自动跟踪太阳能光伏发电系统方案
STM32单片机太阳能电池板自动跟踪的研究与设计

STM32单片机太阳能电池板自动跟踪的研究与设计摘要如何解决能源危机,缓解环境压力,实现能源的可持续发展,已成为全球能源研究的热点。
由于其诸多优势,太阳能已逐渐成为一种新型的有潜力的新型能源,但是由于其本身存在的不足,制约了它的推广与推广。
日冕追踪该控制体系的研制对于我国光伏发电行业的推广和应用以及国家节能降耗等都有着积极的作用。
本论文是针对STM32的一种新型的太阳能电池板自动追踪装置进行了研究。
本文对STM32单片机的太阳能电池板的自动追踪控制进行了详细的论述。
关键词:STM32单片机;太阳能电池板;太阳能自动跟踪系统引言能源是人类发展和进步的重要资源,对能源的管理是我国国民经济发展的第一要务。
当今全球的主要消费是石油、天然气和煤炭等非再生能源,它们的储存量非常小,而且在使用过程中会产生大量的CO2,对生态环境的危害很大。
目前,我国面临的主要问题是,我国目前面临的主要问题是如何通过新的资源来实现资源的利用。
1 STM32单片机太阳能自动跟踪系统硬件设计1.1硬件总体设计方案根据国内外有关能源管理的经验,本文介绍了一种新型的太阳能自动跟踪控制器,并根据该系统的特点,实现了一种新型的太阳能自动跟踪控制器。
本发明既可有效地克服太阳电池的非平稳、间断现象,又可使压缩气体储存装置发热,从而改善其工作效能与效能,其详细的系统硬件结构见下图1-1。
图 1-1 系统硬件总体框图该仪器的各个部件,其主要的作用是:1)利用光电感应器来探测太阳的方向,纠正由观测日线轨道追踪而引起的累计偏差,以及对气象的晴好情况的判别;2.一种对光传感器所产生的弱电流进行采集与加工的信号进行处理,以完成电流转换和电压的放大;3. RTC即时时钟,用以将目前的日期及时刻资讯供给所述控制器;4. LCD液晶屏幕显示当地时间、日期和此时的日高角和方向信息;5. GPS模块的功能是:通过获取地理位置的数据,为观测轨道的计算提供经纬数据;6.采用STM32F103VET6为控制器,通过输出控制讯号,带动方向角马达及角度马达旋转,完成对日的追踪。
单轴太阳能光伏发电自动跟踪控制系统设计

单轴太阳能光伏发电自动跟踪控制系统设计引言:太阳能光伏发电已经成为可再生能源中最受关注的一种技术。
光伏发电效率受到太阳光照的影响,传统的固定光伏发电系统效率较低。
为了优化光伏发电系统的效率,设计了一种单轴太阳能光伏发电自动跟踪控制系统,能够根据太阳位置自动调整光伏板的角度,最大限度地提高太阳能的利用效率。
一、系统工作原理:该单轴太阳能光伏发电自动跟踪控制系统由光敏电阻、测量电路、控制电路和执行机构组成。
光敏电阻负责感应太阳光照强度,传递给测量电路进行电信号转换。
控制电路接收到转换后的信号,并与事先设定的峰值进行比较。
然后,根据比较结果来控制执行机构,使光伏板按需自动调整角度。
二、光敏电阻的选择:光敏电阻是该系统中最重要的一个元件,因为它直接影响到系统的准确度和稳定性。
在选择光敏电阻时,需要考虑以下因素:光敏电阻的特性曲线、光敏电阻的响应时间、光敏电阻的阻值范围等。
一般建议选择具有较高灵敏度和稳定性的光敏二极管。
三、测量电路设计:测量电路的作用是将光敏电阻的电信号转换为适合控制电路处理的电信号。
测量电路一般由信号放大器、滤波器和模数转换器构成。
信号放大器用于放大光敏电阻产生的微弱电信号,滤波器用于去除噪声和杂散信号,模数转换器用于将模拟信号转换为数字信号。
在设计过程中,需要合理设置放大系数和滤波参数,以确保测量电路的准确性和稳定性。
四、控制电路设计:控制电路是系统的核心部分,其功能是根据光敏电阻测量电路输出的信号,与事先设定的峰值进行比较,并根据比较结果来控制执行机构进行角度调整。
控制电路一般由比较器、运算放大器和逻辑电路构成。
比较器用于将输入信号与参考信号进行比较,运算放大器用于放大比较结果的差别,逻辑电路用于判断角度调整方向,并控制执行机构的运动。
五、执行机构设计:执行机构是该系统中最关键的部分,其功能是根据控制电路的指令,使光伏板按需自动调整角度。
