图像特征提取方法
Matlab中的图像特征提取方法

Matlab中的图像特征提取方法引言:图像特征提取是计算机视觉领域的重要研究课题,它能够从图像中提取到有用的信息,为后续的图像处理和分析任务提供基础和支持。
而Matlab作为一款强大的数学软件,提供了丰富的工具包和函数库,为图像特征提取提供了方便和快捷的实现途径。
本文将介绍几种常用的Matlab图像特征提取方法,包括颜色特征、纹理特征和形状特征。
一、颜色特征提取方法颜色是图像中最明显和直观的特征之一,在图像分类、目标检测等应用中具有重要的作用。
Matlab提供了很多用于颜色特征提取的函数,如rgb2hsv、rgb2gray 和histogram等。
其中,rgb2hsv函数能够将RGB颜色空间转换为HSV颜色空间,通过调整h、s、v三个分量可以提取不同的颜色特征。
而rgb2gray函数则能够将RGB图像转换为灰度图像,提取图像的亮度特征。
histogram函数可以统计图像各个像素值的频数,从而得到图像的直方图表示。
二、纹理特征提取方法纹理是图像中由上下左右相邻像素之间的灰度差异造成的视觉效果,对于图像的表达和分析具有重要意义。
Matlab提供了一些常用的纹理特征提取函数,如graycomatrix和glcmprops。
graycomatrix函数可以计算灰度共生矩阵,通过统计不同灰度值相邻像素之间的出现频率来描述纹理信息。
而glcmprops函数能够计算灰度共生矩阵的统计特征,如对比度、均匀性和能量等,从而得到更全面和准确的纹理特征描述。
三、形状特征提取方法形状是物体以及图像中的基本外形特征,它对于目标分类和图像分析具有重要的作用。
Matlab提供了多种形状特征提取函数,如regionprops和boundary。
regionprops函数可以计算图像中各个连通区域的面积、周长、中心位置等基本形状特征。
boundary函数能够提取图像边界的像素坐标,通过对坐标进行拟合和分析可以得到更复杂和准确的形状特征。
Python技术实现图像特征提取与匹配的方法

Python技术实现图像特征提取与匹配的方法随着科技的不断进步,图像处理技术在各个领域得到了广泛应用。
图像特征提取与匹配是图像处理中的重要环节之一,它能够通过识别图像中的关键特征点,进行图像的检索、识别和对比。
Python作为一门功能强大的编程语言,提供了各种库和工具,可以方便地实现图像特征提取与匹配的方法。
一、图像特征提取图像特征是指在图像中具有独特而稳定的可视化特性,例如边缘、角点、颜色分布等。
图像特征提取的目的就是从图像中找到这些独特的特征点,以便后续的处理和分析。
1. 边缘检测边缘是图像中不同区域之间的分界线,是图像中的显著特征。
Python的OpenCV库提供了Sobel算子、Canny算子等用于边缘检测的函数,可以方便地实现边缘检测的过程。
2. 角点检测角点是图像中具有明显曲率或者弯曲的地方,是图像中的显著特征。
OpenCV 中的Harris角点检测算法和Shi-Tomasi角点检测算法提供了在Python中实现角点检测的函数。
3. SIFT和SURF特征提取SIFT(尺度不变特征变换)和SURF(加速稳健特征)是两种经典的特征提取算法,它们可以提取图像中的局部特征,并具有旋转、尺度不变性。
Python中的OpenCV库提供了SIFT和SURF算法的实现,可以方便地提取图像的特征。
二、图像特征匹配图像特征匹配是将两幅或多幅图像中的特征点进行对齐和匹配。
通过图像特征匹配,可以实现图像的检索、识别和对比,是图像处理中的重要环节。
1. 特征点描述在进行图像特征匹配之前,需要对特征点进行描述。
描述子是一种对特征点进行数学表示的方法,可以用于特征点的匹配和对比。
OpenCV中的SIFT和SURF 算法可以提取特征点的描述子。
2. 特征点匹配特征点匹配是将两个图像中的对应特征点连接起来,实现图像的对齐和匹配。
OpenCV中提供了FLANN(最近邻搜索)库,可以高效地实现特征点的匹配。
同时,还可以使用RANSAC算法进行特征点匹配的筛选和优化。
医学图像处理中的特征提取方法综述

医学图像处理中的特征提取方法综述医学图像处理是指利用计算机技术对医学图像进行数字化处理,以提取有用的信息。
在医学图像处理中,特征提取是一个非常重要的环节,它负责将原始图像转化为具有可计算特性的数据,以便于后续步骤的分析和处理。
