1_2021年湖北省武汉市三中分配生数学试卷(含答案)(1)
武汉三中寄宿中学新初一分班数学试卷含答案

武汉三中寄宿中学新初一分班数学试卷含答案一、选择题1.订阅《中国少年报》的份数与所付的报款()。
A.成正比例B.成反比例C.不成比例2.如图,有一个无盖的正方体纸盒,下底标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()。
A.B.C.D.3.光明村今年每百户拥有电脑96台,比去年增加了32台,今年比去年增加了百分之多少?正确的算式是().A.32÷96×100%B.32÷(96-32)×100%C.96÷32×100%4.一个三角形中,三个内角的度数比是2:3:5,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定5.如图,在相同的两个正方形里剪圆形,比较剩下部分的面积,结果是( )。
A.一样大B.甲大C.乙大D.无法确定6.观察立体图形 ,从右面看到的形状是( )A .B .C .7.在“某班男生人数是女生人数的45”中,以下说法错误的是( )。
A .女生人数是单位“1”B .女生比男生人数多15C .男生人数占全班人数的49D .男生比女生人数少158.如图,以点A 为圆心的圆内,三角形ABC 一定为等腰三角形。
做出这个判断是运用了圆的什么特征?( )A .圆的周长是它的直径的π倍B .同一个圆的直径相等C .同一个圆的直径为半径的2倍D .同一个圆的半径相等 9.一件商品提价10%以后又降价10%,现在这件商品的价格是原来价格的百分之几?正确的解答是( )A .110%B .90%C .100%D .99%10.已知22222233445522,33,44,55338815152424+=⨯+=⨯+=⨯+=⨯,若21010b b a a+=⨯,则+a b =( )。
A .19B .21C .99D .109 二、填空题11.23时=(______)分;4立方米30立方分米=(______)立方米。
武汉第三寄宿中学(汉阳三寄)初一入学数学分班试卷附参考答案

武汉第三寄宿中学(汉阳三寄)初一入学数学分班试卷(时间:90分钟;满分:100分)一、填空题(每小题2分,共20分)。
1.90805300读作_______,改写成用“万”作单位的数是_______,省略万位后面的尾数约是_______。
2.甲数是24,甲、乙两数的最小公倍数是168,最大公约数是4,那么乙数是_______。
3.抽样检验一种商品,有38件合格,2件不合格,这种商品的合格率是_______。
4.250千克︰0.5吨化成最简整数比是_______,比值是_______。
5.一种精密零件长5毫米,把它画在比例尺是12︰1的图纸上,应画_______厘米。
6.13×______=_____÷18=____︰9=2。
7.一个圆柱的体积是12立方分米,4个与它等底等高的圆锥的体积是_______立方分米。
8.一个楼梯有7阶,上楼时每次可以跨一阶或两阶。
从地面到最上层共有_______种不同的走法。
9.为了表示某地区一年内月平均气温变化的情况,可以把月平均气温制成_______统计图。
10.六(1)班男生人数的13与女生人数的14共16人,女生人数的13和男生人数的14共19人,六(1)班共有_______人。
二、判断题(对的画“√”,错的画“×”。
每小题1分,共5分)。
11.一种商品先提价20%,然后又降价20%,结果与原价相等。
(▲) 12.所有的自然数不是质数就是合数。
(▲)。
13.锐角三角形中,如果一个角是30°,其余两个角可以是55°、95°。
(▲)14.一个圆柱体侧面展开后是一个正方形,这个圆柱体的底面直径与高的比是1︰π。
(▲)15.一个圆锥,底面直径和高都扩大到原来的2倍后,体积要扩大到原来的4倍。
(▲) 三、选择题(每小题2分,共10分)。
16.下列各组中,第一个数能被第二个数整除的是(▲)。
A.15÷3B.7÷14C.0.2÷0.517.一个半径是r 的半圆,它的周长是(▲)。
湖北省武汉市2021年中考数学试卷(含解析)

2021年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥23.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于64.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>18.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.389.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.(3分)计算﹣的结果是.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2,直接写出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.2021年湖北省武汉市中考数学试卷试题解析一、选择题(共10小题,每小题3分,共30分)1.解:实数﹣2的相反数是2,故选:A.2.解:由题意得:x﹣2≥0,解得:x≥2,故选:D.3.解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.4.解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.解:从左边看上下各一个小正方形.故选:A.6.解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.8.解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.9.解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.二、填空题(共6小题,每小题3分,共18分)11.解:==3.故答案为:3.12.解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5,故答案为:4.5.13.解:原式=﹣===.故答案为:.14.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.15.解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.16.解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.三、解答题(共8小题,共72分)17.解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.证明:∵EM∥FN,∴∠FEM=∠EFN,∠BEF=∠CFE,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB∥CD.19.解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×=1200(名).20.解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接AC,可得E是AB的,找到OA的七等分点,AF=OA,点F即为所求,如图所示:21.(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy+y2=0,解得x=y或x=y(舍去),∴sin∠3==,即sin∠BAC的值为.22.解:(1)由题意得:当产品的数量为0时,总成本也为0,即当x=0时,y=0,则有:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20﹣80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m>2时,A,B两城总运费的和为(10m+110)万元.23.问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠ADC,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴AM===2,∴AD=.24.解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴x E+x F=k,∴M(),把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N(,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN的解析式为:,当x=0时,y=2,∴直线MN:x经过定点(0,2),即直线MN经过一个定点.。
