CFM56-3C发动机高振动故障分析
CFM56-3发动机排故分析

CFM56-3发动机排故分析发动机的正常运转是由发动机控制系统的正常工作来保证的,发动机控制系统分为液压机械部件和电器部件,其中,液压部件包括:MEC、T2传感器、T2.5传感器、VBV马达、涡轮间隙控制活门(TCCV)、和VSV 作动器等。
电器部件包括PMC、N2转速表发电机、N1传感器,T12传感器、及PS12传感器等。
这些部件及传感器对发动机运转特性进行影响,当其中的一个部件工作不正常时,将导致发动机故障,对发动机出现的故障,如果完全按维护手册故障树排除,显得非常复杂,影响排故效率. 如果我们采取适当的方法,我们可以大大的提高排故质量,节省排除故障时间及不必要的部件更换。
根据天津基地的发动机经验,我们认为在飞行员报告故障时,应首先通过FADAMS对发动机的参数进行初步的分析,判断故障的可能部件。
主要对参数的匹配性,传感器信号的准确性,如TAT,高度指示等。
然后对发动机进行一、两次试车,分析所采集的数据判断出那个系统可能出现故障,再按维护手册进行排故,那么我们的排故工作就会简单化,从而节约时间。
一、发动机控制系统内在关系及其主要部件功用上图简单地给出了PMC/MEC输入、输出的参数以及他们之间的关系MECMEC在所有工作状态下通过计量到发动机燃油喷嘴的燃油流量控制发动的转速,以保持推力杆所设定的转速及在发动机各种运转情况下建立所需的燃油供油计划。
MEC控制瞬时的和稳定的燃油供油以及设定VSV、VBV的位置以保持稳态转速,并且保证发动机在加减速期间的运转在失速和温度限制内。
MEC对发动机的控制主要通过计算输入MEC的信号参数来完成的,输入参数包括:风扇进口温度(T2),高压压气机进口温度(CIT),高压压气机出口压力(CDP),高压压气机引气压力(CBP),VSV/VBV位置反馈,N2转速,油门杆位置(PLA),环境压力(PS12)。
MEC四个主要功用:1.发动机加减速的燃油控制。
MEC为发动机启动、加速、减速提供供油计划,加速计划的控制是为发动机的平稳的启动和转子快速的加速提供必须的燃油,并保证压气机有足够的喘振裕度以及涡轮部件的瞬时超温保护,减速计划是使发动机在快速减速期间,确保发动机不贫油熄火。
CFM56发动机控制原理及常见故障分析

CFM56发动机控制原理及常见故障分析CFM56发动机是世界上运用最广泛的民用涡扇发动机之一,其控制原理和故障分析对于飞机安全和运行具有极为重要的意义。
CFM56发动机控制原理主要包括电子控制系统、燃油系统、气路系统和润滑系统等几个方面。
1. 电子控制系统:CFM56发动机采用FADEC(Full Authority Digital Engine Control)数字式集中电子控制系统,能够实现对发动机的各项参数进行控制和监测。
该系统可自动监测发动机温度、气压、转速、推力等各种参数,并采取相应措施进行调节。
在一些高效率的发动机中,还会采取进一步的数学模拟和优化控制计算,从而实现更精准的发动机控制。
2. 燃油系统:CFM56发动机的燃油系统采用了先进的喷射式燃油喷嘴和调控阀门,可实现准确和稳定的燃油喷射,从而使发动机的燃油消耗量最小化。
同时,发动机还通过燃油的喷射和控制来调节发动机转速和推力。
3. 气路系统:CFM56发动机的气路系统包括压缩机、燃烧室、涡轮等部分。
整个气路系统的设计关系到发动机的转速和推力,因此气路系统中的各个零部件均需精确的控制和监测。
4. 润滑系统:CFM56发动机的润滑系统可实现对发动机各个零部件的润滑,减少机件的磨损和摩擦。
润滑系统中还包括精确的温度和压力控制,以保证发动机的正常运行。
1、压力泄漏问题:CFM56发动机的压缩机中可能出现部分失效或泄漏的情况,如果压力泄漏比较严重则可能导致发动机的失速或停转。
3、燃油喷射问题:CFM56发动机的燃油喷射问题可能导致燃油喷射不正常,从而造成发动机的燃油消耗量过大或控制不稳定等等问题。
4、电子控制系统问题:如果CFM56发动机的电子控制系统出现故障,可能会导致发动机的失速或停转等问题,因此需要对发动机的控制系统进行精确的监测和排查。
总之,CFM56发动机的控制原理和故障分析是影响飞机安全性和运营效率的关键因素之一,需要飞机制造商和维修人员对其进行深入的研究和掌握。
CFM56-3发动机维护培训及其常见故障分析

