压铸工艺参数分析(精)

合集下载

压铸原理及工艺参数选择

压铸原理及工艺参数选择

压铸原理及工艺参数选择压铸是一种制造零件的工艺方法,它通过将熔化的金属注入到金属模具中,在模具中冷却凝固后,得到所需的零件形状。

压铸可以制造复杂的零件形状,具有高精度、高表面质量和高生产效率的优点。

压铸工艺参数的选择对于获得优质的铸件至关重要。

压铸工艺参数的选择1.熔化温度:熔化温度应根据所用材料的熔点确定。

在选择熔化温度时,要考虑到合金的液体流动性和凝固性能。

熔点高的合金可使用高熔点温度,但要注意避免烧结和气孔的产生。

2.注射速度:注射速度决定了金属液体进入模腔的速度。

过高的注射速度可能引起金属喷溅和模具损坏,过低的注射速度则可能造成流道不充分填充。

注射速度的选择应根据材料的液流性和零件的形状确定。

3.注射压力:注射压力决定了金属液体通过流道和进入模腔的压力。

过高的注射压力可能导致模具磨损和零件变形,过低的注射压力则可能造成流道不充分填充。

注射压力的选择应根据材料的流动性和零件的形状确定。

4.模具温度:模具温度决定了金属液体的凝固速度和铸件的质量。

较高的模具温度有助于加速凝固速度并减小变形,但可能导致金属液体的酸蚀和模具磨损。

较低的模具温度有助于避免气孔和减小脱漏的可能性,但可能导致金属液流动不畅。

模具温度的选择应根据材料的凝固性能和零件的形状确定。

5.冷却时间:冷却时间决定了金属液体的凝固时间和铸件的质量。

较短的冷却时间有助于提高生产效率,但可能导致金属液体的凝固不完全和热裂纹的产生。

较长的冷却时间有助于提高铸件的密度和表面质量,但可能导致产量降低。

冷却时间的选择应根据材料的凝固性能和零件的形状确定。

总结压铸是一种高效、高精度的制造方法,工艺参数的选择对于获得优质的铸件至关重要。

在选择工艺参数时,要综合考虑材料的性质、零件的形状和制造要求,以及设备和模具的性能。

通过合理选择工艺参数,可以提高铸件的质量和生产效率,降低生产成本。

压铸工艺参数分析

压铸工艺参数分析

压铸工艺参数分析1.注射压力:注射压力是指在铸造过程中,金属熔液被压入型腔的压力大小。

注射压力的大小对于铸件的排气、充盈、凝固过程以及零部件的尺寸稳定性有着重要的影响。

过高的注射压力会导致铸件内部气泡的形成、表面粗糙度增大等问题,而过低的注射压力则会导致型腔内充盈不充分。

2.注射速度:注射速度是指熔融金属进入模具腔体的速度。

适当的注射速度可以使熔融金属在型腔内充盈均匀,防止铸件出现疏松、夹杂等缺陷。

过高的注射速度会导致金属熔液的剪切力增加,容易产生气泡和金属破碎现象,而过低的注射速度则会导致金属熔液在充盈过程中受到阻力,形成冷障。

3.注射温度:注射温度是指金属熔液注入型腔时的温度。

注射温度的高低会直接影响到铸件的凝固形态和组织结构。

过高的注射温度会导致铸件的表面质量较差,因为金属熔液的冷却速度过快,易产生冷障和贝氏体组织。

而过低的注射温度则会导致金属熔液黏度增大,充盈性变差。

4.金属液温度:金属液温度是指金属熔体在注射之前的温度。

金属液温度的高低会直接影响到铸件的凝固过程和性能。

过高的金属液温度会导致铸件的组织粗大,出现热裂纹等问题。

而过低的金属液温度则会导致铸件的毛细孔增多,降低铸件的密实性。

5.压射机的闭模力:压射机的闭模力是指用于关闭型腔的力大小。

闭模力的大小会直接影响到铸件的尺寸稳定性和机械性能。

过高的闭模力会导致铸件的尺寸过大,形成表面凸起和冷障等问题。

而过低的闭模力则会导致铸件尺寸的不稳定性和机械性能的下降。

6.模具温度:模具温度是指模具在铸造过程中的温度。

模具温度的高低会直接影响到铸件的组织结构和表面质量。

适当的模具温度可以提高铸件的表面光洁度,减少气孔和缩松等问题。

过高的模具温度会导致铸件的热组织粗大,而过低的模具温度则会导致铸件充盈性差。

总结起来,压铸工艺参数对于铸件质量和性能有着直接的影响。

合理的控制和选择工艺参数可以有效地改善铸件的表面质量、减少缺陷率,提高铸件的力学性能和尺寸稳定性。

压铸工艺参数(速度)教案(精)