常见的执行机构有两种:电动执行机构和气动执行机构。
光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计一、本文概述随着全球能源危机和环境问题的日益严重,可再生能源的开发和利用受到了越来越多的关注。
其中,光伏发电作为一种清洁、可再生的能源形式,具有广泛的应用前景。
然而,传统的光伏发电系统往往存在固定安装、无法有效跟踪太阳位置的问题,导致能量接收效率不高。
因此,本文旨在设计一种光伏发电自动跟踪系统,以提高光伏电池板的能量接收效率,从而推动光伏发电技术的发展和应用。
本文首先介绍了光伏发电的基本原理和现状,分析了传统光伏发电系统存在的问题和不足。
然后,详细阐述了光伏发电自动跟踪系统的设计原理和实现方法,包括硬件设计和软件编程两个方面。
在硬件设计方面,介绍了系统的主要组成部分,如传感器、电机驱动器等,并阐述了它们的工作原理和选型依据。
在软件编程方面,介绍了系统的控制算法和程序流程,包括太阳位置计算、电机控制等。
本文对所设计的光伏发电自动跟踪系统进行了实验验证和性能分析,证明了该系统的有效性和优越性。
也指出了该系统存在的不足之处和改进方向,为未来的研究提供了参考和借鉴。
通过本文的研究和设计,旨在为光伏发电领域提供一种高效、可靠的自动跟踪系统解决方案,推动光伏发电技术的进一步发展和应用,为实现可持续发展和环境保护做出贡献。
二、光伏发电原理及关键技术光伏发电是利用光生伏特效应将光能直接转换为电能的发电方式。
当太阳光照射到光伏电池上时,光子与光伏电池内的半导体材料相互作用,激发出电子-空穴对。
这些被激发的电子和空穴在光伏电池内部电场的作用下分离,形成光生电流,从而实现光能向电能的转换。
光伏发电的关键技术主要包括光伏电池材料的选择、光伏电池的结构设计、光电转换效率的提升以及系统的集成与优化。
光伏电池材料是光伏发电的基础,常用的材料有单晶硅、多晶硅、非晶硅以及薄膜光伏材料等。
不同材料具有不同的光电转换效率和成本,因此在选择时需要综合考虑性能和经济性。
光伏电池的结构设计也是影响光伏发电效率的重要因素。
自动跟踪式独立太阳能光伏发电系统

自动跟踪式独立太阳能光伏发电系统摘要:随着我国经济的高速发展,我国各行各业也呈现出良好的发展趋势。
太阳能的能源动力相当的巨大,其所能产生的能源动力也是可以循环使用的,但是目前来看太阳能的利用效率远远不够,其根本没有得到很好利用,其主要的原因正是由于采集这些能源的技术不够成熟,因此,对于太阳能的利用效率就比较低下,所以,本文就是研究如何更好的提升太阳能的利用效率,首先自动跟踪系统的基本原理及相关应用,以便能够最大限度的提升太阳能的利用效率,最终能够实现太阳能资源的广泛使用。
关键词:自动跟踪;太阳能;光伏发电引言随着世界经济的迅速发展,人类对于能源的需求量越来越大,这使得不可再生能源(煤、天燃气等)变得日益短缺。
当前,世界各国对于新的可再生能源的研发重视程度日益提高,太阳能作为绿色无污染能源且具有适合长期可持续发展的独有优势受到人们热捧。
我国幅员辽阔,具有丰富的太阳能资源,提高太阳能的利用率,可为我国经济的可持续发展提供强有力的动力支援。
当前,如何提高太阳能的接收效率成为研发的重点。
1太阳能光伏自动跟踪系统的定义和特征根据太阳能光伏自动跟踪系统基本功能,其定义如下:指在太阳有效光照时间内,能使太阳光线始终垂直照射到太阳能光伏组件的阵列面上,使光伏组件在有效光照时间内都能最大限度地获取太阳能的装置系统。
该系统的最主要部分通常由控制部件和转动调级部件组成。
控制部件的作用是将太阳即时位置坐标参数直接或间接输出给转动调级部件。
转动调级部件的主要作用是将控制部件给出的信号经过调级处理或分解后用于驱动光伏组件的阵列面始终与太阳光线垂直。
2太阳能光伏自动跟踪系统的控制类型当前的太阳能光伏自动跟踪系统的控制类型还是比较单一的,根据跟踪的原理的差异性,主要有2种跟踪方式,一种是被动跟踪,即按依据论太阳运动轨迹的跟踪,另外一种是主动跟踪,即采用的光电感应的跟踪方式。
