测控电路课后习题.(DOC)
测控电路习题详解

测控电路习题详解第一章绪论 (2)第二章信号放大电路 (7)第四章信号分离电路 (14)第五章信号运算电路 (25)第六章信号转换电路 (29)第七章信号细分与辨向电路 (34)第一章绪论1-1为什么说在现代生产中提高产品质量与生产效率都离不开测量与控制技术?为了获得高质量的产品,必须要求机器按照给定的规程运行。
例如,为了加工出所需尺寸、形状的高精度零件,机床的刀架与主轴必须精确地按所要求的轨迹作相对运动。
为了炼出所需规格的钢材,除了严格按配方配料外,还必须严格控制炉温、送风、冶炼时间等运行规程。
为了做到这些,必须对机器的运行状态进行精确检测,当发现它偏离规定要求,或有偏离规定要求的倾向时,控制它,使它按规定的要求运行。
为了保证产品质量,除了对生产过程的检测与控制外,还必须对产品进行检测。
这一方面是为了把好产品质量关,另一方面也是为了检测机器与生产过程的模型是否准确,是否在按正确的模型对机器与生产过程进行控制,进一步完善对生产过程的控制。
生产效率一方面与机器的运行速度有关,另一方面取决于机器或生产系统的自动化程度。
为了使机器能在高速下可靠运行,必须要求机器本身的质量高,其控制系统性能优异。
要做到这两点,还是离不开测量与控制。
产品的质量离不开测量与控制,生产自动化同样一点也离不开测量与控制。
特别是当今时代的自动化已不是本世纪初主要靠凸轮、机械机构实现的刚性自动化,而是以电子、计算机技术为核心的柔性自动化、自适应控制与智能化。
越是柔性的系统就越需要检测。
没有检测,机器和生产系统就不可能按正确的规程自动运行。
自适应控制就是要使机器和系统能自动地去适应变化了的内外部环境与条件,按最佳的方案运行,这里首先需要的是对外部环境条件的检测,检测是控制的基础。
智能化是能在复杂的、变化的环境条件下自行决策的自动化,决策的基础是对内部因素和外部环境条件的掌握,它同样离不开检测。
1-2试从你熟悉的几个例子说明测量与控制技术在生产、生活与各种工作中的广泛应用。
测控电路课后答案(张国雄 第四版)第七章

Uj 滞后 Ud 时(图 7-14c) ,只有 DG2 有可能输出低电平 , Ud′是 Ud 的延时信号,也可起门槛
作用。调节电阻 R 和电容 C 可改变门槛的大小。 7-6 请说明图 7-19 中用 sinAα+cosAαtgBβ代替 sinθd=sin(Aα+Bβ), 用 cosAα-sinAαtgBβ代 替 cosθd=cos(Aα+Bβ),为什么不会带来显著误差? 图 7-19 中把 180 °的相位角先按 α=18 °等分为 10 份,再把 18°按 β=1.8°等分为 10 份, 则 θd= Aα+ Bβ。 A、 B 为 0~9 的整数。可写出 sin θd=sin( Aα+Bβ)=cos Bβ(sin Aα+cos AαtgBβ) cos θd=cos( Aα+Bβ)=cos Bβ(cos Aα-sin AαtgBβ) 因为 Bβ=(0~9)×1.8°=0°~16.2 °,cosBβ=1~0.963。正余弦激磁电压同时增大不影响平 衡位置,故可近似取 sinθd≈sinAα+cos AαtgBβ, cosθd≈cosAα-sin AαtgBβ 。
第七章
7-1
信号细分与辨向电路
图 7-31 为一单稳辨向电路,输入信号 A、B 为相位差 90°的方波信号,分析其辨向原 理,并分别就 A 导前 B 90°、B 导前 A 90°的情况,画出 A′、Uo1、Uo2 的波形。
A1Biblioteka &RDG1
A′ C
DG2
DG4
&
Uo1
1
DG3
&
B
题 7-1 图
Uo2
DG5
