等工况下燃料量的全程精确控制,为此类机组协调控制的精确控制提供基础。
在此基础上,依据现有的机炉直接能量平衡(DEB)控制方案,引入先进的控制思想,提出了基于非线性PID控制与模糊规则控制的机炉DEB协调控制系统优化控制方案,并设计了考虑变负荷速率、变负荷宽度、不同负荷段等多因素的变负荷智能加速信号,完善、优化机组AGC控制、协调控制策略,以提高机组快速调节和调峰深度能力,并在典型机组开展了试验验证。
经过对试验数据进行对比分析发现,在保证机组各控制指标安全、稳定的基础上,火电机组的负荷响应速度和负荷变化范围有了明显的提升,示范效果明显。
最后,通过对火电机组目前采用的一次调频常规控制方案进行设计优化,加入主汽压力修正、负荷段修正、阀门流量特性修正、单/顺阀修正等控制策略,并付诸实践,实践效果表明,该方案能够有效削弱由于主汽压力波动、机组阀门流量特性及重叠度差等因素对一次调频动作性能的影响。
综上所述,通过该课题的研究分析及现场的实施应用,实现火电机组对电网负荷变化的快速响应及深度调
峰的要求,对甘肃电网的安全、平稳运行具有实际意义。
火电机组深度调峰控制技术

火电机组深度调峰控制技术摘要:随着社会的发展以及时代的进步,我们国家近几年的经济水平有了很大程度的提升,在实际的发展过程当中人们对于社会当中各个行业的发展提出了更高的要求。
就电力行业的发展来说,其在近几年的发展当中取得了长足的进步。
但是电力市场需求量的进一步增加,让电力企业的电力生产以及电力传输受到了极大程度的冲击。
火电机组是现阶段电力系统当中的一个常见组成部分,而调峰控制技术是维护地电力生产以及安全运输的重要手段。
藉此,本文对调峰控制技术进行了简要的研究。
关键词:火电机组;深度调峰;控制技术1 引言随着我们国家经济的进一步发展,人民的生活水平有了很大程度的提升。
在现阶段的发展过程当中,我国电网装机容量逐渐增加,这在一定程度之上促进了我们国家的电网结构进一步改革。
第一产业用电量的逐渐降低与二三产业用电量的逐渐增加使得电网峰谷差进一步扩大。
基于此种现象,火电机组参与调峰工作成为了一种必然现象。
因此,对火电机组深度调峰控制技术的研究有着鲜明的现实意义。
2 国内外研究现状2.1国内研究现状随着我们国家额的电网峰谷差逐渐扩大,原有电力结构表现出的适应性问题受到了社会各界的广泛关注。
现阶段我们国家的蓄能电站所占全国的比例为2%。
与基本要求10%之间仍然相差较多。
就我们国家的华中电网来说,其面临的调峰形势十分严峻。
为了可以更好的解决现阶段额的调峰问题,华中电网提出通过建完善的电力系统来达到最终的目的。
目前东中部电网提出了建立风抽水电形式的调峰电源,以解决所面临的发展问题。
2.2国外研究现状现阶段全世界都在面临着同样的一个问题那就是资源短缺。
所以一系列的新型的可再生发电项目出现在了人们视野当中,但是新型电力生产为电网的调峰问题带来了新的挑战。
为了可以进一步解决这个问题,各个国家都做出了积极的应对。
例如日本的东京电力公司在实际的建设过程当中应用了超临界压力35万千瓦的机组。
法国作为一个核电大国,通过优化电站结构,建立抽水蓄能电站来解决调峰问题。
330MW火电机组深度调峰的优化调整技术研究

330MW火电机组深度调峰的优化调整技术研究摘要:现阶段,随着社会的发展,我国的科学技术的发展也有了很大的提高。
提升现有火电机组的深度调峰能力和运行灵活性,大幅提升新能源入网比例,是国家能源局《电力发展“十三五”规划(2016—2020)》中明确提出的要求。
论述了现阶段我国火电机组运行灵活性改造及深度调峰的现状,以及现阶段我国在火电机组主要应用的一些控制策略和优化控制技术,分析了现有控制策略的优缺点,提出了在不增加设备及系统的前提下,以协调优化和改进为基础,多控制策略组合优化的方法。
关键词:火电机组;深度调峰;优化调整;技术研究1.引言随着我国产业结构调整和能源结构改革的深入,电网调峰压力不断增大,火电机组提高运行灵活性,参与深度调峰运行,逐渐成为未来火电领域重要的发展方向。
