谐波减速器运行原理

合集下载

谐波减速器原理

谐波减速器原理

谐波减速器原理谐波减速器是一种新型的减速传动装置,它具有结构紧凑、传动比大、精度高、扭矩密度大等特点,因此在工业自动化领域得到了广泛的应用。

谐波减速器的原理是利用谐波振动的特性来实现减速传动,下面我们来详细介绍一下谐波减速器的原理。

谐波减速器由柔性轮、刚性轮和梅花轮组成。

柔性轮和刚性轮之间通过梅花轮连接,柔性轮和刚性轮之间的齿轮传动实现了减速作用。

柔性轮和刚性轮的齿数之比就是谐波减速器的传动比。

谐波减速器的原理是通过柔性轮和刚性轮之间的相对运动来实现减速传动。

当柔性轮和刚性轮之间存在相对运动时,由于柔性轮的弹性变形特性,会产生谐波振动。

谐波振动是一种特殊的振动形式,它具有频率高、振幅小的特点。

利用谐波振动的特性,谐波减速器可以实现高精度的减速传动。

谐波减速器的原理是利用柔性轮和刚性轮之间的相对运动产生的谐波振动来实现减速传动。

在实际应用中,通过控制柔性轮和刚性轮之间的相对运动,可以实现不同的传动比。

这使得谐波减速器具有了很大的灵活性,可以满足不同应用场合的需求。

谐波减速器的原理是利用谐波振动来实现减速传动,因此在设计和制造过程中需要考虑谐波振动的特性。

首先,需要对柔性轮和刚性轮的材料和结构进行合理设计,以确保在工作过程中能够产生稳定的谐波振动。

其次,需要对谐波减速器的传动比进行精确计算和控制,以满足实际应用的需求。

总的来说,谐波减速器是一种利用谐波振动来实现减速传动的新型传动装置,它具有结构紧凑、传动比大、精度高、扭矩密度大等特点。

谐波减速器的原理是利用柔性轮和刚性轮之间的相对运动产生的谐波振动来实现减速传动,通过合理设计和精确控制,可以满足不同应用场合的需求。

谐波减速器在工业自动化领域有着广泛的应用前景,将为工业生产带来更高效、更稳定的传动解决方案。

谐波减速机

谐波减速机
谐波减速机
一、谐波驱动结构 二、谐波驱动原理 三、减速比计算
四、谐波驱动特点
五、机器人用谐波减速机具体结构 六、谐波减速机在机器人上的应用
一、谐波驱动结构
二、Байду номын сангаас波驱动原理
以减速比30为例,刚轮齿数为62,柔轮齿数60,这样,每1/4周,刚轮比柔轮多半个齿, 由于与刚轮啮合的柔轮齿顺次移动,就是每个刚轮齿,依次对应每个柔轮齿如下图, 为保证啮合,柔轮就会转半个齿,波发生器转一周,柔轮就转2个齿。
五、机器人用谐波减速机具体结构
输出法兰 刚轮 柔轮
波发生器
六、谐波减速机在机器人上的应用
三、减速比计算 波发生器输入,刚轮固定,柔轮输出
减速比由刚轮和柔轮的齿数决定,一般用R表示, 机器人用一般减速机的减速比范围是30 ~ 160
Z R ZG 1 i ZR R
四、谐波驱动特点 优点
缺点
1、起动力矩较大,且速比越小越严重 2、柔轮易发生疲劳破坏 3、啮合刚度较差 4、装置发热较大