2021年湖北省武汉市初中毕业生统一考试(中考)数学试卷及解析

2021年湖北省武汉市初中毕业生统一考试(中考)数学试卷及解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)实数3的相反数是( ) A .3B .3-C .13D .13-2.(3分)下列事件中是必然事件的是( ) A .抛掷一枚质地均匀的硬币,正面朝上 B .随意翻到一本书的某页,这一页的页码是偶数 C .打开电视机,正在播放广告D .从两个班级中任选三名学生,至少有两名学生来自同一个班级3.(3分)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.(3分)计算23()a -的结果是( ) A .6a -B .6aC .5a -D .5a5.(3分)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A .B .C .D .6.(3分)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是()A.B.C.D.7.(3分)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是()A.8(3)7(4)x x-=+B.8374x x+=-C.3487y y-+=D.3487y y+-=8.(3分)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:)km与慢车行驶时间t(单位:)h的函数关系如图,则两车先后两次相遇的间隔时间是()A.53h B.32h C.75h D.43h9.(3分)如图,AB是⊙O的直径,BC是⊙O的弦,先将沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°10.(3分)已知a ,b 是方程2350x x --=的两根,则代数式3222671a a b b -+++的值是( ) A .25-B .24-C .35D .36二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)计算2(5)-的结果是 .12.(3分)我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是 . 城市 北京 上海 广州 重庆 成都 常住人口数万2189248718683205209413.(3分)已知点1(,)A a y ,2(1,)B a y +在反比例函数21(m y m x+=是常数)的图象上,且12y y <,则a 的取值范围是 .14.(3分)如图,海中有一个小岛A .一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12nmile 到达C 点,这时测得小岛A 在北偏东30︒方向上.小岛A 到航线BC 的距离是(3 1.73nmile ≈,结果用四舍五入法精确到0.1).15.(3分)已知抛物线y =ax 2+bx +c (a ,b ,c 是常数),a +b +c =0.下列四个结论: ①若抛物线经过点(﹣3,0),则b =2a ; ②若b =c ,则方程cx 2+bx +a =0一定有根x =﹣2; ③抛物线与x 轴一定有两个不同的公共点;④点A (x 1,y 1),B (x 2,y 2)在抛物线上,若0<a <c ,则当x 1<x 2<1时,y 1>y 2. 其中正确的是 (填写序号).16.(3分)如图(1),在ABC ∆中,AB AC =,90BAC ∠=︒,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x AD =,y AE CD =+,y 关于x 的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是 .三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解不等式组21,4101x x x x -⎧⎨+>+⋅⎩①②请按下列步骤完成解答.(1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .18.(8分)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F ,求证:DEF F ∠=∠.19.(8分)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t (单位:)h ,按劳动时间分为四组:A 组“5t <”, B 组“57t <”, C 组“79t <”, D 组“9t ”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是 ,C 组所在扇形的圆心角的大小是 ; (2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h 的学生人数.20.(8分)如图是由小正方形组成的57⨯网格,每个小正方形的顶点叫做格点,矩形ABCD 的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB 上画点E ,使2AE BE =,再过点E 画直线EF ,使EF 平分矩形ABCD 的面积;(2)在图(2)中,先画BCD ∆的高CG ,再在边AB 上画点H ,使BH D H =.21.(8分)如图,AB 是O 的直径,C ,D 是O 上两点,C 是BD 的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F . (1)求证:CE 是O 的切线; (2)若6DCDF=,求cos ABD ∠的值.22.(10分)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品.A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.23.(10分)问题提出如图(1),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC ∆内部,直线AD 与BE 于点F .线段AF ,BF ,CF 之间存在怎样的数量关系? 问题探究(1)先将问题特殊化如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立. 问题拓展如图(3),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC kAC =,(EC kDC k =是常数),点E 在ABC ∆内部,直线AD 与BE 交于点F .直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.24.(12分)抛物线21y x =-交x 轴于A ,B 两点(A 在B 的左边). (1)ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上; ①如图(1),若点C 的坐标是(0,3),点E 的横坐标是32,直接写出点A ,D 的坐标. ②如图(2),若点D 在抛物线上,且ACDE 的面积是12,求点E 的坐标.(2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF (不含端点)于G ,H 两点.若直线l 与抛物线只有一个公共点,求证:FG FH +的值是定值.2021年湖北省武汉市初中毕业生统一考试(中考)数学参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)实数3的相反数是()A.3B.3-C.13D.13-【分析】直接利用相反数的定义分析得出答案.【解答】解:实数3的相反数是:3-.故选:B.2.(3分)下列事件中是必然事件的是()A.抛掷一枚质地均匀的硬币,正面朝上B.随意翻到一本书的某页,这一页的页码是偶数C.打开电视机,正在播放广告D.从两个班级中任选三名学生,至少有两名学生来自同一个班级【分析】根据事件发生的可能性大小判断即可.【解答】解:A、抛掷一枚质地均匀的硬币,正面朝上,是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C、打开电视机,正在播放广告,是随机事件;D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件;故选:D.3.(3分)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A.既是轴对称图形又是中心对称图形,故此选项符合题意;B .不是轴对称图形,是中心对称图形,故此选项不合题意;C .