7-7 请比较相位跟踪细分、幅值跟踪细分和脉冲调宽型幅值跟踪细分的优缺点。 相位跟踪细分常用于感应同步器和光栅的细分,由于在一个载波周期仅有一次比 相,因此对测量速度有一定的限制。相位跟踪细分电路较简单。 幅值跟踪细分主要应用于鉴幅型感应同步器仪器。 感应同步器是闭环系统的组成部 分,因而幅值跟踪系统实现了全闭环,而相位跟踪系统只实现半闭环(感应同步器在环 外) , 这使幅值跟踪系统具有更高的精度和更好的抗干扰性能。 电路中函数变压器受温度、 湿度影响小、不易老化,稳定性好,但工艺复杂,技术要求高,体积重量大,也可采用 集成电路的乘法型 D/A 转换器代替函数变压器。 幅值跟踪细分比相位跟踪系统允许更高 的移动速度。但电路较复杂。 脉冲调宽型幅值跟踪细分也是一种幅值跟踪细分系统, 只是用数字式可调脉宽函数发 生器代替上一系统中的函数变压器和切换计数器。因此保留了幅值跟踪系统的优点,系 统有高精度和高抗干扰能力。数字式脉宽函数发生器体积小、重量轻、易于生产,有高 的细分数,且有高的跟踪能力。数字电路可以灵活地根据测速改变跟踪速度。军用的高 速动态测量系统多采用具有高速数字跟踪能力的脉冲调宽方案,它有位置、速度甚至加 速度跟踪能力。当然,电路相当复杂。
测控电路课后习题答案(全)

一部现代的汽车往往装有几十个不同传感器�对点火时间、燃油喷射、空
积分等、非线性环节的线性化处理、逻辑判断等。
1-6 测量电路的输入信号类型对其电路组成有何影响�试述模拟式测量电路与 增量码数字式测量电路的基本组成及各组成部分的作用。 随着传感器类型的不同�输入信号的类型也随之而异。主要可分为模拟式
信号与数字式信号。随着输入信号的不同�测量电路的组成也不同。 图 X1-1 是模拟式测量电路的基本组成。传感器包括它的基本转换电路�如
应用于要求共模抑制比大于 100dB 的场合�例如人体心电测量。
2-8 图 2-8b 所示电路�N1、N2 为理想运算放大器�R4=R2=R1=R3=R�试求其闭环电压放大倍 数。 由图 2-8b 和题设可得 u01 =ui1 (1+R2 /R1) = 2ui1 , u0=ui2 (1+R4 /R3 )–2ui1 R4/R3 =2ui2–2
电桥�传感器的输出已是电量�电压或电流�。根据被测量的不同�可进行相应
的量程切换。传感器的输出一般较小�常需要放大。图中所示各个组成部分不 一定都需要。例如�对于输出非调制信号的传感器�就无需用振荡器向它供电� 也不用解调器。在采用信号调制的场合�信号调制与解调用同一振荡器输出的 信号作载波信号或参考信号。利用信号分离电路�常为滤波器��将信号与噪声 分离�将不同成分的信号分离�取出所需信号。有的被测参数比较复杂�或者 为了控制目的�还需要进行运算。对于典型的模拟式电路�无需模数转换电路 和计算机�而直接通过显示执行机构输出�因此图中将模数转换电路和计算机 画在虚线框内。越来越多的模拟信号测量电路输出数字信号�这时需要模数转 换电路。在需要较复杂的数字和逻辑运算、或较大量的信息存储情况下�采用 计算机。
测控电路(第5版)第二章习题及答案

第二章 信号放大电路2-1 何谓测量放大电路?对其基本要求是什么?2-2 (1)利用一个741μA 和一只100k Ω的电位器设计可变电源,输出电压范围为1010S V u V -≤≤; (2)如果10S u V =时,在空载状态下将一个1k Ω的负载接到电压源上时,请问电源电压的变化量是多少?(741μA 参数:输入阻抗2d r =MΩ,差模增益200a V mV =,输出阻抗75o r =Ω)2-3 在图2-2所示的电路中,已知110R k =Ω,21R =MΩ,并令运算放大器的100B I n =A 和30OS I n =A ,在以下不同情况下,计算输出失调误差o u 。
(1)0P R =;(2)12P R R R =P ;(3)12P R R R =P ,并且把所有电阻阻值缩小为原来的10分之一;(4)在(3)条件的基础上,使用3OS I n =A 的运算放大器。
R R ou图2-2 题2-3图2-4 在图2-47所示的电路中,已知10R k =Ω,1C nF =和()00o u V =。
假设运算放大器有100B I n =A ,30OS I n =A 和输出饱和电压13sat V V ±=±,在不同情况下,计算运算放大器经过多长时间进入饱和。
(1)0P R =;(2)P R R =。