发动机使用限制(AMM71-00-00/201)
• 振动 • 滑油耗量 • 压气机失速 • 反推伸出时最大转速为40%N1 • 燃油型号及其比重(AMM71-00-00/501,Test 6) • 仅在低慢车及冷转时风扇整流罩可在打开位 • 发动机防冰限制(18℃以上,30秒)
14
燃油供应及其控制系统
26
导致油门杆不一致的主要因素
• 自动油门系统 ------ 计算机、作动器、同步器 • PMC系统 ------ PMC、RVDT、TMA、 T12 、 N2传感器 • 主控制系统 ------ 油门钢索、MEC、PS12、T2、CIT、VSV等)
27
油门杆不一致的排故思路
• AMM71-00-42,Fig.116/117 • 查阅飞行记录本/向机组询问故障出现时的相关参数 --- 阶段/高度、双发N1/N2值、自动油门、PMC状况 • A/T测试 ---如果双发N1不同,A/T的可能性很大 • 部分功率试车Test No.6(PMC OFF/ON) --- 如果仅在PMC ON时有偏差,检查PMC系统 ---如果仅在PMC OFF时有偏差,检查主控制系统 • 加减速测试Test No.8(用于检查VSV、CIT、CDP)
• AMM71-71-00/601 • 门限值与可用值 • 滑油和燃油 • HPTCCV和右侧VSV作动器共用一个余油管 (AMM71-71-00/608)
35
高振动值
• AVM(77-31-00/231,6672M201/202) • 故障判断 • 备用风扇机匣振动传感器(AMM77-31-01/401) • FAN/LPT配平(AMM72-31-00/501)
22
润滑系统
• 5个轴承,3个干式油槽 • 滑油箱(左右发容量差异),通气管,防虹吸管 • 滑油压力传感器,低滑油压力电门 位于AGB供油管和通气孔之间(AMM79-32-00/001;79-33-00/001) • 滑油温度传感器 位于回油滤进口处(AMM79-34-00/001) • 回油滤压差电门和旁通警告灯(AMM79-35-00/001) 作动压差26PSI,首班或冬季起动时灯可能亮,油热后恢复正常。 • 供、回油滤均有堵塞指示器(AMM79-21-00/001) • 滑油组件(胶圈更换AMM79-21-01/801) • MCD磁堵检查(AMM79-00-00/601)
CFM56发动机控制原理及常见故障分析

CFM56发动机控制原理及常见故障分析【摘要】本文将介绍CFM56发动机的控制原理及常见故障分析。
文章会详细介绍CFM56发动机的控制原理,包括加速控制系统、起动控制系统和油门控制系统的运行机制。
随后,将对CFM56发动机常见的故障进行分析,包括可能导致故障的原因和解决方法。
通过对这些方面的深入了解,读者可以更好地了解CFM56发动机的工作原理和常见故障的处理方式。
在将对全文进行总结,着重强调CFM56发动机控制原理及常见故障分析的重要性。
通过本文的阐述,读者可以对CFM56发动机有一个更加全面的了解,并学会如何有效地应对发动机常见故障。
【关键词】CFM56发动机、控制原理、加速控制系统、起动控制系统、油门控制系统、常见故障、分析、总结1. 引言1.1 CFM56发动机控制原理及常见故障分析CFM56发动机是一款广泛应用于民用飞机的高效涡轮风扇发动机,其控制系统是确保飞机正常运行的重要组成部分。
本文将介绍CFM56发动机的控制原理及常见故障分析,以帮助读者了解这一关键技术。
CFM56发动机控制原理主要包括加速控制系统、起动控制系统和油门控制系统。
加速控制系统负责监测和调节发动机的转速,确保其在各种工况下都能保持稳定。
起动控制系统则负责启动发动机,并确保其顺利过渡到正常工作状态。
油门控制系统则是控制飞机的飞行速度和高度,以满足飞行员的操作需求。
在实际运行中,CFM56发动机可能会出现各种故障,如起动困难、加速不稳定等。
通过对这些常见故障的分析,可以及时发现并解决问题,确保飞机的运行安全性和可靠性。
CFM56发动机的控制原理及常见故障分析是飞机维护保养工作中的重要内容,只有深入理解这些技术知识,才能够有效地确保飞机的运行安全和稳定。
在实际工作中,应重视对这些内容的学习和实践,以提升飞机维护工作的水平和质量。
2. 正文2.1 CFM56发动机控制原理CFM56发动机是一种非常常见的喷气式发动机,被广泛应用于各种商用飞机上。
CFM56发动机控制原理及常见故障分析