不是轴对称图形,是中心对称图形,故此选项不合题意;D .是轴对称图形,不是中心对称图形,故此选项不合题意; 故选:A .4.(3分)计算23()a -的结果是( ) A .6a -B .6aC .5a -D .5a【分析】根据幂的乘方的运算法则计算可得. 【解答】解:236()a a -=-, 故选:A .5.(3分)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A .B .C .D .【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】解:从正面看易得有两层,底层三个正方形,上层中间是一个正方形. 故选:C .6.(3分)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( ) A .B .C .D .【分析】画树状图,共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种, ∴两人恰好是一男一女的概率为=,故选:C .7.(3分)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ) A .8(3)7(4)x x -=+ B .8374x x +=- C .3487y y -+=D .3487y y +-=【分析】根据人数=总钱数÷每人所出钱数,得出等式即可. 【解答】解:设物价是y 钱,根据题意可得: 3487y y +-=. 故选:D .8.(3分)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y (单位:)km 与慢车行驶时间t (单位:)h 的函数关系如图,则两车先后两次相遇的间隔时间是( )A .53hB .32hC .75hD .43h【分析】根据图象得出,慢车的速度为/6a km h ,快车的速度为/2akm h .从而得出快车和慢车对应的y 与t 的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.【解答】解:根据图象可知,慢车的速度为/6akm h . 对于快车,由于往返速度大小不变,总共行驶时间是4 h , 因此单程所花时间为2 h ,故其速度为/2akm h . 所以对于慢车,y 与t 的函数表达式为(06)6ay t t =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅①.对于快车,y 与t 的函数表达式为()()2(24),2646),2at t y a t t ⎧-<⋅⋅⋅⋅⋅⋅⋅⎪⎪=⎨⎪--⋅⋅⋅⋅⋅⋅⋅⎪⎩②③联立①②,可解得交点横坐标为3t =, 联立①③,可解得交点横坐标为 4.5t =, 因此,两车先后两次相遇的间隔时间是1.5, 故选:B .9.(3分)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,先将沿BC 翻折交AB 于点D ,再将沿AB 翻折交BC 于点E .若=,设∠ABC =α,则α所在的范围是( )A .21.9°<α<22.3°B .22.3°<α<22.7°C .22.7°<α<23.1°D .23.1°<α<23.5°【分析】如图,连接AC ,CD ,DE .证明∠CAB =3α,利用三角形内角和定理求出α,可得结论. 【解答】解:如图,连接AC ,CD ,DE .∵=,∴ED =EB ,∴∠EDB =∠EBD =α, ∵==,∴AC =CD =DE ,∴∠DCE =∠DEC =∠EDB +∠EBD =2α, ∴∠CAD =∠CDA =∠DCE +∠EBD =3α, ∵AB 是直径, ∴∠ACB =90°, ∴∠CAB +∠ABC =90°, ∴4α=90°, ∴α=22.5°, 故选:B .10.(3分)已知a ,b 是方程2350x x --=的两根,则代数式3222671a a b b -+++的值是( ) A .25-B .24-C .35D .36【分析】根据一元二次方程解的定义得到2350a a --=,2350b b --=,即235a a =+,235b b =+,根据根与系数的关系得到3a b +=,然后整体代入变形后的代数式即可求得. 【解答】解:a ,b 是方程2350x x --=的两根, 2350a a ∴--=,2350b b --=,3a b +=, 235a a ∴-=,235b b =+, 3222671a a b b ∴-+++22(3)3571a a a b b =-++++10()6a b =++1036=⨯+36=.故选:D .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(35 . 【分析】根据二次根式的性质解答.|5|5-=.12.(3分)我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是 2189 .【分析】将这组数据从小到大重新排列,再根据中位数的定义求解即可. 【解答】解:将这组数据重新排列为1868,2094,2189,2487,3205, 所以这组数据的中位数为2189, 故答案为:2189.13.(3分)已知点1(,)A a y ,2(1,)B a y +在反比例函数21(m y m x+=是常数)的图象上,且12y y <,则a 的取值范围是 10a -<< .【分析】根据反比例函数的性质分两种情况进行讨论,①当点1(,)A a y ,2(1,)B a y +在同一象限时,②当点1(,)A a y ,2(1,)B a y +在不同象限时.【解答】解:210k m =+>,∴反比例函数21(m y m x+=是常数)的图象在一、三象限,在每个象限,y 随x 的增大而减小, ①当1(,)A a y ,2(1,)B a y +在同一象限, 12y y <,此不等式无解;②当点1(,)A a y 、2(1,)B a y +在不同象限, 12y y <,0a ∴<,10a +>,解得:10a -<<, 故答案为10a -<<.14.(3分)如图,海中有一个小岛A .一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12nmile 到达C 点,这时测得小岛A 在北偏东30︒方向上.小岛A 到航线BC 的距离是 10.4(3 1.73nmile ≈,结果用四舍五入法精确到0.1).【分析】过点A 作AE BD ⊥交BD 的延长线于点E ,根据三角形的外角性质得到BAD ABD ∠=∠,根据等腰三角形的判定定理得到AD AB =,根据正弦的定义求出AE 即可. 【解答】解:过点A 作AE BD ⊥交BD 的延长线于点E , 由题意得,60CBA ∠=︒,30EAD ∠=︒,30ABD ∴∠=︒,60ADE ∠=︒, 30BAD ADE ABD ∴∠=∠-∠=︒,BAD ABD ∴∠=∠,12AD AB nmile ∴==,在Rt ADE ∆中,sin AEADE AD∠=, sin 6310.4()AE AD ADE nmile ∴=⋅∠=, 故小岛A 到航线BC 的距离是10.4nmile , 故答案为10.4.15.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(﹣3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=﹣2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是①②④(填写序号).【分析】①由题意可得,抛物线的对称轴为直线x=﹣==﹣1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=﹣=﹣,则=﹣,解得m=﹣2,即方程cx2+bx+a=0一定有根x=﹣2;故②正确;③△=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,则当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且>1,则当x<1时,y随x的增大而减小,则当x1<x2<1时,y1>y2.故④正确.【解答】解:∵抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0,∴(1,0)是抛物线与x轴的一个交点.①∵抛物线经过点(﹣3,0),∴抛物线的对称轴为直线x==﹣1,∴﹣=﹣1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=﹣=﹣,且二次函数y=cx2+bx+a过点(1,0),∴=﹣,解得m=﹣2,∴y=cx2+bx+a与x轴的另一个交点为(﹣2,0),即方程cx2+bx+a=0一定有根x=﹣2;故②正确;③△=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,∴抛物线与x轴一定有两个公共点,且当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且>1,∴(1,0)在对称轴的左侧,∴当x<1时,y随x的增大而减小,∴当x1<x2<1时,y1>y2.