ou图2-47 题2-4图2-5 (1)在图2-48所示的电路中,运算放大器的10B I n =A ,所有电阻都为100R k =Ω,分析B I 对反相放大器性能的影响;(2)为了使o u 最小,在同相端上应该串联多大的电阻P R ?ou i图2-48 题2-5图2-6 图2-4b 所示中的运算放大器使用741μA ,电路增益为20V V A =-,为使电路输入电阻最大,求满足条件的电阻值(令输入失调可调范围为20mV ±,最大失调电流200OS I n =A ,最大失调电压6OS V mV =)。
(2021年整理)测控电路课后答案(张国雄第四版)

(1)模数转换与数模转换;
(2)直流与交流、电压与电流信号之间的转换。幅值、相位、频率与脉宽信号等之间的转换;
(3)量程的变换;
(4)选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等;
2—6何谓自举电路?应用于何种场合?请举一例说明之。
自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。应用于传感器的输出阻抗很高(如电容式,压电式传感器的输出阻抗可达108Ω以上)的测量放大电路中。图2—7所示电路就是它的例子。
2-7什么是高共模抑制比放大电路?应用何种场合?
(5)对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、非线性环节的线性化处理、逻辑判断等.
1-6测量电路的输入信号类型对其电路组成有何影响?试述模拟式测量电路与增量码数字式测量电路的基本组成及各组成部分的作用.
随着传感器类型的不同,输入信号的类型也随之而异。主要可分为模拟式信号与数字式信号。随着输入信号的不同,测量电路的组成也不同。
增量码数字式测量电路的基本组成见图X1-2。一般来说增量码传感器输出的周期信号也是比较微小的,需要首先将信号放大.传感器输出信号一个周期所对应的被测量值往往不够小,为了提高分辨力,需要进行内插细分。可以对交变信号直接处理进行细分,也可能需先将它整形成为方波后再进行细分。在有的情况下,增量码一个周期所对应的量不是一个便于读出的量(例如,在激光干涉仪中反射镜移动半个波长信号变化一个周期),需要对脉冲当量进行变换.被测量增大或减小,增量码都作周期变化,需要采用适当的方法辨别被测量变化的方向,辨向电路按辨向结果控制计数器作加法或减法计数。在有的情况下辨向电路还同时控制细分与脉冲当量变换电路作加或减运行。采样指令到来时,将计数器所计的数送入锁存器,显示执行机构显示该状态下被测量量值,或按测量值执行相应动作。在需要较复杂的数字和逻辑运算、或较大量的信息存储情况下,采用计算机。
测控电路课后习题答案

实例三:液位测控电路
0 电路组成:由传感器、放大器、比较器和执行机构等组成
1 0
实例应用:可用于化工、石油、食品等行业的液位测控
3
பைடு நூலகம்工作原理:传感器将液位信号转换为电信号,放大
0
器将信号放大后送至比较器与设定值进行比较,根
2
据比较结果控制执行机构动作,实现液位的自动控
制
0 电路特点:结构简单、可靠性强、易于实现自动化控制
习题二答案
• 题目:简述测控电路的基本组成。 答案:测控电路的基本组成包括传感器、信号调理电路、转换电路和执行机构。传感器负责采集 被测量的信息,信号调理电路对传感器输出的信号进行放大、滤波等处理,转换电路将模拟信号转换为数字信号,执行机构则根据 控制信号对被控对象进行控制。
• 答案:测控电路的基本组成包括传感器、信号调理电路、转换电路和执行机构。传感器负责采集被测量的信息,信号调理电路对传感器输出的信号进 行放大、滤波等处理,转换电路将模拟信号转换为数字信号,执行机构则根据控制信号对被控对象进行控制。
采集电路:放大器、滤波器、模 数转换器等
添加标题
添加标题
添加标题
添加标题
采集方法:直接采集和间接采集
采集注意事项:保证信号的准确 性和可靠性
信号的放大与滤波
