期末复习专题空间向量与立体几何
2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
立体几何与空间向量知识点归纳总结

立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征(1)棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的性质:侧面都是平行四边形;侧棱都平行,侧棱长都相等。
直棱柱:侧棱垂直底面的棱柱叫直棱柱。
正棱柱:底面是正多边形的直棱柱叫正棱柱。
(2)棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
棱柱的性质:平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
(3)棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
棱台的性质:①上下底面平行且是相似的多边形;②侧面是梯形;③侧棱交于原棱锥的顶点。
(4)圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
圆柱的性质:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
圆锥的性质:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
圆台的性质:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个扇环形。
(7)球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的性质:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积之和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积rhS π2=圆柱侧'21ch S =正棱锥侧面积 rlS π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V S h r h π==圆柱 13V S h =锥 h r V 231π=圆锥'1()3V S S h =+台 '2211()()33V S S h r rR R h π=+=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24Rπ3、平面及基本性质公理1 ααα⊂⇒∈∈∈∈l B A l B l A ,,, 公理2 若βα∈∈P P ,,则a =⋂βα且α∈P公理3 不共线三点确定一个平面(推论1直线和直线外一点,2两相交直线,3两平行直线)4、空间两直线的位置关系共面直线:相交、平行(公理4) 异面直线 5、异面直线(1)对定义的理解:不存在平面α,使得α⊂a 且α⊂b (2)判定:反证法(否定相交和平行即共面) 判定定理:15P★(3)求异面直线所成的角:①平移法 即平移一条或两条直线作出夹角,再解三角形.②向量法 |||||,cos |cos b a =><=θ (注意异面直线所成角的范围]2,0(π(4)证明异面直线垂直,①通常采用三垂线定理及逆定理或线面垂直关系来证明;②向量法 0=⋅⇔⊥(5)求异面直线间的距离:大纲仅要求掌握已给出公垂线或易找出公垂线的有关问题计算.6、 直线与平面的位置关系1、直线与平面的位置关系A a a a =⋂⊂ααα,//,2、直线与平面平行的判定(1)判定定理: ααα////b a a b b ⇒⎪⎭⎪⎬⎫⊂⊄ (线线平行,则线面平行17P )(2)面面平行的性质:βαβα////a a ⇒⎭⎬⎫⊂ (面面平行,则线面平行) 3、直线与平面平行的性质b a b a a //,//⇒⎭⎬⎫=⋂⊂βαβα (线面平行,则线线平行18P )★4、直线与平面垂直的判定 (1)直线与平面垂直的定义的逆用a l a l ⊥⇒⎭⎬⎫⊂⊥αα, (2)判定定理:αα⊥⇒⎪⎭⎪⎬⎫=⋂⊂⊥⊥l A n m n m n l m l ,, (线线垂直,则线面垂直23P )(3)αα⊥⇒⎭⎬⎫⊥a b b a // (25P 练习 第6题) (4)面面垂直的性质定理:βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l , (面面垂直,则线面垂直51P )(5)面面平行是性质:βαβα⊥⇒⎭⎬⎫⊥l l // 5、射影长定理★6、三垂线定理及逆定理 线垂影⇔线垂斜7、 两个平面的位置关系:空间两个平面的位置关系 相交和平行8、两个平面平行的判定 (1)判定定理:βαβαα//,,//,//⇒⎭⎬⎫=⋂P b a b a b a (线线平行,则面面平行19P )(2)βαβα//⇒⎭⎬⎫⊥⊥l l 垂直于同一平面的两个平面平行 (3)βαγβγα////,//⇒ 平行于同一平面的两个平面平行 (21P 练习 第2题) 9、两个平面平行的性质(1)性质1:βαβα//,//a a ⇒⊂(2)面面平行的性质定理: b a b a //,//⇒⎭⎬⎫=⋂=⋂γβγαβα (面面平行,则线线平行20P )(3)性质2:βαβα⊥⇒⊥l l ,// 10、两个平面垂直的判定与性质(1)判定定理:βααβ⊥⇒⊂⊥a a , (线面垂直,则面面垂直50P )(2)性质定理:面面垂直的性质定理:βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l , (面面垂直,则线面垂直51P )12、 空间角:异面直线所成角(9.1);斜线与平面所成的角 )2,0(π(1)求作法(即射影转化法):找出斜线在平面上的射影,关键是作垂线,找垂足. (2)向量法:设平面α的法向量为,则直线AB 与平面α所成的角为θ,则|||||,cos |sin n AB =><=θ )2,0(πθ∈(3)两个重要结论最小角定理48P :21cos cos cos θθθ= ,,26P 例4 28P 第6题 13、空间距离:求距离的一般方法和步骤 (1)找出或作出有关的距离; (2)证明它符合定义;(3)在平面图形内计算(通常是解三角形) 求点到面的距离常用的两种方法 (1)等体积法——构造恰当的三棱锥;(2)向量法——求平面的斜线段,在平面的法向量上的射影的长度:d =直线到平面的距离,两个平行平面的距离通常都可以转化为点到面的距离求解 异面直线的距离① 定义:和两异面直线都垂直相交且夹在异面直线间的部分(公垂线段) ② 求法:法1 找出两异面直线的公垂线段并计算,法2 转化为点面距离向量法 d =(A ,B 分别为两异面直线上任意一点,为垂直于两异面直线的向量) 注意理解应用:θcos 22222mn d n m l ±++=二、空间向量知识点 1、空间向量的加法和减法:()1求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.