超滤系统(个人总结)
超滤原理操作方法总结

超滤原理操作方法总结
超滤是一种透过具有特定孔径的滤膜,将溶质和溶剂分离的分离技术。
其原理是利用超滤膜对介于溶液和溶质之间的溶质分子或胶体微粒进行拦截,从而实现溶液的分离纯化。
超滤操作方法总结如下:
1. 滤膜的选择:根据需要分离的物质的分子大小和特性选择合适的超滤膜。
常见的滤膜有陶瓷膜、有机膜、陶瓷有机复合膜等。
2. 膜的预处理:超滤膜在使用之前需要进行预处理,以去除膜表面的杂质和污染物。
常见的预处理方法有清洗、浸泡和超声波处理等。
3. 进料泵运送溶液:将待处理的溶液通过进料管道和进料泵送到超滤系统。
4. 调节操作条件:根据需要调节操作条件,如温度、压力、流速等。
一般情况下,超滤操作需要加压,常见的加压方式有外压和内压。
5. 超滤分离:将溶液送入超滤系统,通过膜的孔径拦截溶质分子和胶体微粒,使其无法通过滤膜,从而实现分离纯化。
6. 收集纯净溶液:分离后的纯净溶液从滤液口流出,收集并获得所需的纯净溶
液。
7. 滤膜的清洗和维护:超滤膜使用一段时间后,需要进行清洗和维护,以去除膜上的污染物,保证膜的通透性和稳定性。
需要注意的是,超滤操作需要根据具体的溶液特性和所要达到的分离效果调节操作参数。
操作过程中需要控制好操作条件,避免滤膜堵塞或破损,以保证超滤效果和设备的正常运行。
超滤工序工作总结

超滤工序工作总结
超滤工序是一种重要的工业过滤工艺,广泛应用于食品、饮料、制药和化工等领域。
在超滤工序中,通过超滤膜对液体进行过滤,将大分子物质和微生物截留在膜表面,从而实现对液体的分离和净化。
超滤工序的工作总结对于提高生产效率和产品质量具有重要意义。
首先,超滤工序的工作总结需要对设备和工艺进行全面的了解和掌握。
超滤设备通常包括超滤膜模块、泵、管道和控制系统等,操作人员需要熟悉设备的结构和性能特点,了解超滤膜的选择和更换方法,掌握超滤系统的运行原理和操作规程。
此外,还需要对超滤工艺参数进行调整和优化,确保设备能够稳定运行并达到预期的分离效果。
其次,超滤工序的工作总结需要注重操作的规范和技能的提升。
操作人员需要严格按照操作规程进行操作,确保设备和产品的安全和卫生。
在操作中,需要注意超滤膜的清洗和维护,及时处理设备和管道的故障和异常情况,保持设备的正常运行。
同时,还需要提高操作技能,熟练掌握超滤设备的操作方法,灵活应对各种工艺变化和问题处理,提高工作效率和产品质量。
最后,超滤工序的工作总结需要重视团队合作和质量管理。
超滤工序通常需要多个环节的协同配合,包括原料准备、设备运行、产品收集和废液处理等,需要各个环节之间的密切合作和沟通。
同时,还需要加强质量管理,建立完善的质量控制体系,加强对产品质量的监控和检测,及时发现和解决质量问题,确保产品达到标准要求。
总之,超滤工序的工作总结是对工作的一次回顾和总结,有助于发现问题和改进工作方法,提高生产效率和产品质量。
通过不断总结和改进,可以使超滤工序更加稳定和高效地运行,为企业的发展和产品的质量提供保障。
超滤纳滤总结

超滤简介超滤(UF)是在压差推动力作用下利用膜的透过性能,达到分离水中离子、分子以及某种微粒为目的的膜分离技术。
它介于微滤和纳滤之间,超滤膜孔径范围为1nm~0.1μm。
超滤是一种流体切向流动和压力驱动的过滤过程,并按分子量大小来分离水中颗粒。
超滤膜的孔径大约在0.002—0.1μm范围内(MWCO约为1000-500000)。