本文全面分析了火电机组深度调峰面临的热工控制领域各方面的局限,从基础逻辑优化、低负荷稳燃控制、变负荷速率提升、脱硝排放的全过程控制及考虑设备寿命的优化控制等方面,给出了深度调峰控制系统改造的潜在技术方案。
1.1试验目的为实现公司机组深度调峰、灵活调度上,在南疆区域保持领先,同时结合《国网新疆电力公司调峰辅助市场服务细则》及“两个细则”的相关条款规定,为公司创造更大利润收入,机组停运前,开展机组深度调峰试验,计划试验周期8小时。
即机组在40%负荷(132MW)运行期间,通过对机组各系统运行参数变化调整、收集,积累运行调整经验,为机组进入深度调峰提前打好基础。
为保证此次试验期间机组安全稳定,防止发生运行工况恶化,威胁设备安全,特编制此方案。
1,2 试验准备及操作步骤1.2.1 机组40%负荷运行试验准备1、在机组40%负荷运行试验开始前,调整机组各原煤仓煤质,保证机组A、B磨为干燥,保持较高挥发分俄矿煤,D磨煤机为混煤和俄矿煤进行掺配,磨煤机运行方式为A、B、D磨煤机,总煤量65-75t/h。
2、深度调峰前进行一次油枪投油点火试验,保证油枪可靠备用,保证油枪雾化蒸汽和燃油压力正常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火电机组功率快速调节及深度调峰技术
分析
摘要:对于亚临界锅炉而言,其中的电站锅炉在制造过程中需要开展监督及检测工作,而为满足锅炉的供需要求,需要通过火电机组功率的快速调节来保证火电机组的运行效能,以控制发电质效,使该区域内的电力资源需求得到满足。
文章分析了火电机组功率快速调节及深度调峰技术的重要性,并提出了火电机组功率快速调节及深度调峰技术的应用措施。
关键词:火电机组;功率;快速调节;深度调峰技术
引言
为辅助亚临界锅炉的运维,应加强对火电机组功率方面的思考,利用煤炭来代替可燃物进行燃烧,使锅炉的热能需求能够得到满足,而采用深度调峰技术,可不受外界干扰因素的影响,让锅炉的功率不会发生调节不当的问题,增设发电机设备并实现能源的转换,促使电力能够进行持续性地输出,确保电力的并网质效有所提升。
一、火电机组功率快速调节及深度调峰技术的重要性
对于亚临界锅炉而言,其在电蓄热的调峰领域内,会依靠三相电极,采用水资源完成高热阻的操作,促使设备的电导率能够提高,让锅炉中的水进行加热,放电并将其中的99%的电能进行转换,让其转变成热能,进而形成热水及蒸汽。
在此基础上,自“碳达峰”及“碳中和”目标提出后,电力企业当前的结构也进行了调整,使光伏发电的比重增加,提高了火电机组的实际占比。
因此,为衔接输电、发电、变电以及配电环节的各类工作内容,需将电力进行转换,增加绿色能源的应用,控制当前的调峰难度,运用电网调配的方式,补充风电中的不足,以创建出完整的电力网络,辅助亚临界锅炉的运维[1]。
例如:运用深度调峰技术,使电网中产生负荷变化能够被记录,使发电机组
能够完成曲线的控制操作,使该部分的负荷率能够控制在30%-40%之间,以保证
火电机组的顺利运行。
凭借锅炉与火电机组的接触,使机组能够提高自身的发电
效率,强化在工作模式中的灵活性,促使火电机组能够满足电力供给需求[2]。
二、火电机组功率快速调节及深度调峰技术的应用措施
(一)实行火电机组的DEB控制方案
为实现对火电机组功率的调节,应重视其中的调峰能力,采用增强功率的方式,实行非线性的控制操作,也可运用模糊算法,实现对火电机组中具体负荷的
计算,实时监测其中的压力变化值,以确认火电机组的特征。
首先,可采用DEB (直接能量平衡法),实现对火电机组的控制。
调整DEB回路并设置燃料调节器,结合机组的能量平衡状态进行分析,使其中的平衡信号为(PS×P1/PT),让其
作为基础能量信号,而被调量NRGD为:
NRGD=(PS×P1/PT)×[1+K×d(PS×P1/PT)/dt]
其中K表示机组中的可变参数,而d则为调节器的变化值。
其中PS、P1、PT
的参数表达与下文相同。
其次,采用单级控制的方式,可以确认火电机组的性能,确认机组阀门的状态,让当前的压力需求值在0-15范围内,使压力能够进行校正,从而保证火电
机组不会发生串联的问题,进而利用DEB的方式,实现对火电机组的控制。