故④正确.故答案为:①②④.16.(3分)如图(1),在ABC∠=︒,边AB上的点D从顶点A出发,向顶点B运BAC∆中,AB AC=,90动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x AD=,y AE CD=+,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是21-.【分析】观察函数图象,根据图象经过点(0,2)即可推出AB和AC的长,构造NBE CAD∆≅∆,当A、E、N三点共线时,y取得最小值,利用三角形相似求出此时的x值即可.【解答】解:图象过点(0,2),即当0x AD==时,点D与A重合,点E与B重合,此时2=+=+=,y AE CD AB AC∆为等腰直角三角形,ABC∴==,AB AC1过点A作AF BC=,如图所示:⊥于点F,过点B作NB BC⊥,并使得BN ACAD BE =,NBE CAD ∠=∠,()NBE CAD SAS ∴∆≅∆,NE CD ∴=,又y AE CD =+,y AE CD AE NE ∴=+=+,当A 、E 、N 三点共线时,y 取得最小值,如图所示,此时:AD BE x ==,1AC BN ==,2sin 45AF AC ∴=⋅︒=\又BEN FEA ∠=∠,NBE AFE ∠=∠NBE AFE ∴∆∆∽∴NB BEAF FE =22x=- 解得:21x =,∴21.21.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解不等式组21,4101x x x x -⎧⎨+>+⋅⎩①②请按下列步骤完成解答.(1)解不等式①,得 1x - ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .【分析】先解出两个不等式,然后在数轴上表示出它们的解集,即可写出不等式组的解集. 【解答】解:21,4101x x x x -⎧⎨+>+⋅⎩①②(1)解不等式①,得1x -; (2)解不等式②,得3x >-;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是1x -. 故答案为:1x -;3x >-;1x -.18.(8分)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F ,求证:DEF F ∠=∠.【分析】由平行线的性质得到DCF B ∠=∠,进而推出DCF D ∠=∠,根据平行线的判定得到//AD BC ,根据平行线的性质即可得到结论. 【解答】证明://AB CD ,DCF B ∴∠=∠,B D ∠=∠,DCF D ∴∠=∠, //AD BC ∴,DEF F ∴∠=∠.19.(8分)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t (单位:)h ,按劳动时间分为四组:A 组“5t <”, B 组“57t <”, C 组“79t <”, D 组“9t ”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是100,C组所在扇形的圆心角的大小是;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.【分析】(1)用D组的人数÷所占百分比计算即可,计算C组的百分比,用C组的百分数乘以360︒即可得出C组所在扇形的圆心角的大小;(2)求出B组人数,画出条形图即可;(3)用C,D两组的百分数之和乘以1500即可.【解答】解:(1)这次抽样调查的样本容量是1010%100÷=,C组所在扇形的圆心角的大小是30360108100︒⨯=︒,故答案为:100,108︒;(2)B组的人数10015301045=---=(名),条形统计图如图所示,(3)30101500600100+⨯=(名).答:估计该校平均每周劳动时间不少于7h的学生人数为600.20.(8分)如图是由小正方形组成的57⨯网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使2AE BE=,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画BCD∆的高CG,再在边AB上画点H,使BH D H=.【分析】(1)如图取格点T,连接DT交AB于点E,连接BD,取BD的中点F,作直线EF即可.(2)取格点E,F,连接EF交格线于P,连接CP交BD于点G,线段CG即为所求.取格点M,N,T,K,连接MN,TK交于点J,取BD的中点O,作直线OJ交AB于H,连接DH,点H即为所求.【解答】解:(1)如图,直线EF即为所求.(2)如图,线段CG,点H即为所求.21.(8分)如图,AB 是O 的直径,C ,D 是O 上两点,C 是BD 的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是O 的切线;(2)若6DC DF=,求cos ABD ∠的值.【分析】(1)连接OC 交BD 于点G ,可证明四边形EDGC 是矩形,可求得90ECG ∠=︒,进而可求CE 是O 的切线;(2)连接BC ,设FG x =,OB r =,利用6DC DF=,设DF t =,6DC t =,利用Rt BCG Rt BFC ∆∆∽的性质求出CG ,OG ,利用勾股定理求出半径,进而求解. 【解答】(1)证明:连接OC 交BD 于点G ,点C 是BD 的中点,∴由圆的对称性得OC 垂直平分BD , 90DGC ∴∠=︒,AB 是O 的直径,90ADB ∴∠=︒,90EDB ∴∠=︒,CE AE ⊥,90E∴∠=︒,∴四边形EDGC是矩形,90ECG∴∠=︒,CE OC∴⊥,CE∴是O的切线;(2)解:连接BC,设FG x=,OB r=,DCDF=设DF t=,DC=,由(1)得,BC CD=,BG GD x t==+, AB是O的直径,90ACB∴∠=︒,90BCG FCG∴∠+∠=︒,90DGC∠=︒,90CFB FCG∴∠+∠=︒,BCG CFB∴∠=∠,Rt BCG Rt BFC∴∆∆∽,2BC BG BF∴=⋅,2)()(2)x t x t∴=++解得1x t=,252x t=-(不符合题意,舍去),CG∴,OG r∴=,在Rt OBG∆中,由勾股定理得222OG BG OB+=,222()(2)r r r∴+=,解得r=,cosBGABDOB∴∠===.22.(10分)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.【分析】(1)根据题意列方程先求出两种原料的单价,再根据成本=原料费+其他成本计算每盒产品的成本即可;(2)根据利润等于售价减去成本列出函数关系式即可;(3)根据(2)中的函数关系式,利用函数的性质求最值即可.【解答】解:(1)设B原料单价为m元,则A原料单价为1.5m元,根据题意,得﹣=100,解得m=3,经检验m=3是方程的解,∴1.5m=4.5,∴每盒产品的成本是:4.5×2+4×3+9=30(元),答:每盒产品的成本为30元;(2)根据题意,得w=(x﹣30)[500﹣10(x﹣60)]=﹣10x2+1400x﹣33000,∴w关于x的函数解析式为:w=﹣10x2+1400x﹣33000;(3)由(2)知w=﹣10x2+1400x﹣33000=﹣10(x﹣70)2+16000,∴当a≥70时,每天最大利润为16000元,当60<a <70时,每天的最大利润为(﹣10a 2+1400a ﹣33000)元.23.(10分)问题提出如图(1),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC ∆内部,直线AD 与BE 于点F .线段AF ,BF ,CF 之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立. 问题拓展如图(3),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC kAC =,(EC kDC k =是常数),点E 在ABC ∆内部,直线AD 与BE 交于点F .直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.