压铸工艺参数(速度)教案(精)

职业教育材料成型与控制技术专业教学资源库《铝合金铸件铸造技术》课程教案压力铸造—压铸工艺参数(速度)制作人:刘洋陕西工业职业技术学院压力铸造—压铸工艺参数(速度)一、压射速度压射速度又称冲头速度,它是压室内的压射冲头推动金属液的移动速度,也就是压射冲头的速度。

压射过程中压射速度是变化的,它可分成低速和高速两个阶段,通过压铸机的速度调节阀可进行无级调速。

压射第一、第二阶段是低速压射,可防止金属液从加料口溅出,同时使压室内的空气有较充分的时间逸出,并使金属液堆积在内浇口前沿。

低速压射的速度根据浇到压室内金属液的多少而定,可按表1选择。

压射第三阶段是高速压射,以便金属液通过内浇口后迅速充满型腔,并出现压力峰,将压铸件压实,消除或减小缩孔、缩松。

表1 低速压射速度的选择计算高速压射速度时,先由表2确定充填时间然后按下式计算:u高=4V[l+(n-l)×0.1]/(πd2t)式中u高—高速压射速度(m/s);V—型腔容积,包括溢流槽部分及浇注系统部分(m3);n—型腔数;d—压射冲头直径(m);t—填充时间(s)。

按式计算的高速压射速度是最小速度,一般压铸件可按计算数值提高1.2倍,有较大镶件的压铸件或大模具压小铸件时,可提高至1.5~2倍。

二、充型速度金属液通过内浇口处的线速度称为充型速度,又称内浇口速度。

它是压铸工艺的重要参数之一。

选用内浇口速度时,请注意如下几点: (1)铸件形状复杂或薄壁时,内浇口速度应高些;(2)合金浇入温度低时,内浇口速度可高些;(3)合金和模具材料导热性能好时,内浇口速度应高些;(4)内浇口厚度较厚时,内浇口速度应高些。

计算高速压射速度时,按下式计算:υ/V=πD2/4F式中V—压射速度(m/s);υ—充型线速度(m/s);D—压室或冲头截面直径(m);F—内浇口直径(m)。

一般压铸件可按计算数值提高1.2倍,有较大镶件的压铸件或大模具压小铸件时,可提高至1.5~2倍。

压铸工艺参数(温度)教案(精)

压铸工艺参数(温度)教案(精)

职业教育材料成型与控制技术专业教学资源库《铝合金铸件铸造技术》课程教案压力铸造—压铸工艺参数(温度)制作人:刘洋陕西工业职业技术学院压力铸造—压铸工艺参数(温度)压铸温度规范主要是指合金的浇注温度和模具温度。

一、合金浇注温度合金浇注温度是指金属液自压室进入型腔的平均温度。

由于对压室内的金属液温度测量不方便,通常用保温炉内的金属液温度表示。

浇注温度高,虽能提高金属液流动性和压铸件表面质量。

但浇注温度过高,会使压铸件结晶组织粗大,凝固收缩增大,产生缩孔缩松的倾向也增大,使压铸件力学性能下降。

并且还会造成粘模严重,模具寿命降低等后果。

因此,压铸过程中金属液的流动性主要靠压力和压射速度来保证。

选择浇注温度时,还应综合考虑压射压力、压射速度和模具温度。

通常在保证成型和所要求的表面质量的前提下,采用尽可能低的浇注温度。

甚至可以在合金呈粘稠“粥”状时进行压铸。

一般浇注温度高于合金液相线温度20℃~30℃。

但对含硅量高的铝合金不宜采用“粥”状压铸,因为硅晶粒将会大量析出,并以游离状态存在于压铸件中,使加工性能恶化。

各种压铸合金的浇注温度见表1。

表1各种压铸合金的浇注温度(单位:℃)应当注意的是,金属液流经内浇口进入型腔后,流速骤减直到型腔流速将为零,这部分动能大部分经摩擦而转换为热能,使合金的温度升高。