()2求两个向量和的运算称为向量的加法:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则. 2、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.3、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.4、向量共线充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.5、平行于同一个平面的向量称为共面向量.6、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C A P =A B +A ;或对空间任一定点O ,有x y C O P =O A +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z O P =O A +O B +O ++=. 7、已知两个非零向量a 和b ,在空间任取一点O ,作a O A=,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.8、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.9、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0. 10、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 11、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=; ()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4c o s ,ab a b a b⋅〈〉=;()5a b a b ⋅≤.12、空间向量基本定理: 若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.13、空间任意三个不共面的向量都可以构成空间的一个基底. 14、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O重合,得到向量p O P =.存在有序实数组{},,x y z ,使得123p x e y e z e =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .15、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=.()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.()6若b ≠,则12//,,a b a b xλλλλ⇔=⇔==.()721a a a x =⋅=+ ()821cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =16、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y 使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置.17、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量.18、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.19.0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.20、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.21、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.22、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.23、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.24、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.25、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.26、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=。
数学人教A版选择性必修第一册第一章空间向量与立体几何章末复习

以O为坐标原点, 建立如图所示
空间直角坐标系Oxyz .
设OD SO OA OB OC a ,
z
a a
则A(a , 0, 0), B(0, a , 0), C ( a , 0, 0), P 0, , ,
2 2
⊥ 1 . 1 ⊥ 平面
当 = 4, = 3, 1 = 5时, 求平面与平面1 1 的夹角的余弦值.
D
C
1
1
A1
B1
E
F
D
C
A
B
(2) 以A为原点建立如图所示空间直角坐标系, 则A(0,0,0), A1 (0,0,5),
B(4,0,0), B1 (4,0,5), D(0, 3,0), C (4, 3,0).
n AP ax y z 0
2
2
取z 1, 则x 0, y 1,
所以n (0, 1,1),
设直线BC 与平面PAC 所成的
则 sin cos CB, n
,
CB n 2
所以直线BC 与平面PAC 所成的角为30.
由(1)知 A1C (4, 3, 5)是平面AEF的一个
法向量.
设平面BDD1 B1的法向量为n ( x , y , z ),
n BB1 5 z 0
则
,
n BD 4 x 3 y 0
令x 3, 得y 4, n (3, 4, 0)
z
D
C
1
1
A1
B1
E
y
F
D
C
A
B
x
高考数学压轴专题最新备战高考《空间向量与立体几何》经典测试题及答案解析