溶解物质和比膜孔径小的物质能作为透过液透过滤膜,不能透过滤膜的物质将被截留下来浓缩于排放液中。
运行压力一般为1-7bar。
原理超滤是一个错流和切向流的过程,要过滤的液体沿膜表面流动。
这样在中空纤维的内壁上形成流体剪切的条件,而使得污染物较难在膜表面形成。
要过滤的水经由超滤给水泵加压后输入膜组件中。
由于面膜内外的压力差,一部分水渗过滤膜,而水中的杂质则截留在剩余部分水中被过滤除去。
下图是膜过滤的基本原理特点(1)能完全去除微生物和微粒。
(2)过滤效果不受原水水质影响。
(3)能去除耐氯的病菌。
(4)超滤的浓缩液中只含有原来水中含有的那些物质。
(5)比起其他的传统方式,超滤中沉淀物的量明显较少。
(6)支架的紧凑结构提高了空间利用率,节省费用,也可在现有的厂房中,可以高度灵活的增加装置配备。
(7)超滤可以实现全自动化工业连续生产。
(8)由于超滤几乎能完全滤去形成覆盖层的物质,所以可以在后续的膜净化步骤中增加面积负荷,因而减小后续净化装置的规模分类超滤膜按结构分主要有四种:板式膜,卷式膜,管式膜,中空纤维膜。
超滤膜可分为对称膜和非对称膜。
对称膜,又称各向同性膜,指各向均质的致密或多孔膜,物质在膜中各处的渗透速率相同。
非对称膜,又称各向异性膜,是由一个极薄的致密皮层(决定分离效果和传递速率)和一个多孔支撑层(主要起支撑作用)组成。
不对称膜又分为两类:一类为整体不对称膜(膜的皮层和支撑层为同一种材料);另一类为复合膜(膜的皮层和支撑层为不同种材料)。
纳滤简介纳滤(NF)是介于超滤与反渗透之间的一种压力驱动膜分离技术,其截留分子量在200~1000的范围内,孔径为几纳米,因此称为纳滤。
超滤设计精心总结

提高错流速度意味着增加泵的扬程和流量,即增加能耗,过高的错流速度也会降低通量,因此反而增加膜污堵(对于流速应有一个临界限值的控制,可能需要实验的测试)。因为流速增加后,大颗粒优先远离膜表面;而留在膜表面的小颗粒可能因与膜孔尺寸接近而使得膜孔更容易被堵塞。所以流速、压差、膜孔径以及杂质颗粒分布等同时对膜的污堵有影响。
补充:
超滤膜的过滤方式:膜分离技术按照渗透方向和进水方向的关系划分为错流膜分离和死端膜分离,而其错流过滤则是膜分离技术与机械过滤的典型区别,错流过滤又被称为横流过滤。
错流过滤进水/浓缩水的流动方向和渗透的方向是垂直的,和膜平面式平行的。流体流动平行于过滤表面,产生的表面剪切力带走膜表面的沉积物,防止污染层积累,从而有效地改善液体分离过程的性能,使过滤操作可以在较长时间内连续运行;错流过滤所产生的流体剪切力和惯性举力能促进膜表面的溶质向流体主体反向运动,提高了过滤效率。
大庆油田超滤膜净水厂工艺设计总结
1.饮用水处理超滤膜系统主要分为柱状膜错流过滤、柱状膜死端过滤和浸没式真空抽吸3种模式,系统复杂设备繁多。
2.设计时应首先了解原水水质,宜通过中试 获得设计膜通量和回收率。超滤膜系统计算是在不断复算和校核中优化完成,其中膜组数量应根据经济性分析确定,同时考虑膜系统的可靠和备用量。
3.膜的冲洗有正冲洗、反冲洗、气洗、加氯反洗和化学加强反洗,冲洗方式需根据膜供货商的要求或中试确定。化学清洗周期通常为1~6个月,清洗水水质和水温会严重影响膜清洗效果。
4.超滤膜净水厂的布局设计应遵循管路合理、配水均匀、流程短、能耗低,同时兼顾整洁美观。管道材质的选择取决于内部流动液体的腐蚀性和压力等参数。