约克
掌握被调量中存在的动态偏差,采用微分运算以及差分运算的方式,计算出动态
增益的数值,保证该部分数据能够重新应用于重点区域以及回路中,使PID(数
控名词)参数能够被确认[3]。
最后,在协调控制阶段需增加对外界干扰因素的重视,避免调节对象存在调
量增加、数据延迟的问题。
通过模糊规则表的创建,让工作人员可以加强对指令
的编辑,分析其中的参数,让风量与煤量可以进行融合,采用合理的控制方式,
调节火电机组的精度,使工作人员采用评估或者协调的方式,验证火电机组的功
率,确保它的联动效果可以充分展现出来,进而采取持续改善的方式,实现对火电机组的快速调节。
(二)运用限幅滤波ALF法
因为DEB具有调压作用,其中的压比信号与热能信号之间具有间接的关联,可以侧面展现出机组的状态,让压比信号不会出现异常问题。
此时,可采用超前补偿的方式,降低信号中的噪声,运用能量指令,实现对滤波的控制,进而运用ALF法来消除滤波中的带幅度,监测火电机组中信号的变化量,以了解能量指令的构成方式(具体如下图)。
图1火电机组中的能量指令变化图
其中P1表示锅炉内的调节后压力;PS表示机组中的主要压力设定值;PT表示锅炉的前期压力;K1表示为P1的标度因子;K2表示带宽(ALF滤波)量K表示常数值(也是ALF滤波中的);K4表示时间(通常是惯性);K5表示微分时间。
(三)实现火电机组功率的快速调节
为实现火电机组的调控,需加强在全过程中的控制,让管理团队可以进行沟通以及交流,相互对接彼此的工作,使其可以采用全方位测试的方式,实现对火电机组的调控。
据此,则可在测试的环节,协调彼此之间的工作,采用充分评估的方式,搭建调控框架,以强化后续的试验效果。
与此同时,可采用协调验证的方式,增强火电机组及调控机制之间的联动效应,让控制模块能够起到高效的防护作用,在保证模块非线性、大模块的基础上,解决其中的强耦合的问题,促使当前的火力发电机组能够完成负荷的调节工作。
(四)完善火电机组的生产体系
为保证火电机组的并网工作能够顺利开展,应采用功率调节的方式,运用深
度调峰技术并衔接调配控制、DEB控制以及协同控制手段,让当前的生产流程能
够简化,保证工作人员能够增加调频、调峰等方面工作的关注,促使常规性的燃
料控制以及参数调整操作可以顺利实施,进而让火电机组的生产活动可以在短时
间内完成。
而对于电力企业的工作人员而言,其可以检索调峰信息、调频数据并掌握生
产数据方面的内容,调节当前的给煤速度,使发电效能有所优化,进而确认主流
火电机组,运用煤炭粉磨处理的方式,确认煤炭粒径的范围,以实现对风量的控制,把控具体的煤量。
再者,可采用进风量的调控方式,解决火电机组中的盲目
制定方面的问题,使电力生产活动能够高质量运行,辅助调峰工作以及并网调频
操作的实施,进而完善火电机组的生产体系,辅助和后续智能化建设工作的开展。
(五)强化火电机组的调控能力
为实行深度调峰技术并使其与火电机组的调频工作呈现出兼容的状态,应强
化火电机组的自控能力,使技术团队可以实行精准地把控操作,以节省后续的运
行成本,简化深度调峰技术的选型工作,为后续的操作奠定良好的基础,增加在
参数调试环节的便利性。
首先,可让技术团队实行全面的评估操作,随意切换深
度调峰的场景,简化工艺流程并运用全过程控制的方式,实现对火电机组的估算,以掌握其中的存储器容量、输出点数、接入设备的特性,加强对功率的控制。
例如:在深度调峰技术实施过程中,优先执行点数的估算工作,使技术团队
可以进行深入的考量,将点数的数量设置为I/O,根据工作人员的自身经验,完
成余量的上调工作,使控制其内的数据承载能力可以得到强化。
三、结论
为提高火电机组的调频效能,强化整体调峰能力,可通过设备负荷响应能力
的更改,在满足电力资源供需要求的基础上,采用光伏并网、风电等方式,增加
在火电机组功率快速调节工作中的助力,运用深度调峰技术进行定位,以健全当
前的火电机组管理机制,辅助固体蓄热设备的运行。
参考文献:
[1]李先超,周国燚,常航,周明建.火电机组功率快速调节及深度调峰技术研究[J].光源与照明,2022,(11):137-139.。