【最新】数学《空间向量与立体几何》期末复习知识要点一、选择题1.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值;④AEF ∆的面积与BEF ∆的面积相等,A .4B .3C .2D .1【答案】B【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质2.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A .163πB .643C .16643π+ D .1664π+【答案】C【解析】由三视图可知,该几何体是有一个四棱锥与一个圆锥的四分之一组成,其中四棱锥的底面是边长为4 的正方形,高为4 ,圆锥的底面半径为4 ,高为4,该几何体的体积为, 221116644444333V ππ+=⨯⨯+⨯⨯⨯=, 故选C.3.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为( )A .34B .78C .1516D .2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE -,该几何体的体积为1111711132228⎛⎫-⨯⨯+⨯⨯= ⎪⎝⎭ 故选B 点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.4.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( )A .7B .3C .1+3D .2【答案】A【解析】【分析】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就是最小值.【详解】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值,Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=. 所以11=90+60=150MA D ∠o o o2211111111132cos 13223()72MD A D A M A D A M MA D ∴=+-∠=+-⨯⨯-⋅⨯=故选A .【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题.5.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )A .2⎡⎣B .3⎡⎣C .322⎣D .622⎣ 【答案】D【解析】【分析】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t =⎧⎨=-⎩,然后用空间两点间的距离公式求解即可. 【详解】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y . ()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r 由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r 且01BD AP ⋅=u u u u r u u u r所以10x t -+=且110x y --+=得+1x t =,1y t =-. 所以()2221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r 当12t =时,min 6AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 62AP ≤≤u u u r 故选:D【点睛】本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A .23B .13C .12D .34【答案】B【解析】分析:先还原几何体,再根据锥体体积公式求结果.详解:几何体如图S-ABCD ,高为1,底面为平行四边形,所以四棱锥的体积等于21111=33⨯⨯, 选B.点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断求解.7.在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD (不包括端点)上的动点,且线段12PP 平行于平面11AADD ,则四面体121PP AB 的体积的最大值是 A .124 B .112 C .16 D .12【答案】A【解析】由题意在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD 上的动点,且线段12PP 平行于平面11121,AADD PP B AD B ∆~∆, 设1,(0,1)PB x x =∈,即1222,PP x P =到平面11AA B B 的距离为x , 所以四棱锥121PP AB 的体积为2111(1)1()326V x x x x =⨯⨯-⨯⨯=-, 当12x =时,体积取得最大值124,故选A .点睛:本题考查了空间几何体的结构特征,及几何体的体积的计算,其中解答中找出所求四面体的底面面积和四面体的高是解答的关键,着重考查了分析问题和解答问题的能力,对于空间几何体的体积与表面积的计算时,要正确把握几何体的结构特征和线面位置关系在解答中的应用.8.在正方体1111ABCD A B C D -中,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若1D E CF ⊥,则当EBC V 的面积取得最小值时,EBC ABCD S S=△( ) A .25 B .12 C .5 D .510【答案】D【解析】【分析】根据1D E CF ⊥分析出点E 在直线1B G 上,当EBC V 的面积取得最小值时,线段EB 的长度为点B 到直线1B G 的距离,即可求得面积关系.【详解】先证明一个结论P :若平面外的一条直线l 在该平面内的射影垂直于面内的直线m ,则l ⊥m ,即:已知直线l 在平面内的射影为直线OA ,OA ⊥OB ,求证:l ⊥OB .证明:直线l 在平面内的射影为直线OA ,不妨在直线l 上取点P ,使得PA ⊥OB ,OA ⊥OB ,OA ,PA 是平面PAO 内两条相交直线, 所以OB ⊥平面PAO ,PO ⊂平面PAO ,所以PO ⊥OB ,即l ⊥OB .以上这就叫做三垂线定理.如图所示,取AB 的中点G ,正方体中:1111A C D B ⊥,CF 在平面1111D C B A 内的射影为11A C ,由三垂线定理可得:11CF D B ⊥,CF 在平面11A B BA 内的射影为FB ,1FB B G ⊥由三垂线定理可得:1CF B G ⊥,1B G 与11D B 是平面11B D G 内两条相交直线,所以CF⊥平面11B D G,∴当点E在直线1B G上时,1D E CF⊥,设BC a=,则1122 EBCS EB BCEB a=⨯⨯=⨯⨯△,当EBCV的面积取最小值时,线段EB的长度为点B到直线1B G的距离,∴线段EB长度的最小值为5a,2152510EBCABCDaaSS a⨯⨯∴==△.故选:D.【点睛】此题考查立体几何中的轨迹问题,通过位置关系讨论面积关系,关键在于熟练掌握线面垂直关系的判定和平面图形面积的计算.9.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为()A.64 B.643C.16 D.163【答案】D【解析】根据三视图知几何体是:三棱锥D ABC-为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.10.三棱锥D ABC -中,CD ⊥底面,ABC ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的体积为( )A .3B .3C .13D .3【答案】B【解析】根据题意画出如图所示的几何体:∴三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体为三棱锥F ABC - ∵ABC 为正三角形,2AB =∴132232ABC S ∆=⨯⨯=∵CD ⊥底面ABC ,//AE CD ,2CD AE ==∴四边形AEDC 为矩形,则F 为EC 与AD 的中点∴三棱锥F ABC -的高为112CD = ∴三棱锥F ABC -的体积为13313V == 故选B.11.