本文将对当前常用的医学图像处理中的特征提取方法进行综述,并对其优缺点进行简单的评述。
1. 矩阵特征矩阵特征是一种有效的特征提取方法,该方法将多维的医学图像转换为一个矩阵形式,然后利用矩阵的特征值和特征向量进行特征提取。
该方法的优点在于可以提取医学图像中的全局和局部信息,但是在处理高维矩阵时会遇到计算复杂度较高的问题。
2. 灰度共生矩阵特征灰度共生矩阵特征是一种常用的局部特征提取方法,该方法可以提取医学图像中灰度值相邻的像素之间的空间关系。
它的优点在于可以提取到医学图像中的纹理和形状信息,但是在处理过程中会受到噪声的影响,对图像质量的要求较高。
3. 小波变换特征小波变换是一种频率域分解方法,能够将图像转换为频域表示,提取医学图像中的局部特征。
该方法能够更好地处理噪声干扰,具有局部性和多分辨率的优点。
但是,该方法只能提取医学图像中的纹理信息,不能提取其他形状等特征。
4. 傅里叶变换特征傅里叶变换是一种基于频率的分析方法,可以将医学图像转换为频域表示,提取图像中的全局特征。
该方法具有精度高、计算速度快等优点,但是在处理局部特征时表现不佳,很难提取医学图像中的纹理信息。
5. 边缘检测特征边缘检测是一种将医学图像中图像边缘提取出来的方法,该方法可以提取医学图像中的轮廓和形状信息。
边缘检测方法包括Sobel算子、Canny算子、Laplacian算子等,但是在实际应用中会受到噪声干扰的影响。
综上所述,不同的特征提取方法在医学图像处理中具有不同的优缺点。
对于不同的医学图像,需要选择不同的特征提取方法以获取更为准确的特征信息。
同时,多种特征提取方法的综合应用也会提高医学图像处理的效果。
图像处理中的图像特征提取方法与技巧

图像处理中的图像特征提取方法与技巧图像处理是一门研究数字图像的领域,其目标是通过一系列的处理步骤来改善图像的质量或提取出其中的有用信息。
其中,图像特征提取是图像处理中的重要环节之一。
本文将介绍一些常用的图像特征提取方法和技巧。
1. 灰度特征提取灰度特征提取是图像处理中最基本的特征提取方法之一。
通过将彩色图像转换为灰度图像,可以提取出图像的亮度信息。
常用的灰度特征包括图像的平均灰度值、灰度直方图、对比度等。
这些特征可以反映出图像的整体明暗程度和灰度分布情况,对于一些亮度信息相关的任务,如人脸识别、目标检测等,具有重要意义。
2. 形态学特征提取形态学特征提取通过对图像进行形态学运算,如腐蚀、膨胀、开闭运算等,来提取出图像的形态信息。
比如,利用腐蚀和膨胀运算可以提取出图像的边缘信息,通过开闭运算可以获取到图像的拐点信息和孤立点信息。
形态学特征提取在图像的边缘检测、形状分析等领域中得到广泛应用。
3. 纹理特征提取纹理特征提取是指从图像中提取出具有纹理信息的特征。
图像的纹理是指图像中像素之间的空间关系,比如纹理的平滑度、粗糙度、方向等。
常见的纹理特征提取方法包括灰度共生矩阵(GLCM)、灰度差值矩阵(GLDM)等。
这些方法通过统计邻近像素之间的灰度差异来描述图像的纹理特征,对于物体识别、纹理分类等任务非常有用。
4. 频域特征提取频域特征提取是指通过对图像进行傅里叶变换或小波变换,从频域角度分析图像的特征。
对于傅里叶变换,可以得到图像的频谱图,从中提取出一些频域特征,如频谱能量、频谱密度等。
而小波变换则可以提取出图像的频率和幅度信息。
频域特征提取在图像压缩、图像识别等领域具有广泛应用。
5. 尺度空间特征提取尺度空间特征提取是指通过在不同的尺度下分析图像的特征,提取出图像的空间尺度信息。
常用的尺度空间特征提取方法包括拉普拉斯金字塔、高斯金字塔等。
这些方法可以从图像的多个尺度下提取出不同的特征,对于物体的尺度不变性分析、尺度空间关系分析等任务非常有用。
特征提取的方法有哪些

特征提取的方法有哪些特征提取是指从原始数据中提取出对问题解决有用的特征,是数据预处理的重要环节。
在机器学习、模式识别、图像处理等领域,特征提取是非常重要的一步,它直接影响到后续模型的性能和效果。
因此,特征提取的方法也是非常多样化和丰富的。
下面我们将介绍一些常用的特征提取方法。
1. 直方图特征提取。
直方图特征提取是一种常见的方法,它将数据按照一定的区间进行划分,并统计每个区间中数据的频数。