【分析】(1)证明()ACD BCE SAS ∆≅∆,则CDE ∆为等腰直角三角形,故2DE EF CF ==,进而求解;(2)由(1)知,()ACD BCE SAS ∆≅∆,再证明()BCG ACF AAS ∆≅∆,得到GCF ∆为等腰直角三角形,则2GF CF ,即可求解;(3)证明BCE CAD ∆∆∽和BGC AFC ∆∆∽,得到BG BC GC k AF AC CF===,则BG kAF =,GC kFC =,进而求解. 【解答】解:(1)如图(2),90ACD ACE ∠+∠=︒,90ACE BCE ∠+∠=︒,BCE ACD ∴∠=∠,BC AC =,EC DC =,()ACD BCE SAS ∴∆≅∆,BE AD AF ∴==,EBC CAD ∠=∠,故CDE ∆为等腰直角三角形,故2DE EF CF==,则2BF BD BE ED AF CF==+=+;即2BF AF CF-=;(2)如图(1),由(1)知,()ACD BCE SAS∆≅∆,CAF CBE∴∠=∠,BE AF=,过点C作CG CF⊥交BF于点G,90FCE ECG∠+∠=︒,90ECG GCB∠+∠=︒,ACF GCB∴∠=∠,CAF CBE∠=∠,BC AC=,()BCG ACF AAS∴∆≅∆,GC FC∴=,BG AF=,故GCF∆为等腰直角三角形,则2GF CF,则2BF BG GF AF CF=+=,即2BF AF CF-=;(3)由(2)知,BCE ACD∠=∠,而BC kAC=,EC kDC=,即BC ECk AC CD==,BCE CAD∴∆∆∽,CAD CBE∴∠=∠,过点C作CG CF⊥交BF于点G,由(2)知,BCG ACF ∠=∠,BGC AFC ∴∆∆∽, ∴BG BC GC k AF AC CF ===, 则BG kAF =,GC kFC =,在Rt CGF ∆中,22222()1GF GC FC kFC FC k FC =+=+=+⋅, 则21BF BG GF kAF k FC =+=++⋅,即21BF kAF k FC -=+⋅.24.(12分)抛物线21y x =-交x 轴于A ,B 两点(A 在B 的左边).(1)ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上; ①如图(1),若点C 的坐标是(0,3),点E 的横坐标是32,直接写出点A ,D 的坐标. ②如图(2),若点D 在抛物线上,且ACDE 的面积是12,求点E 的坐标.(2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF (不含端点)于G ,H 两点.若直线l 与抛物线只有一个公共点,求证:FG FH +的值是定值.【分析】(1)①点A 向右平移1个单位向上平移3个单位得到点C ,而四边形ACDE 为平行四边形,故点E 向右平移1个单位向上平移3个单位得到点D ,即可求解; ②利用6ACE CEN AEM CNMA S S S S ∆∆∆=--=梯形,求出5m =-(舍去)或2,即可求解;(2)由225()5()5sin sin 44G H H G x x t t FG FH x x αα-+-+=+=-=-=,即可求解. 【解答】解:(1)对于21y x =-,令210y x =-=,解得1x =±,令0x =,则1y =-, 故点A 、B 的坐标分别为(1,0)-、(1,0),顶点坐标为(0,1)-, ①当32x =时,2514y x =-=, 由点A 、C 的坐标知,点A 向右平移1个单位向上平移3个单位得到点C , 四边形ACDE 为平行四边形,故点E 向右平移1个单位向上平移3个单位得到点D , 则35122+=,517344+=, 故点D 的坐标为5(2,17)4;②设点(0,)C n ,点E 的坐标为2(,1)m m -,同理可得,点D 的坐标为2(1,1)m m n +-+,将点D 的坐标代入抛物线表达式得:221(1)1m n m -+=+-, 解得21n m =+,故点C 的坐标为(0,21)m +;连接CE ,过点E 作y 轴的平行线交x 轴于点M ,交过点C 与x 轴的平行线与点N ,则()()()()()2111112111212162222ACE CEN AEM ACED CNMA S S S S m m m m m m m m S ∆∆∆=--=+++-⨯+--+--==⎡⎤⎣⎦梯形,解得5m =-(舍去)或2, 故点E 的坐标为(2,3);(2)F 是原点O 关于抛物线顶点的对称点,故点F 的坐标为(0,2)-, 由点B 、F 的坐标得,直线BF 的表达式为22y x =-①, 同理可得,直线AF 的表达式为22y x =--②, 设直线l 的表达式为y tx n =+, 联立y tx n =+和21y x =-并整理得:210x tx n ---=, 直线l 与抛物线只有一个公共点,故△2()4(1)0t n =----=,解得2114n t =--, 故直线l 的表达式为2114y tx t =--③, 联立①③并解得24H t x +=, 同理可得,24G t x -=, 射线FA 、FB 关于y 轴对称,则AFO BFO ∠=∠,设AFO BFO α∠=∠=, 则sin sin OB AFO BFO BF α∠=∠====,则22)5()sin sin 44G H H G x x t t FG FH x x αα-+-+=+=-=-=。
武汉三中分班考试数学试题大全

武汉三中分班考试数学试题汇编一、填空题(6分×10=60分)1.。
2.。
3.如果A※B=4A+3B.例如2※4=4×2+3×4=20.那么(2※3)※(4※5)的值是。
4.甲、乙、丙、丁四人去买电视机,甲带的钱是另外三人所带总钱数的一半,乙所带的钱是另外三人所带总钱数的,丙所带的钱是另外三人所带总钱数的,丁带910元,四人所带的总钱数是元。
5.一个班有45人,喜欢体育活动的有29人,喜欢文艺活动的有23人,有5人对这两项都没有兴趣,求两种活动都喜欢的有人。
6.把两个相同的硬币放入一个3×3的方格的两个不相邻小方格上,一共有种放法。
7.三角形ABC为直角三角形,AB是圆的直径,并且AB=20厘米,如果阴影(I)的面积比阴影(II)的面积大19平方厘米,那么BC的长度是厘米。
8.商店一次进货6桶,重量分别为15千克、16千克、18千克、19千克、20千克、31千克。
上午卖出去2桶,下午卖出去3桶,下午卖得的钱数正好是上午的2倍。
剩下的一桶重千克。
9.甲、乙两地之间的道路分上坡和下坡两种路段,共24千米,小明上坡速度为4千米/时,下坡速度为6千米/时,去时用了4.5小时,则返回时用小时。
10.在线段AB之间加入了7个点,则共增加了条线段。
二、解答题(10分×4=40分)1.已知一个两位数除1477,余数是49.求满足这样条件的所有两位数.2.从上海开车去南京,原计划中午11:30到达,但出发后车速提高了17,11点钟就到了,第二天返回时,同一时间从南京出发,按原速行使了120千米后,再将车速提高16,到达上海时恰好11:10,上海、南京两市间的路程是多少千米?3.有浓度为36%的盐水若干,加入一定数量的水后稀释成浓度为30%的盐水,如果再稀释成浓度为24%的盐水,还需要加的水量是上次加的水的几倍?4.如图所示,正方形ABCD的边长为12,直角梯形CEFG的上底、下底和高分别为4、14和15。
湖北省武汉市第三初级中学2020年分配生数学测试题

武汉三中2020分配生数学测试题测试时间:120分钟 分值:120分一、选择题(每题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若1x +有意义,则字母x 的取值范围是( )A .x≥1B .x≠2C .x≥1且x =2D .x≥-1且x ≠2 2.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( ) A .3- B .5- C .7 D .17-3.如果一个三角形的三边a 、b 、c ,满足2ab bc b ac +=+,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .不等边三角形 D .直角三角形 甲组 158 159 160 160 160 161 169 乙组 158159160161161163165A .甲组同学身高的众数是160B .乙组同学身高的中位数是161C .甲组同学身高的平均数是161D .两组相比,乙组同学身高的方差大 5.抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点坐标为(2,0),对称轴是直线x =1,其图象的一部分如图所示,对于下列说法:其中正确的是( )①抛物线过原点; ②a ﹣b +c <0; ③2a +b +c =0; ④抛物线顶点为(1,2b); ⑤当x <1时,y 随x 的增大而增大; A .①②③ B .①③④ C .①④⑤ D .③④⑤ 6.化简:633633-++的结果是( )A .6B .6C .33D .327. 