超滤膜系统

超滤膜系统与传统滤料过滤工艺相比,超滤工艺是一种过滤精度更高的水处理技术,它可有效地去除细菌、病毒、大分子有机物、胶体和颗粒物。
具有抗污染、药剂用量少、水回收率高、占地面积小的特点。
(1)、简介中空超滤为外压式膜组件,中空丝材质为亲水性PVDF,公称切割分子量15万道尔顿,使用时原水进入中空膜丝外,产水径向透过膜壁外腔,对内径向透过膜壁,产水浊度不大于0∙2NTU.膜组件可以按全量过滤方式操作,也可以按错流过滤方式操作。
全量过滤操作中所有原水全部转化成产水,而在错流方式中还有一部分原水从浓水出口排出,成为浓缩液。
过滤时水在中空膜组件内的流动方式为外进内出,即给水经组件端面分布,同时进入各中空膜丝外部,沿中空丝管内流动,沿途经中空膜丝壁面透入,各中空丝内表面透出的产水汇集到中心管后流出膜组件。
膜丝的材质为亲水性PVDF,耐污染、耐余氯、耐化学清洗。
超滤膜的截留分子量为15万道尔顿,膜分离孔径约为25nm,可有效去除微小颗粒、胶体、细菌和病毒等。
超滤膜对>1μm的颗粒物的去除率为96%,比传统过滤器的过滤精度高,占地面积小。
由于在膜上形成固体物质积累时膜通量会衰减,膜组件采用周期性频繁反冲洗的方式恢复通量。
膜自身具备的良好化学稳定性,能够满足进行化学清湖口化学增强反洗的需求。
(2)、产品技术规格(3)超滤要求⑴超滤膜元件按膜元件制造厂商允许通量范围的低值进行超滤系统设计,保证设计年限内超滤膜元件正常运行、合理的反洗间隔和化学清洗周期,以尽可能提高系统的水的利用率。
(2)超滤采用中空纤维膜,要求抗污染能力强、化学稳定性好、机械强度好的膜,膜使用寿命在四年以上。
(3)系统配置一套超滤装置的反洗装置,该装置能满足各种情况下超滤膜的反洗化学加强反洗的要求。
超滤装置不单独设化学清洗系统,与反渗透装置共用1套清洗装置。
(4)膜设计形式按错流过滤模式运行。
(5)超滤装置的反洗或化学清洗都是在线进行的。
(6)超滤装置各进水(或出水)及反洗管路上都配置流量显示,以便控制超滤装置的正常安全运行。
超滤系统讲解

超滤系统个人工作总结

一、前言时光荏苒,转眼间一年又过去了。
在这一年里,我担任超滤系统工程师,参与了公司多个项目的超滤系统设计、安装、调试及维护工作。
现将我在过去一年的工作情况进行总结,以便更好地规划未来的工作。
二、工作回顾1. 超滤系统设计在过去的一年里,我参与了公司多个项目的超滤系统设计工作。
在设计中,我严格遵循相关规范和标准,充分考虑了客户的实际需求,确保了超滤系统的安全、稳定、高效运行。
2. 超滤系统安装在项目实施过程中,我负责超滤系统的现场安装工作。
为确保安装质量,我严格按照设计图纸和施工规范进行操作,确保了超滤系统的顺利安装。
3. 超滤系统调试超滤系统安装完成后,我负责进行系统调试。
在调试过程中,我针对系统可能出现的问题,及时进行调整,确保了系统稳定运行。
4. 超滤系统维护在日常工作中,我负责超滤系统的维护工作。
通过定期检查、保养和维修,确保了超滤系统的正常运行,降低了客户的维护成本。
5. 技术培训与交流为了提高团队的技术水平,我积极参与公司内部的技术培训和交流活动。
通过学习,我不断丰富了自己的专业知识,提高了自己的业务能力。
三、工作亮点1. 提高工作效率通过优化设计、改进施工方法,我成功提高了超滤系统的安装和调试效率,缩短了项目周期。