对于图像处理来说,可以将图像的像素值按照灰度级别划分成若干区间,然后统计每个区间中像素的个数,从而得到一个灰度直方图。
通过直方图特征提取,可以很好地描述图像的灰度分布特征。
2. 边缘检测特征提取。
边缘检测是图像处理中常用的一种特征提取方法,它通过检测图像中像素值的变化来找到图像中的边缘。
常用的边缘检测算子有Sobel、Prewitt、Canny等,它们可以有效地提取出图像中的边缘信息,为后续的图像分割和物体识别提供重要的特征。
3. 尺度不变特征变换(SIFT)。
SIFT是一种基于局部特征的图像特征提取方法,它具有尺度不变性和旋转不变性的特点。
SIFT算法通过寻找图像中的关键点,并提取这些关键点周围的局部特征描述子,来描述图像的特征。
SIFT特征提取方法在图像匹配、目标识别等领域有着广泛的应用。
4. 主成分分析(PCA)。
主成分分析是一种常用的特征提取和降维方法,它通过线性变换将原始数据映射到一个新的坐标系中,使得映射后的数据具有最大的方差。
通过PCA方法可以将高维数据降维到低维空间,同时保留了大部分原始数据的信息,对于高维数据的特征提取和数据可视化具有重要意义。
5. 小波变换特征提取。
小波变换是一种时频分析方法,它可以将信号分解成不同尺度和频率的小波系数。
小波变换特征提取方法可以有效地捕捉信号的时频特征,对于信号处理和图像处理中的特征提取具有重要的应用价值。
总结。
特征提取是数据预处理的重要环节,不同的领域和问题需要采用不同的特征提取方法。
图像处理中的特征提取与分类算法

图像处理中的特征提取与分类算法图像处理是指通过计算机技术对图像进行分析、处理和识别,是一种辅助人类视觉系统的数字化技术。
在图像处理中,特征提取与分类算法是非常重要的一个环节,它能够从图像中提取出不同的特征,并对这些特征进行分类,从而实现图像的自动化处理和识别。
本文将对图像处理中的特征提取与分类算法进行详细介绍,主要包括特征提取的方法、特征分类的算法、以及在图像处理中的应用。
一、特征提取的方法1.1颜色特征提取颜色是图像中最直观的特征之一,它能够有效地描述图像的内容。
颜色特征提取是通过对图像中的像素点进行颜色分析,从而得到图像的颜色分布信息。
常用的颜色特征提取方法有直方图统计法、颜色矩法和颜色空间转换法等。
直方图统计法是通过统计图像中每种颜色的像素点数量,从而得到图像的颜色直方图。
颜色矩法则是通过对图像的颜色分布进行矩运算,从而得到图像的颜色特征。
颜色空间转换法是将图像从RGB颜色空间转换到其他颜色空间,比如HSV颜色空间,从而得到图像的颜色特征。
1.2纹理特征提取纹理是图像中的一种重要特征,它能够描述图像中不同区域的物体表面特性。
纹理特征提取是通过对图像中的像素点进行纹理分析,从而得到图像的纹理信息。
常用的纹理特征提取方法有灰度共生矩阵法、小波变换法和局部二值模式法等。
灰度共生矩阵法是通过统计图像中不同像素点的灰度级别分布,从而得到图像的灰度共生矩阵,进而得到图像的纹理特征。
小波变换法是通过对图像进行小波变换,从而得到图像的频域信息,进而得到图像的纹理特征。
局部二值模式法是采用局部像素间差异信息作为纹理特征,从而得到图像的纹理特征。
1.3形状特征提取形状是图像中的一种重要特征,它能够描述图像中物体的外形和结构。
形状特征提取是通过对图像中的像素点进行形状分析,从而得到图像的形状信息。
常用的形状特征提取方法有轮廓分析法、边缘检测法和骨架提取法等。
轮廓分析法是通过对图像中物体的外轮廓进行分析,从而得到图像的形状特征。
图像特征及图像特征提取

图像特征及图像特征提取图像特征是图像中的显著和重要的信息,用于描述和区分不同的图像。
图像特征提取是从图像中提取这些特征的过程。
图像特征可以分为两类:全局特征和局部特征。
全局特征是整个图像的统计性质,例如颜色直方图、颜色矩和纹理特征等。
局部特征则是在图像的局部区域中提取的特征,例如SIFT(尺度不变特征变换)、HOG(方向梯度直方图)和SURF(加速稳健特征)等。
图像特征提取的过程可以分为以下几步:1.预处理:对图像进行去噪、图像增强、颜色空间转换等处理,以提高图像的质量和可分辨性。
2.特征选择:根据具体应用需求和图像特征的表达能力,选择适合的特征。
例如,对于目标识别任务,可以选择具有良好局部不变性和可区分性的局部特征。
3.特征提取:根据选择的特征,从图像中提取特征。