太阳运动轨迹跟踪方式对于太阳运动的跟踪,是依据天文算法计算出太阳能光伏系统所在位置任意时刻的太阳高度角和方位角,然后根据系统自身的几何特征,计算出该时刻的跟踪角度。
太阳能自动跟踪发电控制系统开发与设计

太阳能自动跟踪发电控制系统的开发与设计摘要:当前,由于技术条件限制,光伏发电的转换效率很低,严重制约了太阳能发电的发展与普及,因此,在现有条件下,寻求一种实用的方式去提高太阳能的发电效率是非常必要的。
实践证明,太阳能的发电效率和太阳能电池板与太阳光线的角度有很大关系,太阳能发电中,太阳能电池板实时和太阳光线保持垂直能在很大程度上提高太阳能的发电效率。
本文针对如何提高太阳能发电效率的问题,提出了采用自动跟踪的方法,让自动跟踪系统对太阳的运动轨迹作出实时判断,从而使太阳能电池板实时和太阳光线保持垂直,提高光伏转换效率。
关键词:太阳能;自动跟踪;发电控制系统;开发与设计中图分类号:tk511 文献标识码:a 文章编号:1.引言地球上,无论何处都有太阳能,可以就地开发利用,不存在运输问题。
同时,太阳能也是一种洁净的能源,在开发和利用时,不会产生废渣、废水、废气,也没有噪音,更不会影响生态平衡。
但是,太阳能的利用有它的缺点:一是能流密度较低,日照较好的,地面上1平方米的面积所接受的能量只有1千瓦左右。
往往需要相当大的采光集热面才能满足使用要求,从而使装置地面积大,用料多,成本增加。
二是受大气影响较大,给使用带来不少困难。
本文设计一种基于gps定位及太阳方位计算的的太阳自动跟踪装置,该装置能自动跟踪太阳的运动,保证太阳能设备的能量转换部分所在平面始终与太阳光线垂直,提高设备的能量利用率。
与此同时加以风力发电机辅助发电给蓄电池充电,进而在夜间给路灯提供电源。
2 太阳能自动跟踪系统硬件设计2.1 太阳能自动跟踪系统的机械构成及工作原理太阳能自动跟踪系统的机械结构由太阳能电池板、减速电机、齿轮传动机构、基座等构成。
基座主要支撑和固定太阳能自动跟踪器。
当太阳照射角度发生变化时,垂直方向(y)和水平方向(x)的减速电机就会相应的通电转动,通过齿轮机构传动使太阳能电池板始终与太阳光线垂直,即获取到最大的太阳光照能量。
整个装置由机械部分和控制部分组成。
光伏发电双轴智能跟踪系统设计

光伏发电双轴智能跟踪系统设计摘要:随着经济与技术的共同发展,人们对于能源的需求越来越大,使得目前对于能源的消耗量逐渐增长,但是目前大多数能源还都是采用以往的化石燃料焚烧的方法来都得到。
因此,为了能够使得能源进行一定的优化与改善,就需要不断的探索并开发出新能源。
通过光伏发电双轴智能跟踪系统的应用,能够有效的实现将太阳能转化为电能,在该系统中采用了单片机、锂电池、光电传感器、电机等设备,通过这些设备的应用能够实现智能化的跟踪光源,充分的获取所需的太阳能,并将其合理的利用,有效的发挥该系统的作用。
本篇文章就对于光伏发底单双轴智能跟踪系统进行研究与分析,从而促进该系统的推广与应用,实现新能源的开发与应用。
关键词:光伏发电;智能跟踪系统;在光伏发电的实际应用过程中,其太阳能的有效利用成为了一大难题,因此,为了能够有效的获取充足的太阳能,并且提高电能生产的效率,需要对发电效率以及光能的获取这两项内容进行研究与分析。
对于地球而言,其每个地方所受到太阳照射的时间、程度都是不一样的,且其变化的速度非常快。
因此,为了能够保证光伏发电能够不受该问题的影响,能够获取充足的光能,需要设计出一种特殊的光伏发电系统,并且保证该系统的应用过程中太阳的位置光能发电板的位置能够相互匹配,提高光能的收集效率。
根据相关的研究发现,采用追踪模式能够有效的追踪光能的位置,从而提高光能获取的效率,因此光伏发电双轴智能跟踪系统的研发与应用是非常必要的。
1双轴智能跟踪系统的作用原理在双轴智能跟踪系统的应用过程中,需要相关设备及装置的支持,其中双轴智能跟踪装置发挥重要的作用,在该装置的内部通过应用两个同种类型的电机,能够实现对于高度以及角度的控制,从而保证光伏发电所使用的发电板能够时刻与太阳照射之间的角度保持在90度,在应用的过程中电机通过旋转来时刻的追踪太阳位置的变化情况。
在光伏发电双轴智能跟踪系统中还会利用光电传感器设备,通过该设备的应用能够有效的将光信号转化为电信号。