小雨利用几何画板探究函数y =()||ax b x c -⋅-图象,在他输入一组a ,b ,c 的值之后,得到了如图所示的函数图象,根据学习函数的经验,可以判断,小雨输入的参数值满足( )A .a >0,b >0,c=0B .a <0,b >0,c=0C .a >0,b=0,c=0D .a <0,b=0,c >0 8. 已知1abc =,2a b c ++=,2223a b c ++=,则111111ab c bc a ca b +++-+-+-的值为( )A .-1B .12-C .2D .23- 9.如图,在直角坐标系xoy 中,已知A (0,1),B (3,0),以线段AB 为边向上作菱形ABCD ,且点D 在y 轴上.若菱形ABCD 以每秒2个单位长度的速度沿射线AB 滑行,直至顶点D 落在x 轴上时停止.设菱形落在x 轴下方部分的面积为S ,则表示S 与滑行时间t 的函数关系的图象为( )10.如图,在正方形ABCD 中,对角线AC BD 、相交于点O ,以AD 为边向外作等边6ADE AE =,,连接,CE 交BD 于,F 若点M 为AB 的延长线上一点,连接CM ,连接FM 且FM 平分AMC ∠,下列选项正确的有( ) ①31DF =-; ②()3132AECS+=;③60AMC =︒∠; ④2CM AM MF +=A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共18分)11.如图,点O为边长为2的正方形的中心,⊙O半径为1,则∠AED的正切值为_____.12.已知222233+=,333388+=,44441515+=,…,若99a ab b+=(a,b均为实数),则根据以上规律ab的值为__________.13.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形'''AB C D,图中阴影部分的面积为_________.14.若数a使关于x的不等式组36222()4xxx a x+⎧<+⎪⎨⎪-+⎩的解集为x<﹣2,且使关于y的分式方1311--=-++y ay y的解为负数,则符合条件的所有整数a有个。
2021年武汉市中考数学试题及答案解析

2021年湖北省武汉市中考数学试卷一.选择题(共12小题)1.(2021武汉)在2.5,﹣2.5,0,3这四个数种,最小的数是()A. 2.5 B.﹣2.5 C. 0 D. 3考点:有理数大小比较。
解答:解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.2.(2021武汉)若在实数范围内有意义,则x的取值范围是()A. x<3 B. x≤3 C. x>3 D. x≥3考点:二次根式有意义的条件。
解答:解:根据题意得,x﹣3≥0,解得x≥3.故选D.3.(2021武汉)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式。
解答:解:x﹣1<0,∴x<1,在数轴上表示不等式的解集为:,故选B.4.(2021武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6 B.标号大于6 C.标号是奇数D.标号是3 考点:随机事件。
解答:解:A.是一定发生的事件,是必然事件,故选项正确;B.是不可能发生的事件,故选项错误;C.是随机事件,故选项错误;D.是随机事件,故选项错误.故选A.5.(2021武汉)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2 B. 2 C. 3 D. 1考点:根与系数的关系。
解答:解:由一元二次方程x2﹣3x+2=0,∴x1+x2=3,故选C.6.(2021武汉)某市2021年在校初中生的人数约为23万.数230000用科学记数法表示为()A. 23×104B. 2.3×105C. 0.23×103D. 0.023×106考点:科学记数法—表示较大的数。
解答:解:23万=230 000=2.3×105.故选B.7.(2021武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A. 7 B. 8 C. 9 D. 10考点:翻折变换(折叠问题)。
2021年湖北省武汉市中考数学试卷解析

2021年湖北省武汉市中考数学试卷解析2021年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑..(3分后)(2021•武汉)若代数式在实数范围内有意义,则x的取值范围是()6.(3分后)(2021•武汉)例如图,在直角坐标系则中,存有两点a(6,3),b (6,0),以原点o位似中心,相似比为,在第一象限内把线段ab缩小后得到线段cd,则点c的坐标为()7.(3分后)(2021•武汉)例如图,就是由一个圆柱体和一个长方体共同组成的几何体.其主视图就是()8.(3分)(2021•武汉)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()9.(3分后)(2021•武汉)在反比例函数y=图象上有两点a(x1,y1),b(x2,y2),10.(3分后)(2021•武汉)例如图,△abc,△efg均就是边长为2的等边三角形,点d是边bc、ef的中点,直线ag、fc相交于点m.当△efg绕点d旋转时,线段bm长的最小值是()二、填空题(共6小题,每小题3分后,共18分后)恳请将答案填上在答题卡对应题号的边线上.11.(3分后)(2021•武汉)排序:﹣10+(+6)=.12.(3分)(2021•武汉)中国的领水面积约为370000km,将数370000用科学记数法表示为.13.(3分)(2021•武汉)一组数据2,3,6,8,11的平均数是.14.(3分)(2021•武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段oa和射线ab组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.15.(3分后)(2021•武汉)定义运算“*”,规定x*y=ax+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=.16.(3分后)(2021•武汉)例如图,∠aob=30°,点m、n分别在边oa、ob上,且om=1,on=3,点p、q分别在边ob、oa上,则mp+pq+qn的最小值就是.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.17.(8分)(2021•武汉)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)谋关于x的不等式kx+3≤6的边值问题.18.(8分后)(2021•武汉)例如图,点b、c、e、f在同一直线上,bc=ef,ac⊥bc于点c,df⊥ef于点f,ac=df.澄清:(1)△abc≌△def;(2)ab∥de.19.(8分)(2021•武汉)一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,轻易写下“掏出的小球标号就是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次抽出标号就是1的小球且第二次抽出标号就是2的小球的概率.20.(8分)(2021•武汉)如图,已知点a(﹣4,2),b(﹣1,﹣2),平行四边形abcd的对角线交于坐标原点o.(1)恳请轻易写下点c、d的座标;(2)写出从线段ab到线段cd的变换过程;(3)直接写出平行四边形abcd的面积.21.(8分后)(2021•武汉)例如图,ab就是⊙o的直径,∠abt=45°,at=ab.(1)澄清:at就是⊙o的切线;(2)连接ot交⊙o于点c,连接ac,求tan∠tac.22.(10分后)(2021•武汉)未知锐角△abc中,边bc短为12,低ad短为8.(1)如图,矩形efgh的边gh在bc边上,其余两个顶点e、f分别在ab、ac边上,ef交ad于点k.①求②设eh=x,矩形efgh的面积为s,谋s与x的函数关系式,ZR19s的最大值;(2)若ab=ac,正方形pqmn的两个顶点在△abc一边上,另两个顶点分别在△abc的另两边上,直接写出正方形pqmn的边长.23.(10分后)(2021•武汉)例如图,△abc中,点e、p在边ab上,且ae=bp,过点e、p作bc的平行线,分别交ac于点f、q,记△aef的面积为s1,四边形efqp的面积为s2,四边形pqcb的面积为s3.(1)澄清:ef+pq=bc;(2)若s1+s3=s2,求(3)若s3+s1=s2,轻易写下24.(12分)(2021•武汉)已知抛物线y=x+c与x轴交于a(﹣1,0),b两点,交y轴于点c.