对于全局特征,可以使用颜色直方图、颜色矩、纹理特征等方法;对于局部特征,可以使用SIFT、HOG、SURF等方法。
4.特征表示:将提取的特征表示为向量或矩阵形式,以便后续的分类、检索或识别任务。
5.特征匹配:对于图像检索、图像匹配等任务,需要将查询图像的特征与数据库中的图像特征进行比较和匹配,找到最相似的图像。
图像特征提取的方法和算法有很多,以下是一些常用的方法:1.颜色特征:颜色是图像的重要特征之一、颜色直方图描述了图像中每个颜色的分布情况,颜色矩描述了图像中颜色的平均值和方差等统计性质。
2.纹理特征:纹理是图像中的重要结构信息。
常用的纹理特征提取方法有灰度共生矩阵、方向梯度直方图、小波变换等。
3.形状特征:形状是物体的基本属性之一、形状特征提取方法有边缘检测、形状描述子等。
4.尺度不变特征变换(SIFT):SIFT是一种局部特征提取方法,具有尺度不变性和旋转不变性,适用于图像匹配和目标识别任务。
5.方向梯度直方图(HOG):HOG是一种局部特征提取方法,通过计算图像中每个像素的梯度方向和强度,获得图像的局部特征。
6.加速稳健特征(SURF):SURF是一种局部特征提取方法,具有尺度不变性和旋转不变性,适用于图像匹配和目标识别任务。
图像特征提取方法详解(Ⅰ)

图像特征提取方法详解一、引言图像特征提取是计算机视觉领域中的一个重要问题,它涉及到图像中的信息抽取和表征。
在各种图像处理和分析任务中,如目标检测、目标跟踪、图像匹配等,图像特征提取都扮演着至关重要的角色。
本文将详细介绍几种常见的图像特征提取方法,并对它们的原理和应用进行解析。
二、颜色特征提取颜色是图像中最基本的特征之一,可以用来描述图像中的物体或目标的外观。
常见的颜色特征提取方法包括颜色直方图、颜色矩和颜色空间转换。
颜色直方图是一种描述图像中颜色分布的方法,它可以用来表示图像中各种颜色的分布情况。
颜色矩是对颜色分布的统计特征描述,它可以更准确地表征颜色的特征。
颜色空间转换则是将图像的颜色表示从RGB空间转换到其他空间,如HSV空间或Lab空间,以便更好地描述颜色特征。
三、纹理特征提取纹理是图像中的另一个重要特征,可以用来描述图像中物体的表面结构。
常见的纹理特征提取方法包括灰度共生矩阵、小波变换和Gabor滤波器。
灰度共生矩阵是一种描述图像纹理结构的方法,它可以用来计算图像中像素灰度值之间的统计关系。
小波变换是一种多尺度分析方法,可以用来提取图像中不同尺度的纹理信息。
Gabor滤波器则是一种基于人类视觉系统的模型,可以用来更好地描述图像中的纹理特征。
四、形状特征提取形状是图像中的另一个重要特征,可以用来描述物体的外形和结构。
常见的形状特征提取方法包括边缘检测、轮廓描述和形状上下文。
边缘检测是一种常见的图像处理方法,可以用来提取图像中物体的边缘信息。
轮廓描述是对物体轮廓形状的描述方法,可以用来描述物体的整体形状特征。
形状上下文则是一种描述物体形状的统计特征,可以更准确地表征物体的形状特征。
五、深度学习特征提取深度学习是近年来兴起的一种强大的特征提取方法,它可以利用深度神经网络从原始图像中学习到更高级的特征表示。
常见的深度学习特征提取方法包括卷积神经网络、自编码器和循环神经网络。
卷积神经网络是一种专门用于图像处理的神经网络结构,可以自动学习到图像中的特征表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像特征提取方法摘要特征提取是计算机视觉和图像处理中的一个概念。
它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。
特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。
至今为止特征没有万能和精确的图像特征定义。
特征的精确定义往往由问题或者应用类型决定。
特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。
因此一个算法是否成功往往由它使用和定义的特征决定。
因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。
特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。