当内浇口速度为40m/s 时,铝合金进入型腔的速度将增加8℃,因此充填速度大时,可适当降低浇注温度,以保证压铸件质量。

二、压铸模温度模具温度是影响压铸件质量的一个重要因素,形状简单、压铸工艺性好的压铸件对模具温度控制要求不高,模具温度在较大范围内变动仍可生产出合格的压铸件。

但是,生产某些复杂压铸件时,只有当模具温度控制在某一范围内时,才能生产出合格的压铸件,且此温度范围又较窄,此时,必须严格控制模具温度。

压铸模在压铸生产前应预热到一定温度,在生产过程中要始终保持在一定的温度范围内,这一温度范围就是压铸模的工作温度。

标准铝压铸工艺参数表

标准铝压铸工艺参数表

标准铝压铸工艺参数表1. 压铸温度。

铝合金的压铸温度是影响产品质量的重要参数之一。

通常情况下,铝合金的压铸温度在650°C至750°C之间。

过高的温度会导致产品熔融不均匀,而过低的温度则会造成产品表面粗糙。

因此,在实际生产中,需要根据具体的铝合金材料选择合适的压铸温度。

2. 压射速度。

压射速度是指铝合金液态金属进入模腔的速度。

适当的压射速度可以确保产品充填充分,避免气孔和夹杂物的产生。

一般来说,压射速度应根据产品的形状和尺寸进行调整,以保证产品的成型质量。

3. 模具温度。

模具温度对铝合金压铸产品的表面质量和尺寸精度有着重要影响。

过高或过低的模具温度都会导致产品的缺陷,因此需要根据具体的铝合金材料和产品要求来确定合适的模具温度。

4. 注射压力。

注射压力是指压铸机对铝合金液态金属施加的压力。

适当的注射压力可以确保产品充填充分,避免产品内部产生气孔和夹杂物。

在实际生产中,需要根据产品的形状和尺寸来确定合适的注射压力。

5. 冷却时间。

冷却时间是指产品在模具中冷却的时间。

适当的冷却时间可以确保产品的尺寸精度和表面质量。

通常情况下,冷却时间需要根据产品的厚度和材料来确定,以确保产品达到理想的硬度和强度。

6. 顶杆力。

顶杆力是指顶出铝合金产品的力量。

适当的顶杆力可以确保产品顺利脱模,避免产品变形和损坏。

在实际生产中,需要根据产品的形状和尺寸来确定合适的顶杆力。

7. 模具开合力。

模具开合力是指模具在开合过程中所受的力量。

适当的模具开合力可以确保模具的正常运行,避免模具损坏和产品缺陷。

在实际生产中,需要根据模具的结构和尺寸来确定合适的模具开合力。

总结:以上是标准铝压铸工艺参数表的相关内容,希望能对大家在铝合金压铸加工过程中有所帮助。

在实际生产中,需要根据具体的产品要求和铝合金材料来确定合适的工艺参数,以确保产品质量和生产效率。

同时,也需要不断优化和调整工艺参数,以适应市场和客户需求的变化。

希望大家能够加强学习和实践,不断提升铝合金压铸加工的技术水平和质量管理水平。

压铸工艺参数

压铸工艺参数

压铸工艺参数
一、压铸机参数
1.锁模力:压铸机锁模力是指压铸机在关闭模具时施加在模具上的力量,这个参数的选取要根据铸件的大小和形状来确定。

2.注射压力:指压铸机在注入合金液态金属时向模腔施加的压力,需
要根据合金的液态流动性来设定。

3.注射速度:指合金液态金属进入模腔的速度,需要控制在合适的范
围内,既要保证充模完全,又要避免过快造成气孔和模具损坏。

二、模具参数
1.冷却系统:合理的冷却系统可以提高铸件的质量和生产效率,可以
通过冷却水的流量、温度和冷却通道的设计来控制。

2.喷油系统:喷油系统用于在压铸之前,在模具表面形成一层润滑膜,减少金属与模具的摩擦,需要控制喷油量和喷油位置。

3.模具温度:模具温度会影响合金凝固速度和铸件表面质量,可以通
过加热、降温等方式来控制。

三、材料参数
1.合金成分:合金成分是对压铸件的力学性能和化学性能有很大影响
的因素,需要根据产品的要求选择合适的合金成分。

2.熔化温度:合金的熔化温度会影响注入流动性和凝固速度,需要根
据合金的熔化温度范围进行控制。

3.熔金温度:熔金温度是指合金进入模腔前的温度,需要根据合金的熔点和凝固温度来确定。

除了以上介绍的参数,还有一些其他的因素也会影响压铸工艺,比如模具的设计、铸件的几何形状以及工艺操作等。

这些参数和因素都需要通过实践和不断探索来确定和优化,以提高压铸的质量和效率。

对于不同的产品和工艺需求,压铸工艺参数也会有所差别,因此需要根据具体情况进行调整和优化。

压铸过程的参数选定(精)