已知,m l 是两条不同的直线,,αβ是两个不同的平面,则下列可以推出αβ⊥的是( )A .,,m l m l βα⊥⊂⊥B .,,m l l m αβα⊥⋂=⊂C .//,,m l m l αβ⊥⊥D .,//,//l m l m αβ⊥【答案】D【解析】【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断.【详解】对于A ,m l ⊥,m β⊂,若l β⊥,则//αβ,故A 错误;对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,又因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.故选:D【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.12.四棱锥P ABCD -所有棱长都相等,M 、N 分别为PA 、CD 的中点,下列说法错误的是( )A .MN 与PD 是异面直线B .//MN 平面PBC C .//MN ACD .MN PB ⊥【答案】C【解析】【分析】画出图形,利用异面直线以及直线与平面平行的判定定理,判断选项A 、B 、C 的正误,由线线垂直可判断选项D .【详解】由题意可知四棱锥P ABCD -所有棱长都相等, M 、N 分别为PA 、CD 的中点,MN 与PD 是异面直线,A 选项正确;取PB 的中点为H ,连接MH 、HC ,四边形ABCD 为平行四边形,//AB CD ∴且AB CD =,M Q 、H 分别为PA 、PB 的中点,则//MH AB 且12MH AB =, N Q 为CD 的中点,//CN MH ∴且CN MH =,则四边形CHMN 为平行四边形, //MN CH ∴,且MN ⊄平面PBC ,CH ⊂平面PBC ,//MN ∴平面PBC ,B 选项正确;若//MN AC ,由于//CH MN ,则//CH AC ,事实上AC CH C ⋂=,C 选项错误; PC BC =Q ,H 为PB 的中点,CH PB ∴⊥,//MN CH Q ,MN PB ∴⊥,D 选项正确.故选:C.【点睛】本题考查命题的真假的判断与应用,涉及直线与平面的平行与垂直的位置关系的判断,是中档题.13.某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为()A.2B.3C.4 D.26【答案】B【解析】解:如图所示,该几何体是棱长为2的正方体中的三棱锥P ABC-,其中面积最大的面为:1232232PACSV=⨯=本题选择B选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.14.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,23AB AC ==P ABC -的外接球的表面积为( ) A .32πB .48πC .64πD .72π 【答案】C【解析】【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可.【详解】 在ABC V 中,23AB AC ==23BAC π∠=,可得6ACB π∠=, 则ABC V 的外接圆的半径323π2sin 2sin 6AB r ACB ===ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心,则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.15.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .160【答案】D【解析】 设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得221156AC AC A A =-= 同理可得2211200102BD D B D D =-==,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以2211()()1450822AB AC BD =+=+=,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.16.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .122πB .12πC .82πD .10π【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积. 详解:根据题意,可得截面是边长为2 2的圆,且高为2, 所以其表面积为222)22212S πππ=+=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.17.在空间中,下列命题为真命题的是( ).A .对于直线,,a b c ,若,a c b c ⊥⊥则//a bB .对任意直线a ,在平面α中必存在一条直线b 与之垂直C .若直线a ,b 与平面α所成的角相等,则a ∥bD .若直线a ,b 与平面α所成的角互余,则a ⊥b【答案】B【解析】【分析】通过空间直线与直线的位置关系判断选项的正误即可。
空间向量与立体几何复习课ppt课件

一、空间向量及其运算
(一)基本概念 1. 空间向量:空间中具有大小和方向的量 叫做向量. 2. 空间向量也用有向线段表示,并且同向且 等长的有向线段表示同一向量或相等的向量.
3. 向量的模:向量的大小叫向量的长度或 模。即表示向量的有向线段的长度。 4. 单位向量:模是 1 的向量。
5. 零向量:模是 0 的向量。零向量的方向 是任意的。有向线段的起点与终点重合。
a b
2.共面向量定理:如果两个向量 a 、b 不共线,则向 量 p 与向量 a 、b 共面的充要条件是存在唯一的有 序实数对 ( x, y) 使 p xa yb .
3.空间向量基本定理:如果两个向量 a 、b、c 不共面, 则对空间中的任意向量 p ,存在唯一的有序实数对 (x, y , z) 使 p xa yb zc .
(二)、空间角的向量方法:
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法பைடு நூலகம்量分别为 u, v ,则
两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos cosa b ;
2
直线 l 与平面 所成角 ( 0 ≤ ≤ ), sin cosa u ;
2
二面角 ─l ─ 的为 ( 0≤ ≤ ), cos cosu v.