2. 降低客户成本在超滤系统维护过程中,我注重细节,为客户提供优质的售后服务,降低了客户的维护成本。
3. 团队协作在项目实施过程中,我充分发挥团队协作精神,与同事们共同解决问题,确保了项目的顺利完成。
四、不足与改进1. 不足在项目实施过程中,我发现自己在时间管理方面存在不足,导致部分工作进度缓慢。
2. 改进措施为了提高工作效率,我将在今后的工作中加强时间管理,合理安排工作任务,确保项目进度。
五、展望未来在新的一年里,我将继续努力提高自己的业务水平,为我国超滤事业贡献自己的力量。
具体计划如下:1. 深入学习超滤技术,提高自己的专业素养。
2. 加强与团队成员的沟通与协作,共同推进项目实施。
超滤系统的原理和作用

超滤系统的原理和作用超滤系统是一种通过过滤作用来实现水净化的系统,也常用于工业废水处理。
其基本原理是使用超滤膜来过滤水中的杂质和微生物等物质,从而达到净化水的作用。
超滤膜是一种通过高聚物材料制成的微孔膜,其孔径通常在0.01-0.1微米之间,能有效过滤水中的大分子有机物质、蛋白质、微生物等,但不能过滤水分子本身。
当污水流经超滤膜时,超滤膜会将水中的杂质和其他物质通过孔径排除在外,只允许水分子通过,从而达到了净化水的目的。
超滤系统通常由预处理单元、超滤单元和后处理单元三部分组成。
预处理单元:该单元用于将水中大体积、杂质和颗粒物质去除,以避免对超滤膜的损坏或阻塞。
预处理单元包括机械过滤器、重砂过滤器等。
超滤单元:该单元是整个超滤系统的核心部分,通过在过滤过程中使用超滤膜对水进行净化。
超滤单元中通常包括主滤池、超滤膜组件、压力调节装置、气动清洗装置等。
后处理单元:该单元用于对经过超滤处理的水进行后续净化处理,以达到更高的净化效果。
后处理单元通常包括活性炭过滤器、紫外线消毒器等。
超滤系统的主要作用是净化水源,去除水中各种杂质和污染物,从而提高水质。
其净化效果优良,通常能够去除水中的大部分寄生虫卵、病毒、有机物、重金属和微生物等。
超滤系统对于生产饮用水、制药、电子工业、化工、纺织等行业的废水处理也具有广泛的应用。
在生产饮用水方面,超滤系统可以用于集中供水厂、工业和野外饮用水的净化。
其中,超滤系统在野外饮用水净化中的应用,可以有效地减少因自然灾害等情况导致的自来水短缺问题,也有助于提高贫困山区、偏远地区等地区的饮用水条件。
在医药行业方面,超滤系统主要用于工业废水的处理,在制药过程中可以去除水中的微生物和有机杂质,确保制药产品的质量。
在电子和化工行业中,超滤系统可以用于纯化生产过程中的废水,保证生产过程的良好环保效果。
总而言之,超滤系统在工业和日常生活中具有重要的应用价值,可以通过净化水质、减少污染物对水质的影响,保障生产和生活过程的正常进行,同时提高产品的质量和经济效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录超滤系统简介 (3)常规垂直过滤与切向流过滤比较 (3)超滤系统流程图: (4)主要配置: (5)超滤膜装置 (6)膜材料 (8)超滤膜包维护 (10)超滤膜包的维护主要包括以下几个方面 (10)清洗方法: (10)注意: (10)冲洗步骤 (10)清洗剂选择 (11)清洗条件 (11)消毒 (11)除热原 (11)水通量(NWP)测量 (12)完整性测试 (14)保存 (14)附录 (16)超滤系统简介超滤:是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。