谐波减速器工作原理

谐波减速器工作原理

谐波减速器工作原理
谐波减速器是一种用于使减速机的减速率更加精确的设备,它可以以高精度控制轴承的减速转矩,以及用于恒定功率的调节和控制。

谐波减速器具有优良的低速性能和低能耗,是液压机械和其他减速装置的理想附件。

谐波减速器的工作原理是利用电磁力在转子和定子之间产生涡流和涡流阻力,形成一个动静涡流耦合电机,从而实现减速作用。

电磁力涡流产生的涡流阻力会影响转子的转速,从而达到减速的作用。

谐波减速器的优点是可以变速、可调,可实现低速、高精度的减速控制,并且有良好的稳定性,可以有效地抑制高次谐波,避免结构振动的产生。

此外,谐波减速器还具有良好的可靠性和可控性。

其结构简单,安装和定位精度低,维护成本低,使用寿命长,并且能够节能减排,减少能源消耗。

总之,谐波减速器是一种具有良好动力性能和精度高的减速装置,它可以提高减速机的减速精度,延长使用寿命,同时可以有效地抑制高次谐波,避免结构振动的产生。

谐波减速器工作原理

谐波减速器工作原理

谐波减速器工作原理
谐波减速器是一种常用的机械传动装置,它通过利用弹性变形的原理将输入速度和输出速度之间的比例关系进行转换。

谐波减速器的工作原理如下:
1. 谐波发生器:谐波减速器的输入轴与谐波发生器相连,谐波发生器通常是一个内齿圈和一个柔性齿条组成的装置。

当输入轴旋转时,谐波发生器会产生谐波振动。

2. 谐波传动:谐波振动会通过内齿圈传递到输出轴,内齿圈上的前导齿和柔性齿条之间的啮合关系会引起传动的变形和滑移。

这样,谐波传动将输入轴的旋转运动转换成了输出轴的运动。

3. 减速效果:由于在谐波传动过程中存在变形和滑移,所以输出轴的转速会比输入轴的转速慢。

根据前导齿和柔性齿条的结构设计,可以实现不同的减速比。

谐波减速器具有结构简单、传动效率高、减速比大、可靠性强等优点,广泛应用于工业生产和机械设备中。

它适用于需要准确控制速度和力矩的场合,如机床、准确度要求高的机械装置等。

谐波减速机原理

谐波减速机原理

谐波减速机原理谐波减速机是一种基于振动原理的减速器,可以把一个高频振动的输入变成一个低频振动的输出,被广泛应用在工业设备中。

谐波减速机具有良好的耐久性、低成本、结构简单、低噪声等优点。

下面简要介绍一下谐波减速机的原理。

谐波减速机主要由物理振动,振动系统的物理系统,和控制系统组成。

其中物理振动系统由谐波结构、谐振换振系统构成;控制系统可以通过调节结构的参数来调节谐振的频率和振幅;最后,控制系统还可以通过检测系统来监控谐波减速机的工作状态。

谐波减速机依赖振动传递给振动源,利用谐波结构传递和谐振换振系统产生的力,将高频振动减速至低频振动。

通过谐波结构,振动源的原频率振动会与谐波结构的振动混合,由此产生多次的反射和吸收,从而使振动源的振动由高频变成低频。

通过谐振换振系统,可以实现低频振动的传递,如可以把高频振动变成比较定值的低频振动,使谐波减速器得以实现减速的目的。

同时,谐波减速机还需要检测系统来监控和控制其工作状态,以确保减速机良好的工作效果。

检测系统可以通过检测谐波减速机的工作状态,检测其轴承温升和工作温度,取得足够的数据进行维护和保养。

从上面可以看出,谐波减速机结构简单,低成本,耐久性良好,低噪声,在工业设备中得到了广泛应用。

使用这种减速机,可以把一个高频振动的输入变成一个低频振动的输出,从而达到减速的目的。

谐波减速机的应用非常广泛,例如机器人的发动机,空调的发动机,电视的旋转变压器,机器人的腿脚,电动工具等等。

所以,谐波减速机在工业设备中的应用越来越广泛。

总的来说,谐波减速机是一种基于振动原理的减速器,具有良好的耐久性、低成本、结构简单、低噪声等优点,广泛应用于工业设备中,可以把一个高频振动的输入变成一个低频振动的输出,从而达到减速的目的。

希望以上介绍对大家有所帮助!。

谐波减速器原理及特点

谐波减速器原理及特点

谐波减速器原理及特点1. 概述1.1 产生及发展谐波齿轮传动技术是20世纪50年代末随着航天技术发展而发明的一种具有重大突破的新型传动技术,由美国人C. W.马瑟砖1955年提出专利,1960年在纽约展出实物。

谐波传动的发展是由军事和尖端技术开始的,以后逐渐扩展到民用和一般机械上。

这种传动较一般的齿轮传动具有运动精度高,回差小,传动比大,重量轻,体积小,承载能力大,并能在密闭空间和辐射介质的工况下正常工作等优点,因此美,俄,日等技术先进国家,对这方面地研制工作一直都很重视。