(1)谋抛物线的解析式;(2)点e(m,n)就是第二象限内一点,过点e作ef⊥x轴交抛物线于点f,过点f作fg⊥y轴于点g,相连接ce、cf,若∠cef=∠cfg.谋n的值并轻易写下m的值域范围(利用图1顺利完成你的探究).(3)如图2,点p是线段ob上一动点(不包括点o、b),pm⊥x轴交抛物线于点m,∠obq=∠omp,bq交直线pm于点q,设点p的横坐标为t,求△pbq的周长.2021年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分后,共30分后)以下各题中均存有四个候选答案,其中存有且只有一个就是恰当的,恳请在答题卡上将恰当答案的代号涂黑.2.(3分)(2021•武汉)若代数式在实数范围内有意义,则x的取值范围是()6.(3分后)(2021•武汉)例如图,在直角坐标系则中,存有两点a(6,3),b(6,0),以原点o位似中心,相近比为,在第一象限内把线段ab增大后获得线段cd,则点c的座标为()7.(3分)(2021•武汉)例如图,就是由一个圆柱体和一个长方体共同组成的几何体.其主视图就是()8.(3分)(2021•武汉)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()9.(3分后)(2021•武汉)在反比例函数y=图象上有两点a(x1,y1),b(x2,y2),分后)(2021•武汉)例如图,△abc,△efg均就是边长为2的等边三角形,点d就是边bc、ef的中点,直线ag、fc平行于点m.当△efg绕点d转动时,线段bm短的最小值就是()二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上.11.(3分)(2021•武汉)计算:﹣10+(+6)=﹣4.12.(3分)(2021•武汉)中国的领水面积约为370000km,将数370000用科学记数法表示为3.7×10.13.(3分)(2021•武汉)一组数据2,3,6,8,11的平均数是.14.(3分后)(2021•武汉)如图所示,出售一种苹果,所退款金额y(元)与购买量x(千克)之间的函数图象由线段oa和射线ab共同组成,则一次出售3千克这种苹果比分三次每次出售1千克这种苹果可以节省元.15.(3分)(2021•武汉)定义运算“*”,规定x*y=ax+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=10.16.(3分后)(2021•武汉)例如图,∠aob=30°,点m、n分别在边oa、ob上,且om=1,on=3,点p、q分别在边ob、oa上,则mp+pq+qn的最小值就是三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.17.(8分后)(2021•武汉)未知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)谋关于x的不等式kx+3≤6的边值问题.18.(8分)(2021•武汉)如图,点b、c、e、f在同一直线上,bc=ef,ac⊥bc于点c,df⊥ef于点f,ac=df.求证:(1)△abc≌△def;(2)ab∥de.19.(8分后)(2021•武汉)一个不透明化的口袋中存有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后摆回去,再随机捏出来一个小球,轻易写下以下结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次抽出标号就是1的小球且第二次抽出标号就是2的小球的概率.20.(8分)(2021•武汉)如图,已知点a(﹣4,2),b(﹣1,﹣2),平行四边形abcd的对角线交于坐标原点o.(1)恳请轻易写下点c、d的坐标;(2)写下从线段ab至线段cd的转换过程;(3)直接写出平行四边形abcd的面积.21.(8分后)(2021•武汉)例如图,ab就是⊙o的直径,∠abt=45°,at=ab.(1)求证:at是⊙o的切线;(2)相连接ot交⊙o于点c,相连接ac,谋tan∠tac.22.(10分)(2021•武汉)已知锐角△abc中,边bc长为12,高ad长为8.(1)例如图,矩形efgh的边gh在bc边上,其余两个顶点e、f分别在ab、ac边上,ef交ad于点k.②设eh=x,矩形efgh的面积为s,求s与x的函数关系式,并求s的最大值;(2)若ab=ac,正方形pqmn的两个顶点在△abc一边上,另两个顶点分别在△abc的另两边上,轻易写下正方形pqmn的边长.23.(10分)(2021•武汉)如图,△abc中,点e、p在边ab上,且ae=bp,过点e、p作bc的平行线,分别交ac于点f、q,记△aef的面积为s1,四边形efqp的面积为s2,四边形pqcb的面积为s3.(1)澄清:ef+pq=bc;(2)若s1+s3=s2,求的值;的值.(3)若s3+s1=s2,轻易写下24.(12分)(2021•武汉)已知抛物线y=x+c与x轴交于a(﹣1,0),b两点,交y轴于点c.2(1)谋抛物线的解析式;(2)点e(m,n)是第二象限内一点,过点e作ef⊥x轴交抛物线于点f,过点f作fg⊥y轴于点g,连接ce、cf,若∠cef=∠cfg.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)例如图2,点p就是线段ob上一动点(不包括点o、b),pm⊥x轴交抛物线于点m,∠obq=∠omp,bq交直线pm 于点q,设点p的横坐标为t,求△pbq的周长.第21页(共23页)第22页(共23页)2021年7月23日第23页(共23页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉三中数学测试题分值:120分 测试时间:120分钟一、选择题(每题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的) 1.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为( ) A .0.24-10⨯米 B .5-102⨯米 C .2×4-10米 D .2×510米2.如果0122=-+a a ,那么代数式2)42-⋅-a a a a (的值是( )A 1-B 3-C 3D 13.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表: 捐款的数额(单位:元)510 20 50 100 人数(单位:个) 24531关于这15名学生所捐款的数额,下列说法正确的是( )A .中位数是20B .平均数是30C .极差是20D .众数是1004.如图,在ABC Rt ∆中,030=∠A ,BC=1,点D,E 分别是直角边BC,AC 的中点,则DE 的长为( ) A 1+3 B 2 C 3 D 15.如图,直径为10的圆A 经过C (0,5)和O (0,0),B 是y 轴右侧圆A 上一点,则OBC ∠的余弦值为( )A 43B 23C 21D 546.如图是正方形的一种展开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“6”相对的面上的数字是A .1B .5C .3D .47.“五·一”节,爸爸开车带李明回老家看望爷爷、奶奶.一路上,李明发现在经过A 、B 、C 、D 每一个村庄前的500米处均立有下图所示的交通告示牌.现给出这四个路段爸爸开车的速度v(km/h)与离开告示牌的距离s(m)之间的函数关系图象,则其中表示爸爸违章的路段的图象是( )8.已知acb a bc b a c c b a k ++-=+-=-+=,且n n m 6952=++-,则关于自变量x 的一次函数mn kx y -=的图像一定经过第( )象限A 一、二B 三、四C 二、三D 一、四9.如图,边长为1的正三角形ABC ,分别以顶点A,B,C 为圆心,1为半径作圆,则这三个圆所覆盖的图形面积为( )A323+π B 323-π C 3227-π D 232+π 10.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为( )A. ①②B. ②③C. ①③D. ①②③二、填空题(每题3分,共18分)11.计算32)2-xy (= 12. 如图,在正方形ABCD 中AC 与BD 交于点O ,正方形外有一点E , 使∠AED =90°,且DE=3,OE=,则AE=13. 如图在矩形ABCD 中,AB=5,AD=3,动点P 满足ABCD PAB S S 矩形31=∆,则点P 到A,B 两点距离之和PA+PB 的最小值是14. 如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线 AC 交于点E ,则图中阴影部分的面积为______.(结果保留π)15.从-1,1, 2这三个数字中,随机抽取一个数,记为a.那么,使关于x 的一次函数的图象与x 轴、y 轴围成的三角形面积为,且使关于x 的不等式组有解的概率为 .16. 有一张矩形风景画,长为90cm ,宽为60cm ,现对该风景画进行装裱,得到一个新的矩形,要求其长、宽之比与原风景画的长、宽之比相同,且面积比原风景画的面积大44%.若装裱后的矩形的上、下边衬的宽都为acm ,左、右边衬的宽都为bcm ,那么ab= ___. 三、解答题(本大题共8小题,共72分)17.(本小题8分)已知m,n 是方程0132=++x x 的两根,求mm m m m 23102)5165---⋅--+(的值。