超滤是以压力为推动力的膜分离技术之一。
以大分子与小分子分离为目的。
超滤装置如同反渗透装置,有板式、管式(内压列管式和外压管束式)、卷式、中空纤维式等形式。
浓差极化乃是膜分离过程的自然现象,如何将此现象减轻到最低程度,是超滤技术的重要课题之一。
采取的措施有:①提高膜面水流速度,以减小边界层厚度,并使被截留的溶质及时由水带走;②采取物理或化学的洗涤措施。
常规垂直过滤与切向流过滤比较通过比较发现为使在生产中保持连续、稳定的过滤,从而选择切向流过滤。
超滤系统一般包括:回流罐、补液罐、泵、质量流量计、压力传感器、温度传感器、隔膜阀(气动、手动)、压力控制阀、电控箱、管道、夹具等等。
超滤系统流程图: 回流罐超滤装置补液罐滤过液阀泵质量流量计压力传感器压力传感器质量流量计温度传感器压力控制阀压力传感器阀TMP/P/ P主要配置:泵形式:卫生级转子泵材质:316L SS(转子及与液体直接接触的管道部分)流速:200L/min (根据工艺确定)位置:进料段阀形式:卫生级隔膜阀(可调节开度)材质:316L SS膜片:PTFE/EPDM[1]位置:进料段、回流段、透过段、取样口等。
压力传感器形式:卫生级隔膜式[2]材质:316LSS[3]位置:进料段、回流段、透过段质量流量计形式:卫生级玻璃转子流量计材质:316L SS接口及转子位置:进料段、透过段温度传感器形式:卫生级材质:316L SS位置:管道材质:316L SS超滤膜装置形式:板式、管式(内压列管式和外压管束式)、卷式、中空纤维式1、板式膜组件板框式组件是首先应用的大规模超滤和反渗透系统,这种设计起源于常规的过滤概念。
膜、多孔膜支撑材料以及形成料液流道的空间和两个端重叠压紧在一起,料液是有料液边空间引入膜面,所有板框式组件应在单位体积中提供大的膜面积,通常这种组件与管式组件相比控制浓度极化比较困难。
特别是溶液中含大量悬浮固体时,可能会使料液流道堵塞。
在板框式组件中通常要拆开或机械清洗膜,而且比管式组件需要更多的次数。
但是,板框式组件的投资费用和运行费用都比管式组件低。
板式超滤膜是最原始的一种膜结构,由于占地面积大,能耗高,逐步被市场所淘汰,主要用大颗粒物质的分离。
2、管式膜组件管式膜组件首先用于反渗透系统。
这种组件明显的优点是可以控制浓差极化和结垢。
而在反渗透系统中,管式膜已在很大程度上被中空纤维式和螺旋式组件所代替,这是因为他的投资和运行费用都高。
但是在超滤系统,管式组件一直在使用着,这主要是由于管式系统对料液中的悬浮物具有一定承受能力,她很容易用海绵球清洗而无需拆开设备。
管式膜组件的主要优点是能有效地控制浓差极化,大范围地调节料液的流速,膜生成污垢后容易清洗。
其缺点是投资和运行费用都高,单位体积内膜的比表面积较低。
管式膜已存在较长一段时间。
它的设计简洁而易于理解。
管式膜较大的优点,它们能较大范围地耐悬浮固体和许多令人讨厌的纤维、蛋白等物质。
对料液的前处理要求低,对料液可以进行高倍浓缩。
设备的投资费用高,占地面积大,主要用于超微滤系统中。
3、中空纤维膜组件中空纤维式超滤组件与中空纤维式反渗透组件相似,只是孔径大小不同而已。
应用中要根据料液的情况加以选择,各种超滤膜组件都有其成功的应用领域。
中空纤维膜纤维的内径很小,中国的中空纤维膜是起步最早,运用成熟的膜结构,广泛用于水处理。