如美国就有国家航空管理局路易斯研究中心,空间技术试验室,USM公司,贝尔航空空间公司,麻省理工学院,通用电器公司等几十个大型公司和研究中心都从事过这方面的研究工作。

前苏联从60年代初期开始,也大力开展这方面的研制工作,如苏联机械研究所,莫斯科褒曼工业大学,列宁格勒光学精密机械研究所,全苏联减速器研究所等都大力开展谐波传动的研究工作。

他们对该领域进行了较系统,较深入的基础理论和试验研究,在谐波传动的类型,结构,应用等方面有较大的发展。

日本长谷齿轮株式会社等有关企业在谐波齿轮传动的研制和标准化、系列化等方面作出了很大贡献。

西欧一些国家除了在卫星,机器人,数控机床等领域采用谐波齿轮传动外,对谐波传动的基础理论也开始进行系统的研究。

谐波齿轮传动技术1970年引入日本,随之诞生了日本第一家整体运动控制的领军企业-日本Harmonic Drive SystemsInc.(简称HDSI)。

目前日本HDSI公司是国际领先的谐波减速器公司,其生产的Harmonic Drive谐波减速器,具有轻量、小型、传动效率高、减速范围广、精度高等特点,被广泛应用于各种传动系统中。

谐波传动技术于1961年由上海纺织科学研究院的孙伟工程师介绍入我国。

此后,我国也积极引进并研究发展该项技术,1983年成立了谐波传动研究室,1984年“谐波减速器标准系列产品”在北京通过鉴定,1993年制定了GB/T14118-1993谐波传动减速器标准,并在理论研究、试制和应用方面取得较大成绩,成为掌握该项技术的国家之一。