CFM56发动机控制原理及常见故障分析CFM56发动机是由通用电气和法国赛峰公司联合研制生产的一款高性能喷气发动机。
该发动机广泛应用于各种民航客机和军用飞机上,具有出色的可靠性和性能。
CFM56发动机的控制原理和常见故障分析对于飞机的安全飞行具有重要意义,本文将对其进行详细介绍。
1. 原理概述CFM56发动机的控制原理是通过电子数字控制系统(FADEC)实现的,FADEC系统能够自动控制发动机的起动、加速、高空巡航以及关机等各种工作状态。
FADEC系统通过检测多种参数,如发动机转速、温度、油压等,实时调整喷油量和进气阀门开度,以确保发动机的安全、高效运行。
2. 工作原理在发动机启动时,FADEC系统会控制燃料喷射和起动器的使用,使发动机迅速启动并达到最佳工作状态。
在加速过程中,FADEC系统会根据不同的工作状态自动调整燃油喷射量和进气阀门的开度,保证发动机运行在最佳工作点。
在高空巡航时,FADEC系统会自动调整燃油喷射量和进气阀门的开度,以适应不同的高度和飞行速度,保证发动机的经济运行和稳定性能。
1. 起动故障CFM56发动机的起动故障常见于起动器故障、起动气体发生器故障以及起动电源故障。
起动器故障可能是由于起动器磨损、电源接触不良等原因导致的,解决方法是对起动器进行维修或更换。
起动气体发生器故障可能是由于压气机故障或压气机进气道堵塞导致的,解决方法是清理压气机进气道或更换起动气体发生器。
起动电源故障可能是由于电源线路接触不良或电源控制器故障导致的,解决方法是检查电源线路和更换电源控制器。
2. 过热故障CFM56发动机的过热故障常见于燃烧室高温过载、涡轮叶片断裂以及冷却系统故障。
燃烧室高温过载可能是由于燃油供应不足或燃烧室内部积碳导致的,解决方法是检查燃油供应系统和清理燃烧室内部。
涡轮叶片断裂可能是由于润滑油不足或叶片自身质量问题导致的,解决方法是检查润滑油系统和更换叶片。
冷却系统故障可能是由于散热器堵塞或冷却液泄漏导致的,解决方法是清理散热器和修复冷却液泄漏。
浅析CFM56-3发动机的防喘措施及常见故障

工业技术科技创新导报 2014 NO.08Science and Technology Innovation Herald浅析CFM56-3发动机的防喘措施及常见故障徐刚 (中国民航飞行学院 四川广汉 618307)摘 要:随着航空技术的不断发展,航空发动机的性能和可靠性也在不断的改善和提高,但压气机喘振时常发生,对飞行安全造成极大威胁,同时,也造成了巨大的经济损失。
该文主要针对压气机喘振进行分析和讨论,结合CFM56-3发动机,对其防喘机构的典型故障进行了分析,并给出了典型故障的维护建议。
关键词:喘振 CFM56-3发动机 防喘机构 故障分析中图分类号:V263文献标识码:A 文章编号:1674-098X(2014)03(b)-0047-02发动机喘振故障时常发 生,据统计,每 年 喘 振故 障发 生大 约 6 0 起,对压气 机 及 发 动 机 的 工作 具 有很 大 危害性 ,造 成了极 大 的 经济损失。
1 压气机喘振的根本原因压气机喘振的根本原因是气流分离而导 致 的 气 流 攻 角 过 大 ,这 种 分离是由于压 气机 工作状 态严重偏离了设 计工作状 态而引起的。
因此,分析 喘振的形成 过 程,应 从分析气流分离入手。
气体 流 过 压 气 机 叶 栅 时,是 否 会发 生分离?气流分离后,是否会 继续发 展?这要由气流 进 入叶轮 时的相对 速 度 W ①的 方向而 定,而相对速度的方向取决于工作叶轮 进口处的绝对速度在发动机轴线上的分量C①a 和工作叶轮旋 转的切向速 度 u的比值,这个比值叫做 流 量 系 数 ,用D 表 示,即:D=C①a/u(1)根 据 相 关 实 验可知,当 流 量 系 数 大 于或小于 设 计 值 时,在涡 轮 发 动 机 压 气 机 进口处 会产 生气 流分离 现 象,但 是 流 量 系 数 过大 所 形成 的 涡 流 区 不易于 继 续 扩 大 ,而 流量系数过小时所形成的涡流区则会继续扩大 ,从 而 在 叶 轮 旋 转 的 作 用 下,产 生 强 烈 的分离,引起喘振。
发动机振动高的放行处理