由于长期国内无序的技术资料由大连莱特莱德水处理公司提供竞争,中空的技术的更新受到了抑制,产品过于单一。
膜的水通量太低,切割分子量不准确,过滤的精度主要集中在5万分子量以上。
KOCH公司拥有全球唯一的切割分子量最小、最精确的1000分子量膜。
4、卷式膜组件卷式构型占膜市场的主导。
卷式膜的设计原本专用于水脱盐处理,但其紧凑的设计、低廉的价格已吸引了其他行业。
经过了许多试验和失败后,重新设计的元件已经可以用于许多工业行业,如医药生化行业、精细化工行业、纸浆和造纸行业、高纯水以及一些高温和极端pH的场合。
但是,大多数膜公司只为极端项目提供一种卷式膜。
膜材料超滤膜的主要材料有聚丙烯腈(PAN)、聚丙烯(PP)、聚砜(PSF)、聚醚砜(PES)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)、纤维素超滤膜超滤膜的亲水性能决定了膜的水通量大小和抗污染能力,机械强度决定膜产品的使用寿命,膜的亲水性能和强度等力学性能是膜使用性能的重要因素。
用于过滤的原液为蛋白质溶液,因此使用后要使用碱液进行清洗、消毒和保存。
聚砜类如聚砜(PS)和聚醚砜(PES)微滤膜。
该类膜具有良好的化学性和热稳定性,耐辐射,机械强度较高,应用面也较广。
PES非亲水性通过改良之后具有优越的性能。
含氟材料类如聚偏氟乙烯(PVDF)和聚四氟乙烯膜(PTFE)。
这类微滤膜,都有极好的化学稳定性,适合在高温下使用。
特别是PTFE膜,其使用温度为-40~260℃可耐强酸、强碱和各种有机溶剂。
由于具有疏水性,可用于过滤蒸气及各种腐蚀性液体。
此两种膜经过改良之后都有优异的性能,但PVDF的造价较PES高,因此可选择经改良之后的聚醚砜(PES)超滤膜。
超滤膜包维护超滤膜包的维护主要包括以下几个方面∙冲洗∙清洗∙消毒∙除热原∙水通量NWP的检测∙完整性测试方法∙保存清洗方法:1.根据污染物选择合适的清洗剂;2.所选择的清洗剂与膜堆相兼容;3.清洗剂的操作条件,选择消毒、除热原和保存剂的方法与此相同。
注意:1.一定要确认选择的清洗剂与膜材质是兼容的。
2.所有新膜堆在安装后第一次使用之前,必须进行冲洗和清洗。
3.清洗好的新膜堆要用纯水测定水通量NWP。
冲洗步骤1.将透过管路和回流管路处于排放状态,确保在冲洗过程中没有液体流回清洗罐中。
2.在清洗罐中加入适宜温度的纯水(经过过滤的去离子水、注射用水或反渗透水)或缓冲液,如果水会导致系统和膜堆内溶质的沉淀,就必须用合适的缓冲液冲洗后才进行清洗。
注:如果是新膜,建议使用30-40升/米2的水进行冲洗,以确保可以把膜包中的保存液冲洗干净。
3.将透过液阀门和回流阀门完全打开。
4.如果您的系统采用的是离心泵,可将泵的出口阀关闭;如果您的系统采用的是变速泵,请把泵速调到最低。
5.启动泵,并立即开启泵的出口阀或提高泵速到下面所列出的数值。
6.用回流阀把本体的回流压力提高到5Psi(0.3bar),同时保持原来的切向流速,这时候进口压应该在20psi(1.3bar)左右。
7.继续用上述条件冲洗一到两分钟。
8.确定清洗罐内的水在停泵前没有用光,避免泵空转。
9.如需要可以在冲洗的后期,从滤过液和回流液中抽样检验残留物,来检查冲洗效果。
清洗剂选择清洗条件1N=1mol/L消毒膜堆的消毒应该在完全清洗和冲洗后才可进行,消毒时需要的压力、流速等与清洗时所用的一样,请参考清洗步骤。