它检查每个像素来确定该像素是否代表一个特征。
假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。
作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。
此后通过局部导数运算来计算图像的一个或多个特征。
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
当光差图像时,常常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。
但如果物体的尺寸很小或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需要降低分辨率。
如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像的特征对进行图像研究有优势。
常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。
设计内容课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。
(1)边界方向直方图法由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。
所有小波变换可以视为时域频域的形式,所以和调和分析相关。
所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。
构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。
通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级,计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图.图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的Sobel算子[8]:( ,Y)=,( 一1,Y+1)+2×,( ,Y+1)+,( +1,Y+1)一,( 一1,Y一1)一2×,( ,Y一1)一,( +1,Y一1)( ,Y)=,( +1,Y一1)+2×,( +1,Y)+,( +1,Y+1)一,( 一1,Y一1)一2×,( 一1,Y)一,( 一1,Y+1) (4)I(x,y)表示在图像的(x,y)点像素的亮度。
为了减少由于数字化过程中产生的噪声的影响,边界方向直方图是基于局部像素梯度向量的平均值.因为相反方向的梯度可能会相互抵消,所以并不能直接对局部邻居像素点的梯度向量平均.解决这个问题的一个方法就是在计算平均值前,先对用复数表示的向量进行平方运算,等价于把梯度向量的角度增加一倍.角度增加一倍的相反方向的两个梯度向量分别指向它们的对立梯度向量,从而互相得到增强;而处于正交的两个梯度将会互相抵消,经过平均运算后变回到它们的单一角度的表示。
平方的向量可以表示为:(G +_,G ) =G 一G +2_,G G (5)梯度平方的平均值可以通过对局部邻居(利用非均匀窗口w)的平均计算得到,DFx:Σ(G +G;),DFy:Σ(2GxGr) (6)W W现在,平均梯度方向∈[0,180]可以由下面的公式得到:r l80,DFx=0 and DFx=0o(x,Y)={[l80 DF .(7) ——丽,m№M因此,边界方向直方图可以定义为:H(k):H(k)+1,/f ( ,Y):k and k∈[0,180] (8)= 180是一个特例.它并不意味着像素的边界方向是水平方向且与=0的相同.它表示在这个像素的周。
围没有亮度变化.边界方向直方图之间距离D 的计算采用与上面颜色直方图距离之间的相同的计算公式(3)而得到。
(2)基于PCA的图像数据特征提取主成分分析(Principal Component Analysis ,PCA )是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。
计算主成分的目的是将高维数据投影到较低维空间。
给定n 个变量的m 个观察值,形成一个n ′ m 的数据矩阵,n 通常比较大。