信号放大:通过电子元件将微弱信号进行放大,以便于测量和控制 滤波:利用滤波器对信号进行筛选,去除噪声干扰,提取有用信号
信号的转换与输出
信号的转换:将输入的模拟信号转换为数字信号,便于计算机处理
分
添加标题
工作原理:压力传感 器将压力信号转换为 电信号,经过信号调 理电路处理后,再通 过A/D转换器转换为 数字信号,最后由微 控制器进行数据处理
测控电路课后习题答案(修改)
第二章信号放大电路2-1何谓测量放大电路?对其基本要求是什么?在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。
对其基本要求是:①输入阻抗应与传感器输出阻抗相匹配;②一定的放大倍数和稳定的增益;③低噪声;④低的输入失调电压和输入失调电流以及低的漂移;⑤足够的带宽和转换速率(无畸变的放大瞬态信号);⑥高输入共模范围(如达几百伏)和高共模抑制比;⑦可调的闭环增益;⑧线性好、精度高;⑨成本低。
2-2什么是高共模抑制比放大电路?应用何种场合?有抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比放大电路。
应用于要求共模抑制比大于100dB的场合,例如人体心电测量。
2-3图2-17b所示电路,N1、N2为理想运算放大器,R4=R2=R1=R3=R,试求其闭环电压放大倍数。
由图2-17b和题设可得u01 =u i1 (1+R2 /R1) = 2u i1 , u0=u i2 (1+R4 /R3 )–2u i1 R4/R3 =2u i2–2 u i1=2(u i2-u i1),所以其闭环电压放大倍数K f=2。
2-4图2-18所示电路,N1、N2、N3工作在理想状态,R1=R2=100kΩ,R P=10kΩ,R3=R4=20kΩ,R5=R6=60kΩ,N2同相输入端接地,试求电路的差模增益?电路的共模抑制能力是否降低?为什么?由图2-18和题设可得u o = (u o2–u o1) R5 / R3 =3(u o2–u o1 ), u o1 = u i1 (1 + R1 /R p)–u i2 R1/R p=11u i1, u o2= u i2(1+R2/R p)–u i1 R2/R p=–10u i1, 即u o=3(–10u i1–11u i1)=–63u i1,因此,电路的差模增益为63。
电路的共模抑制能力将降低,因N2同相输入端接地,即u i2=0,u i1的共模电压无法与u i2的共模电压相抵消。
测控电路课后题
实验一多谐振荡器一、实验目的1.熟悉由555定时器构成多谐振荡器的工作原理及方法。
2.熟悉输出波形主要参数的测算及调整。
二、实验装置1.示波器:SS57022.万用表3.直流稳压电源4.实验板三、实验电路及原理实验原理:将555定时器电路的TH端和TR端连在一起在外接电阻R1、R2和电容C1便构成矩形波发生器。
由于矩形波含有多种谐波分量,所以也叫多谐振荡器,如图1所示,它是一种无稳态电路。
当接通电源以后,无须外加触发信号,便能自动地产生矩形波输出。
矩形波的周期取决于电容充放电回路的时间常数,其充电时间常数为(R1+R2)C1,放电时间常数为R2C,则输出矩形波周期T=T1+T2=0.7(R1+2R2)C1振荡频率的占空比分别为f=1/T=1.43/(R1+2R2)C1q= T1/T≈(R1+R2)/ (R1+2R2)实验电路:四、实验参数计算观察二极管发光情况,肉眼能看到闪烁其频率必须小于5Hz,为方便计算取f=2Hz,C1为1uF,R1=R2,R3取值500欧到1K欧方能使二极管点亮,C2为1uF。
经计算可得R1=R2=238K,占空比q=2/3。
五、实验现象按照图1所示电路图连接电路,将输出3管脚连接到示波器上,观察实验现象:二极管以0.5s的周期闪烁,示波器上显示周期为500ms,幅值为2.24V的矩形波波形。
如下图:一、实验目的1.熟悉运算放大器的各主要特性参数2.掌握同相、反相放大器的设计要点。
3.检验电路设计的正确性。