光伏发电双轴自动跟踪控制系统的设计与应用

及 方 位 角 %。该 数 据 值 由 天 文 算 法 [M)计 算 得 到 :
sin y 0 = sin^?sin5 + cos^cos^cosw
( 1)
sin^?siny0 - sin5
c o s r〇= ------------------------
(2)
cos^>cosy0
式中:% 为太阳光初始高度角; 为太阳光初始方位
本文的研究对象是新型光伏电池板双轴跟踪系 统 其 系 统 外 观 结 构 如 图 1 所示。
图 1 中 :电 机 1 控 制 电 池 板 的 水 平 方 向 (东 、西方 向 )转 动 ,跟 踪 太 阳光的方位角;电 机 2 控制光伏电池 板垂直方向(南 、北 方 向 )转 动 ,跟 踪 太 阳 光 的 高 度 角 , 最 终 使 得 电 池 板 平 面 与 太 阳 光 实 时 保 持 垂 直 ,提 升 光 伏电站的发电量。该 双 轴 跟 踪 支 架 结 构 设 计 简 单 、巧 妙 ,具有控制灵活、精度高的优点。 1 . 2 系统工作原理
A b stra c t:With the continuous development of photovoltaic industry, in order to improve the power generation of photovoltaic panels and power stations, the tracking control system based on field programmable gate array ( FPGA) control chip is proposed based on a new type of photovoltaic panel dual axis automatic tracking bracket. The azimuth and altitude angles of sunlight are calculated by astronomical calculation method and photoelectric sensor analog correction method. Then, according to the mathematical relationship between the positions of photovotaic ( P V ) panel and feedback, three phase pulse control signal is obtained. The forward and reverse rotation of the two motors are controlled by time sharing in the working process. The sunlight is always perpendicular to the plane of the panel, which realizes the real-time tracking of the sunlight angle. Finally, a project in Xinjiang is taken as an example, the measured data results are compared with the simulation results based on PVsyst software. The Comparison results show that the control system can accurately track the sunlight, which verifies the effectiveness of the system design. Compared with the fixed mode, the photovoltaic power generation can be increased by more