压铸过程的参数选定(精)

压铸过程的参数选定一概述以往很长一段时间人们都针对压铸件的成形和表面质量要求来选定工艺参数。

已往的验收标准就是表面质量标准但随着压铸技术在复杂受力件、耐压件、和耐冲击件上的采用。

对压铸件的内在质量要求日益严格而且量化了。

所以如何科学地选定各项工艺参数,确保压铸件的内外质量都符合标准要求,提高生产效率,增加企业效益,已成为压铸生产不可回避的问题。

实践证明,为了科学地选定各项工艺参数,不仅要搞清楚各项参数的作用、还要弄清楚它们之间的相互影响。

而实际上这些参数在压铸过程中又都是不断变化的。

所以在生产中必须及时地监测、调整、控制每项参数。

才能满足压铸件的质量要求。

才能保证压铸件质量的一致性、可靠性。

(一)理想的压力速度图谱:图一V——速度曲线。

P——压力曲线L慢——冲头以很慢的速度通过熔杯(压室)的口部、防止合金液从熔杯口溅出。

L1——冲头以临界速度或抛物线型的加速度将合金液填充熔杯达浇口处、并将熔杯中的气体通过浇口、型腔和排气槽排出。

P1L2——冲头以快压射速度(1~12 m/s)将合金液通过浇口填充型腔。

使合金液具有足够的动能填充到型腔各处,以求铸件成形。

所以L2是保证铸件成形的。

L3——冲头经过L2将合金液填充型腔后,冲头的运动受到阻碍,以快速降速同时压射压力急剧上升。

将合金液以低速高压的方式挤入型腔各细微处和内部疏松处。

将气泡压缩、冷隔焊合、合金的结晶细化等。

所以L3是保证铸件质量的阶段。

故称之为二次充型。

ΔP——压力冲击波的波峰值,ΔP<增压后压力的3~5%。

ΔV___冲击波在波谷时铸件内气孔膨胀,造成冲头返回。

发生在二次充型的最后一瞬间.此时合金正在冷凝,气孔壁上产生发裂(疲劳源)。

所以冲击波要小。

(二)实际图(合金到浇口处,受阻降速)图二(三)压铸过程中的压力降。

在流体力学里能量损失以压力降来表示,(图三)P2图三h ×Γ=P h —为液体的水位高度。

Γ——液体的比重。

P —压力。

压铸工艺模具缺陷分析

压铸工艺模具缺陷分析

2~3
2~3
溢流口厚度b 0.4~0.5 0.5~0.8 0.6~1.2
溢流槽长度中 心距H
52
>(1.5~ 2)h
>(1.5~ 2)h
> (1.52~
2)h
4 、排气槽:
不合理的排气槽
排气槽尺寸
合金种类 锌合金 铝合金 镁合金 铜合金
排气槽深 度
0.05~ 0.10
0.10~ 0.15
0.10~ 0.15
(2)压射室充满度
压射室充满度即浇入压射室的金属量占压 射室容量的百分数。
33
压铸生产工艺
1、浇注 2、冷凝和开模 3、顶出和取件 4、比压的控制及其作用 5、压射速度的控制及作用 6、蓄能器压力的控制 7、模具的清理 8、脱模剂、润滑剂的喷涂 9、模具的预热 10、模具温度、压铸周期和冷却水量控制 11、冲头与压射室 12、浇口套
①一速、二速运动转换应该在压射冲头通过压室浇注口后进行 ②对于薄壁小铸件,一般一速较短、二速 较长 ③对于厚壁大铸件,一般一速较长,二速较短 ④根据铸件质量(如飞边、欠铸、气泡等)调节转换点。
23
(3)最大空压射速度 指机器在空压射情况下的最大快压射速度。 此参数能反映压铸机的压射性能
卧式冷室压铸机压射性能(JB/T 8084.2-2000)
(离型(脱模)剂用量太多时,会造成铸件产生疏松、夹渣、花 斑、气泡、气孔等缺陷 )
38
9、模具的预热
(150~180℃ )
10、模具温度、压铸周期和冷却水量 控制
周期时间长,模温低; 周期时间短,模温高。 冷却水量大,模温低; 冷却水量小,模温高。
模温太低容易产生欠铸、缺肉、冷隔、花纹、收缩、裂缝等缺 陷; 而模温太高,冷凝速度就慢,易产生缩孔、气孔、针孔、热积、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压铸工艺参数分析
压铸工艺参数分析
为了便于分析压铸工艺参数,下面示出如图5-1和图5-2所示的卧式冷室压铸机压射过程图以及压
射曲线图。