二、实验仪器1.信号发生器:XJ16032.直流稳压电源3.示波器:SS57024.万用表5.实验板三、实验原理及电路反相放大器实验原理图:典型反相放大器如图2所示。
由虚短路原理可知u-= u+=0;虚断路可知:i -= i+ =0;由此可求得:u o=- R f u i/ R1闭环电压放大倍数为G= u o/ u i=- R f / R1 R2= R f // R1四、实验参数计算五、波形一、实验目的1.了解有源滤波器的原理及应用。
《测控电路》课后答案+复习重点归纳+3套考题
第一章绪论1、测控系统主要由传感器(测量装置)、测量控制电路(测控电路)、执行机构组成2、测控电路的主要要求:精、快、灵、可靠3、测控电路的特点:精度高、动态性能好、高的识别和分析能力、可靠性高、经济性好4、为了提高信号的抗干扰能力,往往需要对信号进行调制。
在紧密测量中希望从信号一形成就成为已调制信号,因此常在传感器中进行调制。
5用电感传感器测量工件轮廓形状时—这是一个幅值按被测轮廓调制的已调制信号---称为调幅信号6、用应变片测量梁的变形,并将应变片接入交流电桥。
这时电桥的输出也是调幅信号,载波信号的频率为电桥供电频率,电桥输出信号的幅值为应变片的变形所调制。
7、采用光栅、激光干涉法等测量位移时时传感器的输出为增量码信号。
8、增量码信号是一种反映过程的信号,或者说是一种反映变化增量的信号。
它与被测对象的状态并无一一对应的关系。
9、绝对码信号是一种与状态相对应的信号。
10、开关信号可视为绝对码信号的特例,当绝对码信号只有一位编码时,就成了开关信号。
开关信号只有0和1两个状态。
11、控制方式可分为开环控制与闭环控制。
12、闭环控制的特点:它的主要特点是用传感器直接测量输出量,将它反馈到输入端与设定电路的输出相比较,当发现他们之间有差异时,进行调节补充:1、信息时代的标志——高性能计算机的发展,速度和容量为其主要标志2、影响测控电路精度的主要因素有哪些?其中那几个因素是最基本的?(1)、噪声与干扰★(2)、失调与漂移,主要是温漂★(3)、线性度与保真度(4)、输入与输出阻抗的影响第二章信号放大电路1、输入失调电压u0s:对于理想运算放大器,输入电压为零,输出电压也必然为零。
然而,实际运算放大器中,前置级的差动放大器并不一定完全对称,必须在输入端加上某一直流电压后才能使输出为零,这一直流电压称之。
2、零点漂移:失调电压随时间和温度而变化,即零点在变动,称之3、输出失调电压u0=(1+R2/R1)u0s4、输出端产生的失调电压u02=-R2I b1+(1+R2/R1)R3I b2若取R3=R1//R2,则u02=R2(I b2-I b1)=R2I0s I0s称为输入失调电流5、绝大部分的运算放大器都是用于反馈状态6、由于运算放大器通常使用在负反馈状态,本来就有1800的相位差,再加上外接和内部电路的RC网络,有可能出现3600的相位差,使电路振荡。
测控电路(第5版)第一章习题及答案
第一章绪论1-1为什么说在现代生产中提高产品质量与生产效率都离不开测量与控制技术?1-2为什么说科学技术的发展、高科技的发展都离不开测控技术?1-3试从你熟悉的几个例子说明测量与控制技术在生产、科学研究、生活与各种工作中的广泛应用。
1-4测控电路在整个测控系统中起着什么样的作用?1-5影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意?1-6为什么说科技发展对测控电路的可靠性提出了越来越高的要求?1-7为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面?1-8测量电路的输入信号类型对其电路组成有何影响?试述模拟式测量电路与增量码数字式测量电路的基本组成及各组成部分的作用。
1-9为什么要采用闭环控制系统?试述闭环控制系统的基本组成及各组成部分的作用。
第二章绪论1-10为什么说在现代生产中提高产品质量与生产效率都离不开测量与控制技术?为了保证产品质量,必须对产品进行检测,把好产品质量关。
测控的目的不仅仅是了解产品质量,更主要是提高质量的产品。