than 30% using the dual axis automatic tracking system. The system can be applied in the following engineering projects, and can increase the revenue of photovoltaic power station. Keywords :Field programmable gate array ( FPG A ) ; Photoelectric sensor; Time sharing control; Propotion integral ( PI ) regulator;Pulse width modulation( PWM) ;Three phase full bridge circuit;PVsyst;Dual axis automatic tracking system
嵌入式太阳能光伏发电自动跟踪控制系统设计

第 3期
桂 林 电 子 科 技 大 学 学 报
J u n lo ii ie st fElc r ncTe hn lg o r a fGuln Unv riyo e to i c oo y
V0 . O, . 1 3 NO 3
21 0 0年 6月
J n 2 1 u .00
De i n o o a s g f s l r PV ut a om a i r c ng tc t a ki c t o y t m s d o m b dde y t m on r l s s e ba e n e e d s se
Z a g Ja b h n in o,Yi n nQu
s s e S s n t a k n e ie b x r c i g GP a a t ac l t h o a liu e a d a i t y t m’ u —r c i g d v c y e t a tn S d t o c l u a e t e s l r a tt d n zmu h,t e rv t r h n d ie mo o
阳能的利用率。
关 键 词 : 入 式 系 统 ; 阳跟 踪 器 ; 维 平 面 支 架 控 制 器 ;MP T; W M ; S 嵌 太 二 P P GP 中 图分 类号 : M6 5 T 1 文献标识 码 : A 文章 编 号 :1 7 -0 X(0 0 0 -2 70 6 38 8 2 1 ) 30 4— 3
( . Ox r g o lg 1 b i eC l e,Ku mi g Un v r i fS in ea d Te h oo y Yu n n 6 0 0 , ia d e n n ie s yo ce c n c n lg ・ n a 5 1 6 Chn t 2 S ho f p l dT c n lg . c o l p i e h oo y,Ku m ig Unv r i f ce c n c n l y Yu n n 6 0 9 , ia o A e n n ie s yo in ea d Te h o o , n a 5 0 3 Ch n ) t S g
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动跟踪太阳能光伏发电系统方案
方案需求
■光伏发电管理急需精细化,降本增效。
■传统光伏支架未能最大化利用太阳能,无法跟踪光照。
■光伏板依靠本地维护人员巡检管理,人工成本高,且存在漏检现象。
方案介绍
宇飞太阳能自主研发的自动跟踪太阳能光伏发电系统,是一种能随着太阳角度变化,按照一定的算法,控制太阳能板转动,增加有效受光面积,从而增加电厂发电量带来更高收益的自动化控制系统,可以理解为“向日葵”。
自动跟踪太阳能光伏发电系统其实是一套负反馈控制系统,工控机采集角度传感器信息后,根据当前角度与目标角度的差异,下发控制指令驱动电机带动推拉杆运动使太阳能板旋转,直至采集回来的当前角度与目标角度吻合。
系统组成