压射过程按三个阶段进行分析。

第一阶段(图5-1b):由0 -Ⅰ和Ⅰ-Ⅱ两段组成。

0 -Ⅰ段是压射冲头以低速运动,封住浇料口,推动金属液在压射室内平稳上升,使压射室内空气慢慢排出,并防止金属液从浇口溅出;Ⅰ-Ⅱ段是压射冲头以较快的速度运动,使金属液充满压射室前端并堆聚在内浇口前沿。

第二阶段(图5-1c):Ⅱ-Ⅲ段,压射冲头快速运动阶段,使金属液充满整个型腔与浇注系统。

第三阶段(图5-1d):Ⅲ-Ⅳ段,压射冲头终压阶段,压射冲头运动基本停止,速度逐渐降为0。

a)
c)
图5-1 卧式冷室压铸机压射过程图
图5-2 卧式冷室压铸机压射曲线图
s--冲头位移曲线 P0--压力曲线 v--速度曲线
1、压力参数
(1)压射力压射冲头在0-Ⅰ段,压射力是为了克服压射室与压射冲头和液压缸与活塞之间的摩擦阻力;Ⅰ-Ⅱ段,压射力上升,产生第一个压力峰,足以能达到突破内浇口阻力为止;Ⅱ-Ⅲ段,压射力继续上升,产生第二个压力峰;Ⅲ-Ⅳ段,压射力作用于正在凝固的金属液上,使之压实,此阶段有增压机构才能实现,此阶段压射力也叫增压压射力。

(2)比压比压可分为压射比压和增压比压。

在压射运动过程中0-Ⅲ段,压射室内金属液单位面积上所受的压射力称为压射比压;在Ⅲ-Ⅳ段,压射室内金属液单位面积上所受的增压压射力称为增压比压。

比压是确保铸件质量的重要参数之
一,推荐选用的增压比压如表5-1所示。

表5-1 增压比压选用值(单位:MPa)
(3)胀型力压铸过程中,充填型腔的金属液将压射活塞的比压传递至型(模)具型腔壁面上的力称为胀型力。

主胀型力的大小等于铸件在分型面上的投影面积(多腔模则为各腔投影面积之和),浇注系统、溢流、排气系统的面积(一般取总面积的30%)乘以比压,其计算公式如下
F主=APb/10
式中 F主-主胀型力(KN);
A-铸件在分型面上的投影面积(cm2);
Pb-压射比压(MPa)。

分胀型力(F分)的大小是作用在斜销抽芯、斜滑块抽芯、液压抽芯锁紧面上的分力引起的胀型力
之和。

(4)锁型(模)力锁型(模)力是表示压铸机的大小的最基本参数,其作用是克服压铸填充时的胀型力。

在压铸机生产中应保证型(模)具在胀型力的作用下不致胀开。

压铸机的锁型(模)力必须大于胀型力才是可靠的,锁型(模)力和胀型力的关系如下:
F锁≥K(F主 +F分)
式中 F锁--压铸机应有的锁型(模)力(KN);
K--安全系数,一般取1.25;
F主--主胀型力(KN);
F分--分胀型力(KN)。

在压铸生产过程中,锁型(模)力大小的选择直接反映到压铸分型面处有否料液飞溅、铸件内组织的密度、有否气孔、成形是否完整、有否飞边及毛刺等。

调整时,在保证铸件合格的前提下尽量减
小锁型(模)力。

为简化选用压铸机时各参数的计算,可根据压铸机具体的工作性能作出“比压、投影面积与胀型力关系图”,参见图5-3。

在已知型(模)具分型面上铸件总投影面积∑A和所选用的压射比压Pb后,
能从图中直接查出胀型力。

图5-3 比压、投影面积与胀型力关系图。

相关文档
最新文档