为此要求机器在测控系统控制下按照给定的规程运行。
生产效率一方面与机器的运行速度有关,另一方面取决于机器或生产系统的自动化程度。
为了使机器能在高速下可靠运行,必须要求机器本身的质量高,其控制系统性能优异。
要做到这两点,还是离不开测量与控制。
当今时代的自动化已不是20世纪初主要靠凸轮、机械机构实现的刚性自动化,而是以电子、计算机技术为核心的柔性自动化、自适应控制与智能化。
越是柔性的系统就越需要检测。
没有检测,机器和生产系统就不可能按正确的规程自动运行。
1-11为什么说科学技术的发展、高科技的发展都离不开测控技术?实践是检验真理的唯一标准,没有经过实践的检验,一些新的思想只能是假说或学说,只有经过测量等实践检验,才能将假说或学说变为科学。
许多重大发现和发明从都是测试和仪器仪表的进步开始。
哈勃望远镜对天体科学的发展,扫描隧道显微镜对纳米科技的形成,起了关键作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题参考答案(时间仓促,难免有误,请指正,谢谢!)1-3试从你熟悉的几个例子说明测量与控制技术在生产、生活与各种工作中的广泛应用。
为了加工出所需尺寸、形状的高精度零件,机床的刀架与主轴必须精确地按所要求的轨迹作相对运动。
为了炼出所需规格的钢材,除了严格按配方配料外,还必须严格控制炉温、送风、冶炼时间等运行规程。
为了做到这些,必须对机器的运行状态进行精确检测,当发现它偏离规定要求,或有偏离规定要求的倾向时,控制它,使它按规定的要求运行。
计算机的发展首先取决于大规模集成电路制作的进步。
在一块芯片上能集成多少个元件取决于光刻工艺能制作出多精细的图案,而这依赖于光刻的精确重复定位,依赖于定位系统的精密测量与控制。
航天发射与飞行,都需要靠精密测量与控制保证它们轨道的准确性。
一部现代的汽车往往装有几十个不同传感器,对点火时间、燃油喷射、空气燃料比、防滑、防碰撞等进行控制。
微波炉、照相机、复印机等中也都装有不同数量的传感器,通过测量与控制使其能圆满地完成规定的功能。
1-4测控电路在整个测控系统中起着什么样的作用?传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。
在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。
测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。
1-5影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意?影响测控电路精度的主要因素有:(1)噪声与干扰;(2)失调与漂移,主要是温漂;(3)线性度与保真度;(4)输入与输出阻抗的影响。
其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。
1-7为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面?为了适应在各种情况下测量与控制的需要,要求测控系统具有选取所需的信号、灵活地进行各种变换和对信号进行各种处理与运算的能力,这些工作通常由测控电路完成。
它包括:(1)模数转换与数模转换;(2)直流与交流、电压与电流信号之间的转换。
幅值、相位、频率与脉宽信号等之间的转换;(3)量程的变换;(4)选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等;(5)对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、非线性环节的线性化处理、逻辑判断等。
1-9为什么要采用闭环控制系统?试述闭环控制系统的基本组成及各组成部分的作用。
在开环系统中传递函数的任何变化将引起输出的变化。
其次,不可避免地会有扰动因素作用在被控对象上,引起输出的变化。