18.(本小题8分)如图,△ABC 中,AC=BC ,I 为△ABC 的内心,O 为BC 上一点,过B 、I 两点的圆O交BC于D点,tan∠CBI=,AB=6,(1)求线段BD的长;(2)求线段BC的长.19.(本小题8分)某校团委要组织班级歌咏比赛,为了确定一首喜欢人数最多的歌曲作为每班必唱歌曲,团委提供了代号为A,B,C,D四首备选曲目让学生选择(每个学生只选一首),经过抽样调查后,将采集的数据绘制如下两幅不完整的统计图,请根据图1,图2所提供的信息,解答下列问题:(1)在抽样调查中,求选择曲目代号为A的学生人数占抽样总人数的百分比;(2)请将图2补充完整;(3)若该校共有1530名学生,根据抽样调查的结果,估计全校选择曲目代号为D的学生有多少名?20.(本小题8分)1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:上升时间/min10 30 … x 1号探测气球所在位置的海拔/m 15 … 2号探测气球所在位置的海拔/m30…(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?21.(本小题8分)已知:Rt △A′BC′和 Rt △ABC 重合,∠A′C′B=∠ACB=90°,∠BA′C′=∠BAC=30°,现将Rt △A′BC′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C 和线段AA′相交于点D,连接BD .(1)当α=60°时,A’B 过点C ,如图1所示,判断BD 和A′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明; (3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.22.(本小题10分)在ABC ∆中,090=∠BAC ,045=∠ABC ,点D 为直线BC 上一动点(点D 不与点B,C 重合),以AD 为边作正方形ADEF,连CF 。
(1)如图①,当点D 在线段BC 上时,求证:CF+CD=BC;(2)如图②,当点D 在BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图③,当点D 在BC 的反向延长线上,且点A,F 分别在直线BC 的两侧时,其他条件不变。
i 请直接写出CF,BC,CD 三条线段之间的关系ii 若正方形ADEF 的边长为22,对角线AE 和DF 相交于点O ,连OC ,求OC 的长度。
23(本小题10分)二次函数y=n mx x +-242的图像与x 轴交于A (1x ,0),B(2x ,0),(21x x <)两点,与y 轴交于C 点。
(1)若AB=2,且抛物线的顶点在直线y=2--x 上,试确定m, n 的值。
(2)在(1)中,点P 为直线BC 下方抛物线上一点,当PBC ∆面积最大时,求P 点坐标。
24. (本小题12分)如图,已知A (-1,0),E (0,-),以点A 为圆心,以AO 长为半径的圆交x 轴于另一点B ,过点B 作BF ∥AE 交⊙A 于点F ,直线FE 交x 轴于点C . (1)求证:直线FC 是⊙A 的切线; (2)求点C 的坐标及直线FC 的解析式;(3)有一个半径与⊙A 的半径相等,且圆心在x 轴上运动的⊙P .若⊙P 与直线FC 相交于M ,N 两点,是否存在这样的点P ,使△PMN 是直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.数学测试题答案一、选择题(每题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的) B D A D B A B B A A二、填空题(每题3分,共18分)11.638y x - 12. 5 13. 41 14. π-10 15. 16. 542cm 三、解答题(本大题共8小题,共72分)17.(本小题8分)解析: m,n 是方程0132=++x x 的两根,所以0132=++m m ,0132=++n n ,m+n=-3,mn=1 ∴原式=mm m m m m m m m m m 23)5(25)3)(3(23102516-252----⋅--+=---⋅--066326)1(2622-6-2=+-=-⨯--=+--=-=mmm m m m18.(本小题8分)(1)如图连接CI 并延长交AB 于E ,连接ID , ∵I 是△ABC 的内心,∴CI 平分∠ACB ,∵AC=BC ,,321,BEI BHI AB BH AB CH ∆≅∆==⊥∴,易证 3==∴BH BE ,,131,31tan ==∴=∠BE IE CBI 因为BD 是圆O 的直径,所以090=∠BID又相似与易证于IED BEI E BD IE ∆∆⊥,,,ED IE IE BE =∴∴ED=31,310313=+=+=∴ED BE BD (2)连OI,I为三角形ABC的内心,∴ABI OBI ∠=∠,OIB ABI OIB OBI OB OI ∠=∠∴∠=∠∴=,,AB OI //∴,CH OI AB CH ⊥∴⊥, ,易证相似与IEC OEI ∆∆,易证BEI BHI ∆≅∆,所以BE=BH=3,1,=⋅∴=∴EC OE EC IE IE OE ,OE=OD-ED=34313521=-=-ED BD ,,43=∴EC415433=+=+=∴EC BE BC19.(本小题8分)解析(1)分别观察扇形、条形统计图获取信息,求出调查的总人数为30÷36060=180(人), 再由唱A 的人数与总调查人数的比计算A 的百分比:100﹪=20%(2)选C 的有180 – 36 – 30 – 44= 70人。
补全图2如图:(3)1530(人)37418044=⨯20,0.5x+15.(Ⅱ)两个气球能位于同一高度, 根据题意得:x+5=0.5x+15, 解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度. (Ⅲ)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球, 设两个气球在同一时刻所在位置的海拔相差ym , 则y=(x+5)-(0.5x+15)=0.5x-10, ∵0.5>0,∴y 随x 的增大而增大,∴当x=50时,y 取得最大值15,答:两个气球所在位置海拔最多相差15m . 21.(本小题8分)(1)当α=60°时,BD ⊥A'A(2)补全图形如图2,BD ⊥A'A 仍然成立;(3)猜想BD ⊥A'A 仍然成立.证明:作AE ⊥C'C ,A'F ⊥C'C ,垂足分别为点E ,F ,如图3, 则∠AEC=∠A'FC'=90°.∵BC=BC', ∴∠BCC'=∠BC'C .∵∠ACB=∠A'C'B=90°, ∴∠ACE+∠BCC'=90°,∠A'C'F+∠BC'C=90°.∴∠ACE=∠A'C'F .在△AEC 和△A'FC'中,∠AEC=∠A'FC'=90°, ∠ACE=∠A'C'F ,AC=,,C A ∴△AEC ≌△A'FC'. ∴AE=A'F .在△AED 和△A'FD 中,∠AEC=∠A'FD=90°,∠ADE=∠ADF .AE=A'F∴△AED ≌△A'FD .∴AD=A'D .∵AB=A'B ,∴△ABA'为等腰三角形.∴BD ⊥A'A .22(本小题10分)解析;(1)证明: 090=∠BAC ,045=∠ABC ,∴045=∠ACB ,∴AB=AC四边形ADEF 是正方形,090=∠=∴DAF AF AD ,DAC BAD ∠=∠-900 ,DAC CAF ∠=∠-900,CAF BAD ∠=∠∴ACF ABD ∆≅∆,CF BD =∴.∴CF+CD=BD+CD=BC (2)CF -CD=BC (3) i CD -CF=BCii 090=∠BAC ,045=∠ABC ,∴045=∠ACB ,∴AB=AC 四边形ADEF 是正方形,090=∠=∴DAF AF AD ,,BAF BAD ∠=∠-900 ,BAF CAF ∠=∠-900 ,,CAF BAD ∠=∠∴ ACF ABD ∆≅∆,ABD ACF ∠=∠∴,045=∠ABC ,0135=∠∴ABD ,ABD ACF ∠=∠∴=1350∴090=∠FCD ,∴FCD ∆是直角三角形。