目录:CFM56发动机振动值高的放行处理1 故障现象描述发动机的振动值高2 需要了解的各种现象以及相关参数1、在什么条件下产生(起飞、巡航等);2、产生振动值高时的N1、N2值(是否稳定发生在某个N1、N2值,或者再任何N1、N2时都有可能出来)。
3、振动值是否跳动或稳定指示。
4、如果飞机振动值在3.5以上,机组是否可以感觉到发动机抖动。
5、其他参数(FF、EGT等)是否正常。
3 放行处理措施注:B737的CFM56发动机由低压转子N1和高压转子N2组成。
振动监视系统(AVM)和QAR系统均能记录低压(转子)部分和高压(转子)部分的振动数值以及相对应的转速等参数。
3.1 当机组反映某台发动机的振动值高时,首先需通过AVM或QAR数据来判断出是由指示故障还是由真实故障引起的。
若数据显示发动机振动值高是在不同转速下、或随机出现,且是间歇性的,则应为指示系统故障,否则应为真实故障.3.2 对于指示故障的放行处理:按MEL77-5放行飞机。
3.3 发动机的真实故障引起振动值高的放行处理3.3.1 对于CFM56-3B/C发动机:1.如果瞬间振动值大于4,持续时间小于1分钟,只要在高振动发生的那一刻机组没有感觉到飞机在振动并且在以后的飞行中没有再出现过,可以不采取任何维修措施。
2.如果振动值(低压转子部分或高压转子部分)大于4,则必须进行排故。
3.如果低压转子部分的振动,3<VIB≤4可以不采取维修措施,建议进行风扇叶片配平。
4.如果低压转子部分的振动,VIB≤3,可以不采取维修措施,但可进行风扇叶片配平来减少振动值。
5.如果高压转子部分的振动,3<VIB≤4,必须排故。
6.如果高压转子部分的振动,VIB≤3,可以不采取维修措施3.3.2 对于CFM56-7B发动机:1.发动机振动值小于3时,发动机可以正常.2.低压转子部分的振动大于或等于3时,通过风扇叶片配平来减少振动值.3.高压转子部分的振动大于3时,必须进行排故.3.34 排故注意事项4.1 无5 参考文件5.1 MM71-00-005.2 MEL77-56 附图6.1 无。
CFM56发动机控制原理及常见故障分析

CFM56发动机控制原理及常见故障分析CFM56发动机是由CFM国际公司研发和生产的一款非常成功的喷气式发动机,广泛应用于各种中小型客机和货机上。
该发动机的高可靠性和良好的性能使其成为了许多民航公司的首选。
在使用过程中,对于CFM56发动机的控制原理及常见故障分析十分重要,只有深刻理解了发动机的工作原理和可能发生的故障,才能更好地保障飞行安全和发动机的正常运行。
一、CFM56发动机的控制原理CFM56发动机是一种双转子轴流涡轮发动机,采用了一系列先进的控制系统,来确保发动机在各种工况下都能够稳定运行。
在CFM56发动机的控制系统中,涵盖了燃油供给、空气流量、压气机转速、涡轮喷管喷口面积等多个方面,以达到对发动机转速、推力、油耗等参数的精确控制。
1. 燃油供给系统燃油供给系统是CFM56发动机中的核心控制系统之一,它通过调节燃油喷嘴的开度和关闭时间来控制燃油的流量和喷射时机,从而实现对发动机功率输出的精确调控。
在高空高速飞行时,燃油供给系统要保证燃烧室中的燃烧效率,同时兼顾节省燃油的目标,提高发动机在不同高度和速度下的性能表现。
2. 空气流量控制系统空气流量控制系统主要包括调节压气机进气口和出口的可变导流板、调节涡轮进气口和出口的可变导流管等各种可变气动构件。
通过这些构件的控制,可以调节压气机和涡轮之间的气流量,以适应不同工况下的空气动力学要求,保证发动机的输出功率和燃烧效率。
3. 转速控制系统CFM56发动机的转速控制系统包括主控制系统和辅助控制系统两部分。
主控制系统通过电子控制单元(ECU)来对发动机的喷气推力和喷气速度进行精确调节,以满足飞机在不同阶段的动力需求。
而辅助控制系统则用于监测和保护发动机在非常规工况下的安全运行,比如低速、高速和开启空气离子化的情况。
二、CFM56发动机的常见故障分析虽然CFM56发动机的可靠性较高,但在长时间使用中,依然会出现各种各样的故障。
以下我们将对CFM56发动机的常见故障做一个简要的分析和介绍。