利用传感器对扰动进行测量,通过测量电路在设定上引入一定修正,可在一定程度上减小扰动的影响,但是这种控制方式同样不能达到很高的精度。
一是对扰动的测量误差影响控制精度。
二是扰动模型的不精确性影响控制精度。
比较好的方法是采用闭环控制。
闭环控制系统的基本组成见图X1-3。
它的主要特点是用传感器直接测量输出量,将它反馈到输入端与设定值相比较,当发现它们之间有差异时,进行调节。
这里系统和扰动的传递函数对输出基本没有影响,影响系统控制精度的主要是传感器和比较电路的精度。
在图X1-3中,传感器反馈信号与设定信号之差不直接送到放大电路,而先经过一个校正电路。
这主要考虑从发现输出量变化到执行控制需要一段时间,为了提高响应速度常引入微分环节。
另外,当输出量在扰动影响下作周期变化时,由于控制作用的滞后,可能产生振荡。
为了防止振荡,需要引入适当的积分环节。
在实际电路中,往往比较电路的输出先经放大再送入校正电路,然后再次放大。
图X1-3为原理性构成。
图X1-3 闭环控制系统的基本组成2-2什么是高共模抑制比放大电路?应用何种场合?有抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比放大电路。
应用于要求共模抑制比大于100dB的场合,例如人体心电测量。
2-3图2-13b所示电路,N1、N2为理想运算放大器,R4=R2=R1=R3=R,试求其闭环电压放大倍数。
由图2-13b和题设可得u01 =u i1 (1+R2 /R1) = 2u i1 , u0=u i2 (1+R4 /R3 )–2u i1 R4/R3 =2u i2–2 u i1=2(u i2-u i1),所以其闭环电压放大倍数K f=2。
2-6何谓电桥放大电路?应用于何种场合?由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥都称为电桥放大电路。
应用于电参量式传感器,如电感式、电阻应变式、电容式传感器等,经常通过电桥转换电路输出电压或电流信号,并用运算放大器作进一步放大,或由传感器和运算放大器直接构成电桥放大电路,输出放大了的电压信号。
2-9 什么是CAZ运算放大器?它与自动调零放大电路的主要区别是什么?何种场合下采较为合适?CAZ运算放大器是轮换自动校零集成运算放大器的简称,它通过模拟开关的切换,使内部两个性能一致的运算放大器交替地工作在信号放大和自动校零两种不同的状态。
它与自动调零放大电路的主要区别是由于两个放大器轮换工作,因此始终保持有一个运算放大器对输入信号进行放大并输出,输出稳定无波动,性能优于由通用集成运算放大器组成的自动调零放大电路,但是电路成本较高,且对共模电压无抑制作用。
应用于传感器输出信号极为微弱,输出要求稳定、漂移极低,对共模电压抑制要求不高的场合。
2-11 何谓自举电路?应用于何种场合?请举一例说明之。
自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。
应用于传感器的输出阻抗很高(如电容式,压电式传感器的输出阻抗可达108Ω以上)的测量放大电路中。
图2-23所示电路就是它的例子。
2-12什么是可编程增益放大电路?请举例说明之。
放大电路的增益通过数字逻辑电路由确定的程序来控制,这种电路称为可编程增益放大电路,亦称程控增益放大电路,简称PGA 。
例如图X2-2,程序为A =0(开关A 断开) 、B =0(开关B 断开)时,放大电路的电压放大倍数为-R /R 1;当程序为A =1(开关A 闭合) 、B =0(开关B 断开)时,放大倍数为- R 2R /[R 1(R 2+R )];当程序为A =0(开关A 断开)、B =1(开关B 闭合),放大倍数为 –R 3R /[R 1(R 3+R )];当程序为A =1、B =1(开关A 、B 均闭合),放大倍数为–R 2R 3R /[R 1(R 2 R 3+R 3 R +R R 2)]。
因此可编程增益放大电路的增益是通过数字逻辑电路由确定的程序来控制。
2-13请根据图2-29b ,画出可获得1、10、100十进制增益的电路原理图。