自动跟踪太阳能光伏发电系统由:太阳能跟踪支架,太阳能组件,带监控模块的MPPT控制器,蓄电池,逆变器及连接线缆组成。
太阳能跟踪支架规格参数
1、立柱直径:φ220mm
2、立柱高度:650mm
3、安装容量:最大6块450W
4、光伏板倾角:25度角度固定
5、抗风能力:14级,带细钢丝绳斜拉结构;
6、材料:不锈钢材料
7、旋转精度:1度
8、旋转速率:12分钟旋转半圈
9、旋转角度:220度,
10、提高发电量:天气晴好情况下,冬季提高发电量15%;春秋季提高30%;夏季提高45%;综合全年提高25-35%(不同地区发电量提高有区别)
11、控制器电源:12V由光伏板输出供电(或者提供集中12V 直流供电)
12、控制方式:将光伏板固定好,并将追日控制器接好电源线后,天气晴朗条件下旋转立柱自动带着光伏板跟踪太阳;在天阴时,自动转入时控控制状态,每隔5分钟自动旋转1度;
13、而且每个旋转立柱内部都有同步控制系统,确保每台旋转立柱每次旋转的角度完全一致,光伏板以最强光强功率发电。
晚上天黑,自动回东。
14、由多个旋转立柱组成的各种规模的光伏电站,由于旋转立柱的东限位位置全部一致,旋转立柱内置机械同步装置,可以确
保由所有旋转立柱带动的大型光伏电站跟踪太阳的角度完全同步协调一致。
15、内置高强度自锁装置,东西限位保护等高强度机械保护装置。
16、内置1根400mm高度内管支撑,保证旋转立柱的高强度,高刚性,具有高达14级的超强抗风能力。
17、电机驱动力:130公斤.厘米
18、旋转立柱每天只工作24分钟,每年工作150小时,电机寿命4000-6000小时。
整体寿命20年有保障;
19、旋转立柱输出扭力:50牛米(6块)/32牛米(4块);
20、安装极简易的旋转立柱,跟踪设备不需要您在现场拧一颗螺丝,固定好立柱即安装完毕,大幅度降低了安装的人工成本,综合成本极低;
带监控模块MPPT控制器
能够实时侦测太阳能板的发电功率,并追踪最高电压电流值(VI),使系统以最大功率输出对蓄电池充电。
应用于离网光伏系统中,协调太阳能电池板、蓄电池、负载的工作,是离网光伏系统的核心控制部件。
采用液晶动态显示运行状态、运行参数、控制器日志、历史参数、控制参数等。
用户可通过按键查阅各项参数,并可根据
需要修改控制器参数以适应不同的系统要求。
控制器采用标准Modbus通信协议,方便用户自己扩展查看和修改系统的各项参数。
同时本公司提供免费监控软件,方便用户实现不同远程监控。
控制器内部具有全面的电子故障自测功能和强大的电子保护功能,可最大程度避免由于安装错误和系统故障而导致产品部件的损坏。
产品特点
◆先进的双波峰或多波峰追踪技术,当电池板有阴影遮挡或是部分电池板有损坏时,I-V曲线将出现多个波峰,控制器仍然能准确追踪到最大功率点。
◆内建最大功率追踪算法,能显著提高光伏系统的能量利用率,比传统PWM充电效率高15%~20%左右。
◆多种追踪算法相结合,能在极短的时间之内准确的追踪到I-V曲线的最佳工作点。
◆MPPT追踪效率最高可达99.9%。
◆采用先进的数字电源技术,电路能量转换效率高达98%。
◆支持胶体电池,密封电池,开口电池,用户自定义等不同类型电池充电程序
◆具有限流充电模式,当电池板功率过大,充电电流大于额定电流时,控制器自动降低充电功率,使其工作在额定充电电流。
◆可支持容性负载瞬间大电流启动。
◆支持蓄电池电压自动识别。
◆具有故障LED指示、液晶显示异常信息,方便用户确定系统故障。
◆支持历史数据存储,存储时间长达1年。
◆自带LCD屏显示功能,可以查看设备运行数据和状态,同时可支持控制器参数的更改。
◆支持标准modebus协议,满足不同场合通讯需求。
◆所有通信均采用电气隔离方式,客户可放心使用。
◆内置过温保护机制,当温度超过设备设定值时充电电流随温度线性下降、放电关闭,从而减小控制器的温升,避免控制器高温损坏。
◆具有外部蓄电池电压采样功能,通过外部蓄电池电压采样可以使得蓄电池采样不受线损的影响,控制更加精准。
◆具有温度补偿功能,自动调整充放电参数,提高蓄电池使用寿命。
◆具有蓄电池超温保护功能,外部蓄电池温度超过设定值会关闭充放电,以免温度过高损坏设备。