谐波减速器工作原理

谐波减速器工作原理

谐波减速器工作原理
谐波减速器是一种高精度、高效率的减速装置,它通过谐波传动原理实现减速
效果。

谐波减速器由驱动轴、谐波发生器、柔性轮和输出轴组成,其工作原理如下:
1. 驱动轴传动。

当驱动轴开始旋转时,谐波发生器固定在驱动轴上的内齿圈开始旋转。

内齿圈
上的凸轮与柔性轮上的凹槽相互嵌合,使柔性轮开始旋转。

柔性轮上的凹槽数量通常比内齿圈上的凸轮数量多,这就导致柔性轮的旋转速度比内齿圈慢,从而实现了减速效果。

2. 谐波传动原理。

谐波减速器采用谐波传动原理,即通过柔性轮和内齿圈之间的嵌合来实现传动。

柔性轮的凹槽数量比内齿圈的凸轮数量多,这就导致柔性轮的旋转速度比内齿圈慢,从而实现减速效果。

同时,谐波传动还具有高精度、高刚性和低噪音的特点。

3. 输出轴传动。

当柔性轮开始旋转时,输出轴上的外齿圈也开始旋转。

外齿圈上的齿与输出轴
上的内齿圈相互嵌合,使输出轴开始旋转。

通过这样的传动方式,谐波减速器将驱动轴的高速旋转转换为输出轴的低速高扭矩旋转,实现了减速效果。

4. 工作原理总结。

综上所述,谐波减速器的工作原理是通过谐波传动原理,利用柔性轮和内齿圈
之间的嵌合来实现减速效果。

当驱动轴开始旋转时,内齿圈和柔性轮相互嵌合,使柔性轮开始旋转,进而带动输出轴实现减速传动。

谐波减速器以其高精度、高效率、低噪音等优点,被广泛应用于机械设备、工业自动化、机器人等领域。

其工作原理的深入理解,有助于我们更好地应用和维护谐波减速器,提高设备的使用效率和稳定性。

谐波减速器测试技术

谐波减速器测试技术
1. 将谐波减速器安装在测试台上,连接振动测试仪、转速计和扭矩计等设备。
VS
3. 对测试过程中记录的数据进行分析和处理,得出谐波减速器在不同工况下的动态性能指标。
测试结果分析:通过对测试数据的分析,可以得出该型号谐波减速器在不同动态条件下的性能表现,如响应速度、稳定性、可靠性等是否满足设计要求,从而对其性能进行评估。
03
谐波减速器主要部件
02
01
谐波减速器是工业机器人中常用的减速器之一,用于实现机器人的精准运动。
工业机器人
谐波减速器可用于数控机床的进给系统和主轴系统中,提高机床的传动精度和平稳性。
数控机床
谐波减速器在航空航天领域也有广泛的应用,如用于飞机的起飞和降落系统、导弹的发射和制导系统等。
航空航天
01
02
动态测试方法
动态效率测试
测量谐波减速器在动态状态下的传动效率,即在输入一定功率时,输出功率与输入功率的比值。
动态误差测试
测量谐波减速器在动态状态下的传动误差,即输出转速与输入转速之间的差异。
动态扭矩测试
测量谐波减速器在动态状态下的扭矩性能,包括动态扭矩、峰值扭矩和谷值扭矩等。
综合评价谐波减速器的静态和动态性能,包括扭矩、效率、误差等多个方面。
案例一:某型号谐波减速器静态测试
案例二:某型号谐波减速器动态测试
通过对某型号谐波减速器进行动态测试,评估其在动态条件下的性能表现。
测试目的
振动测试仪、转速计、扭矩计等。
测试设备
测试步骤
案例二:某型号谐波减速器动态测试
2. 在不同转速和负载条件下,对谐波减速器进行启停、变速和制动等操作,记录各个参数的变化情况。
建立测试数据库
组织技术交流会议与培训活动,促进不同单位之间的技术合作与经验分享。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谐波减速器运行原理
谐波减速器是一种精密的传动装置,广泛应用于各种工业领域。

其运行原理主要涉及柔性齿轮、刚轮和柔轮、柔轮的弹性变形、能量传递及回归原位等方面。

本文将逐一介绍这些原理。

1.柔性齿轮
柔性齿轮是谐波减速器的重要组成部分,通常由弹性材料制成,具有一定的弯曲变形能力。

在减速器运行过程中,柔性齿轮的轮齿与刚轮的轮齿产生啮合和脱离,通过轮齿间的摩擦力实现动力传递。

2.刚轮和柔轮
刚轮和柔轮是谐波减速器的另外两个关键元件。

刚轮通常由硬质材料制成,其轮齿形状与柔性齿轮的轮齿相匹配。

柔轮则由弹性材料制成,并在受到扭矩作用时产生弹性变形。

在减速器运行过程中,刚轮固定不动,柔轮则通过柔性齿轮的带动产生旋转运动。

由于柔轮的弹性变形,使得柔轮在受到扭矩作用时会发生形变,进而导致与刚轮的轮齿间产生啮合和脱离。

3.柔轮的弹性变形
柔轮的弹性变形是谐波减速器的重要特性之一。

当柔轮受到扭矩作用时,其轮缘会发生弯曲变形,使得柔轮的半径逐渐减小。

这种变形导致柔轮的轮齿与刚轮的轮齿间的啮合点逐渐向轮齿根部移动。

柔轮的弹性变形不仅影响齿轮间的啮合位置,还对能量传递效率有重要影响。

在理想情况下,当柔轮完全发生弹性变形时,其与刚轮的啮合点将位于齿轮的中心线上,此时能量传递效率最高。

4.能量传递
在谐波减速器中,能量传递主要通过柔性齿轮、刚轮和柔轮之间的相互作用实现。

当柔性齿轮带动柔轮转动时,柔性齿轮的轮齿与刚轮的轮齿产生啮合和脱离,通过摩擦力将动力传递给柔轮。

能量传递效率是谐波减速器的重要性能指标之一。

影响传递效率的因素主要有:齿轮材料的摩擦系数、齿轮的精度和表面粗糙度、润滑条件以及运行过程中的温度和载荷等。

5.回归原位
在谐波减速器运行过程中,柔轮发生弹性变形后,其半径逐渐减小,使得齿轮间的啮合点逐渐向轮齿根部移动。

当扭矩反向时,柔轮发生反向弹性变形,其半径逐渐增大,齿轮间的啮合点逐渐向轮齿顶部移动。

这个过程就是回归原位的过程。

回归原位是谐波减速器的重要特性之一,它使得减速器能够适应正反两个方向的扭矩加载。

在回归原位过程中,由于柔轮的弹性变形,使得齿轮间始终保持良好的接触状态,从而保证了减速器的平稳运行和较高的能量传递效率。

总之,谐波减速器通过柔性齿轮、刚轮和柔轮以及柔轮的弹性变形等特性实现了高效、平稳的动力传递。

理解这些运行原理对于设计、选型和应用谐波减速器具有重要意义。

相关文档
最新文档