由图X2-3可得:当开关A 闭合时,U o =U i ;当开关B 闭合时,U o =10U i ,当开关C 闭合时,U o =100U i 。
2-14根据图2-29c 和式(2-32),若采用6个电阻,请画出电路原理图,并计算电阻网络各电阻的阻值。
N =6 : R 6 =R 1 +R 2 + R 3 +R 4 +R 5 , R 6 +R 5 =2(R 1 +R 2 + R 3 +R 4)R 6 +R 5 +R 4=3(R 1 +R 2 + R 3), R 6 +R 5 +R 4+ R 3=4(R 1 +R 2),图X2-2R 6 +R 5 +R 4+ R 3+R 2=5R 1,取R 1=R ,则R 6=3R ,R 5=R ,R 4=R /2,R 3=3R /10,R 2=R /5,R 1=R 。
见图X2-4。
2-15什么是隔离放大电路?应用于何种场合?隔离放大电路的输入、输出和电源电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地端。
隔离放大电路主要用于便携式测量仪器和某些测控系统(如生物医学人体测量、自动化试验设备、工业过程控制系统等)中,能在噪声环境下以高阻抗、高共模抑制能力传送信号。
3-1 什么是信号调制?在测控系统中为什么要采用信号调制?什么是解调?在测控系统中常用的调制方法有哪几种?在精密测量中,进入测量电路的除了传感器输出的测量信号外,还往往有各种噪声。
而传感器的输出信号一般又很微弱,将测量信号从含有噪声的信号中分离出来是测量电路的一项重要任务。
为了便于区别信号与噪声,往往给测量信号赋以一定特征,这就是调制的主要功用。
调制就是用一个信号(称为调制信号)去控制另一作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。
在将测量信号调制,并将它和噪声分离,放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这一过程称为解调。
在信号调制中常以一个高频正弦信号作为载波信号。
一个正弦信号有幅值、频率、相位三个参数,可以对这三个参数进行调制,分别称为调幅、调频和调相。
也可以用脉冲信号作载波信号。
可以对脉冲信号的不同特征参数作调制,最常用的是对脉冲的宽度进行调制,称为脉冲调宽。
3-2 什么是调制信号?什么是载波信号?什么是已调信号?调制是给测量信号赋以一定特征,这个特征由作为载体的信号提供。
常以一个高频正弦信号或脉冲信号作为载体,这个载体称为载波信号。
用需要传输的信号去改变载波信号的某一参数,如幅值、频率、相位。
这个用来改变载波信号的某一参数的信号称调制信号。
在测控系统中需传输的是测量信号,通常就用测量信号作调制信号。
经过调制的载波信号叫已调信号。
3-3 什么是调幅?请写出调幅信号的数学表达式,并画出它的波形。
调幅就是用调制信号x 去控制高频载波信号的幅值。
常用的是线性调幅,即让调幅信号的幅值按调制信号x 线性函数变化。
调幅信号s u 的一般表达式可写为:t mx U u c m s cos )(ω+=式中 c ω──载波信号的角频率;图X2-4m U ──调幅信号中载波信号的幅度;m ──调制度。
图X3-1 双边带调幅信号a) 调制信号 b) 载波信号 c) 双边带调幅信号3-4 什么是调频?请写出调频信号的数学表达式,并画出它的波形。
调频就是用调制信号x 去控制高频载波信号的频率。
常用的是线性调频,即让调频信号的频率按调制信号x 的线性函数变化。
调频信号u s 的一般表达式可写为:t mx U u )cos(c m s +=ω式中 c ω── 载波信号的角频率;m U ── 调频信号中载波信号的幅度;m ── 调制度。
图X3-2绘出了这种调频信号的波形。
图a 为调制信号x 的波形,它可以按任意规律变化; 图b 为调频信号的波形,它的频率随x 变化。
若x =X m cos Ωt ,则调频信号的频率可在m c mX ±ω范围内变化。