对于一个由多个变量描述的复杂事物,人们难以认识,那么是否可以抓住事物主要方面进行重点分析呢?如果事物的主要方面刚好体现在几个主要变量上,我们只需要将这几个变量分离出来,进行详细分析。
但是,在一般情况下,并不能直接找出这样的关键变量。
这时我们可以用原有变量的线性组合来表示事物的主要方面,PCA 就是这样一种分析方法。
图像的有效检索手段逐渐引起人们的重视,传统的采用基于关键字或描述性文本的数据库检索方式,已远远不能满足人们的需要,近年来,国际上广泛开展了基于内容的图像检索(CBIR) 的研究,CBIR 是指根据图像的颜色、形状、纹理等特征以及这些特征的组合来查询图像,是计算机图像处理和数据库技术的有效结合。
颜色是彩色图像的最显著特征之一。
因此,基于颜色的查询是基于内容的图像检索中最基本的方法。
这种查询可针对任何类型的彩色图像。
目前,人们已提出了许多种借助于颜色特征对图像进行检索的方法。
这些方法常用的彩色空间有RGB 和HSV ,提取的主要特征是颜色直方图。
常用的计算直方图之间距离的方法有直方图相交法、距离法等,以直方图作为图像的颜色特征进行图像检索,需存储大量的冗余特征信息,不能精确而简洁地描述图像。
本文提出了一种基于HSV 颜色模型,利用主元分析法(PCA) 对图像的颜色进行特征提取的方法,大大降低了特征向量的维数,减小了特征数据库的规模。
图像的颜色有多种表示方式,其中HSV 颜色模型是一种适合肉眼分辨的模型,它把彩色信息表示为三种属性: 色调h 、饱和度s 和亮度v 。
HSV 模型的色调h 是由颜色名称来辨别的,如红、橙、绿,它用角度0°~360°度量;亮度v 是颜色的明暗程度, 通常用百分比度量, 从黑0 到白100 %;饱和度s 指颜色的深浅,用百分比来度量,为从0 到完全饱和的100 %·这种颜色模型用Munsell 三维空间坐标系统表示,因坐标之间的心理感知独立性,因此,可以独立感知各颜色分量的变化;且这种颜色模型具有线性伸缩性,可感知的颜色差是与颜色分量的相应样值上的欧氏距离成比例的·在CBIR 中应用这种模型更适合用户的主元分析法(PCA) 对L 的降维处理由节1. 2 可得到L 矩阵, L 为一m ×n 矩阵, m 、n 由图像尺寸决定。
主元分析法( PCA) 是一种线性降维技术,其基本思想是通过对数据协方差矩阵的分解,在其n 个特征值中取前a 个特征值, ( n - a) 个特征值被滤出。
a 远小于n ,而a个特征值对应的特征向量构成负荷矩阵P ∈R n ×a , L 到低维空间的投影就包含在得分矩阵中T = L P (3)由T 返回到n 维空间的投影为L = TPT (4)由^L 张成的子空间称为得分空间,其所包含的信息量近似原空间L 中所包含的信息量[9 ]。
由矩阵L 可求出其协方差矩阵S 的特征值分解S = 1/ ( n - 1) L T L = VΛV T (5)Λ包含幅值递减的非负实特征值(λ1 ≥λ2 ≥⋯≥λn ≥0) ·为了最优地获取数据的变化量,这里a =6 ,即取前6 个特征值。
利用主元分析法(PCA) 对彩色图像颜色特征进行提取,可将原图像从m ×n ×3 降低至m ×a ( a 远小于n) ,大大降低了特征向量的维数,减小了特征数据库的规模,为图像的检索建立了良好的基础·将提取的颜色特征与纹理特征相结合作为支持向量机(SVM) 的输入,同时引入相关反馈来对图像进行分类与检索,以便近一步提高检索效率是有待进一步研究的内容。
(3)基于Tamura纹理特征的纹理特征提取随着多媒体信息的广泛应用,并在数据库系统和计算机视觉两大研究领域的共同推动下,图像检索技术己逐渐成为一个非常活跃的研究领域。
如何有效地对这些图像进行分析、存储和检索是一个亟待解决的问题。
基于内容的图像检索技术能有效的解决这一问题,成为研究的热点。
基于内容的图像检索(CBIR)不同于传统的基于文本的图像检索,它实际上是一种模糊查询技术,通过对图像提取一定的特征,找出在特征空间中与查询要求接近的图像,从而实现在图像数据库中自动地、智能地检索、查询和管理图像。
在CBIR系统中,特征的提取和匹配算法是决定图像检索结果的关键。
在已经存在的颜色特征,纹理特征,形状特征等几种特征提取方法中,由于纹理特征能够描述图像的平滑,稀疏,规则性等特性,因此本文决定采用纹理特征作为图像检索的依据。