1N=1mol/L为保证膜的使用寿命,消毒的温度应保证在适宜的温度(供应商提供或实验得出)范围内。
除热原除热原应该在清洗、消毒和冲洗之后进行。
除热原时的压力、流速及所需液体体积与清洗相同,请参考清洗步骤。
水通量(NWP)测量新膜在第一次使用之前,应测量它的水通量NWP。
先对膜堆进行清洗和冲洗,然后再测NWP,这时测出的NWP将作为标准来检验每次使用后膜堆的清洗效果。
步骤:1.把回流管和透过液管引回清洗罐。
2.把罐的排放阀关闭,打开回流管路和透过液管路或阀门。
3.如果使用的是变速泵,把泵速调到最小;如果使用的是离心泵,关闭泵的出口阀。
4.在清洗罐中注满纯水,水温在25°C左右,水质应是蒸馏水或过滤后的去离子水。
5.开启泵,调节到以下压力:进口压10psi(0.7bar)回流出口压5psi(0.34bar)6.循环5-10分钟,保证压力和水温的稳定。
7.记录透过液的速度、进口和回流压力、水温等数据。
8.把泵关掉,把系统中的水排空。
9.用以下的公式计算NWP,将计算出的NWP与最初的标准进行比较。
测量:R = 透过速度 ml/minPin = 进口压 psi(bar)Pout = 出口压 psi(bar)Pp = 透过口压psi(bar)T =水温°C算出过滤膜的总面积A =面积ft2(m2)根据测量的温度,从下表中找出的NWP温度校正系数F利用下面公式计算NWP10. 当膜堆使用了一次之后,所测出的NWP不应低于最初标准的80%;在反复使用后(大于5次),每次NWP的衰减不应超过10%。
如果 NWP衰减幅度较大,说明清洗效果不好,应该试用其它的清洗剂和清洗程序。
NWP温度校正系数F完整性测试在对膜堆进行完整性检测之前,系统应该经过充分的清洗和冲洗,残留的清洁剂会对结果有很大影响。
1.首先确定系统已经清洗好,并且膜已经完全湿透。
膜的润湿可以在TMP 为2bar的条件下,用水循环五分钟。
2.将系统内的水排空。
3.把经过过滤的并且压力可调节的气源接到膜堆的进口或回流口,最好选择位置比较高那一个口。
4.把没有接气源的进口或回流口用阀门或其他方法封闭。
5.透过液口是开放的。
6.慢慢的加压到指定的气压,然后稳定五分钟让残留的水排出。
7.测量并记录气压、温度和从透过口出来的气体流量。
气体流量可用气体流量计测量或测量一定时间内在倒置的灌满水的量筒中有多少体积水被排走.8.比较测量的流量与表格中的指标,如果测量值大于指标,请检查膜堆是否按照操作手册的指示正确安装。
如果膜堆安装正确,但所测气体流量仍然高于表中所列的指标,请咨询供应商。
充分润湿的完整的超滤膜的空气流量 ( 毫升/分钟 )保存1.把回流和过滤管结回清洗罐。
2.将回流和过滤口的阀门打开。
3.将泵流速调到最小。
4. 按膜的材质选择合适的保存剂。
按浓度的要求开一定量的保存。
把保存液放进清洗罐。
5.调泵速到下列的流速。
6. 调节回流阀把回流压力和进出口压差调到上表中标明的数值,同时保持要求的流速。
7. 将保存液循环五分钟。
8. 如果膜堆在1-5天之内还要再次使用,可以将膜堆在系统中保存,只需把泵关闭,把进出膜堆夹具的所有管路上的阀门关闭,让膜堆中充满保存液,然后把膜堆和夹具在4℃下保存。
9. 如果在长时间(如超过5天)不会再使用,应把膜堆从滤器上拆下来,用保存液将膜堆充分润湿后,保存在密封的塑料袋中,或放入装有保存液的容器中,并让保存液将膜堆浸没,放在4℃下保存。