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
理论知识点
一、空间向量及其运算
1、基本概念;
2、空间向量的运算;
3、三个定理;
4、坐标表示。
二、立体几何中的向量方法
1、判断直线、平面间的位置关系; 2、求解空间中的角度; 3、求解空间中的距离。
第1章 空间向量与立体几何 章末测试(提升)(解析版)

第1章 空间向量与立体几何章末测试(提升)一.单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·全国高二课时练习)已知平面α的一个法向量是(2,1,1)-,//αβ,则下列向量可作为平面β的一个法向量的是( )A .()4,22-,B .()2,0,4C .()215--,,D .()42,2-,【答案】D【解析】平面α的一个法向量是(2,1,1)-,//αβ,设平面β的法向量为(),,x y z , 则()(2,1,1),,,0x y z λλ=≠-,对比四个选项可知,只有D 符合要求,故选:D. 2.(2021·福建)若,a b 是平面α内的两个向量,则( ) A .α内任一向量p a b λμ=+(λ,μ∈R) B .若存在λ,μ∈R 使a b λμ+=0,则λ=μ=0C .若,a b 不共线,则空间任一向量p a b λμ=+ (λ,μ∈R)D .若,a b 不共线,则α内任一向量p a b λμ=+ (λ,μ∈R) 【答案】D【解析】当a 与b 共线时,A 项不正确;当a 与b 是相反向量,λ=μ≠0时,a b λμ+=0,故B 项不正确;若a 与b 不共线,则与a 、b 共面的任意向量可以用a ,b 表示,对空间向量则不一定, 故C 项不正确,D 项正确.故选:D .3.(2021·浙江高二单元测试)已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( )A B C D 【答案】A【解析】由题意可知:()()2,,,1,21,0a t t b t t ==-- 所以()1,1,b a t t t -=---- ,则:(b a t -=--= ,当且仅当0t =时取等号.即b a -故选:A4.(2021·湖北鄂州市·高二期末)已知空间三点()1,0,3A ,()1,1,4B -,()2,1,3C -,若//AP BC ,且14AP =P 的坐标为( ) A .()4,2,2-B .()2,2,4-C .()4,2,2-或()2,2,4-D .()4,2,2-- 或()2,2,4-【答案】C【解析】设(),,P x y z ,则()1,,3AP x y z =--,()3,2,1BC =--,因为//AP BC ,所以()3,2,AP BC λλλλ==--,1323x y z λλλ-=⎧⎪=-⎨⎪-=-⎩,3123x y z λλλ=+⎧⎪=-⎨⎪=-+⎩,所以()31,2,3P λλλ+--+,又14AP ==解得1λ=或1λ=-,所以()4,2,2P -或()2,2,4-,故选:C5.(2021·浙江高二单元测试)已知(),(3,0,1),(131,2,3,1),55a b c =-==--给出下列等式: ①||||a b c a b c ++=--;②()()a b c a b c +⋅=⋅+;③2222()a b c b c a =++++ ④()()a b c a b c ⋅⋅=⋅⋅.其中正确的个数是 A .1个 B .2个C .3个D .4个【答案】D【解析】由题设可得197(,3,)55a b c ++=,则635255a b c ++== 923(,1,)55a b c --=-,63525a b c --=,则①正确;因1346()(4,2,2)(,1,)205555a b c +⋅=⋅--=-+-=, 1481424()(1,2,3)(,1,)205555a b c ⋅+=⋅-=+-=,故②正确;又因2635127()255a b c ++==,而22235714,10,255a b c ====,所以22271272455a b c ++=+=,即③正确; 又3030a b ⋅=+-=,则()0a b c ⋅⋅=, 而330055b c ⋅=-++=,故()0a b c ⋅⋅=,也即④正确. 故选:D .6.(2021·苏州)在平形六面体ABCD A B C D ''''-,其中1AB =,2AD =,3AA '=,90BAD ∠=,60BAA DAA ''∠==,则AC '的长为( )A B C D 【答案】B【解析】设AB a =,AD b =,AA c '=,因为六面体ABCD A B C D ''''-是平行六面体, 所以AC AC CC AB AD AA a b c '''=+=++=++, 所以()22222222AC a b ca b c a b b c a c '=++=+++⋅+⋅+⋅,即22222cos902cos602cos60AC a b c a b b c a c '=+++⋅⋅+⋅⋅+⋅⋅所以2222111232232132322AC '=+++⨯⨯⨯+⨯⨯⨯=,所以AC ' 故选:B7.(2021·江苏南京市·高二开学考试)如图,在三棱柱ABC -A 1B 1C 1中,BC 1与B 1C 相交于点O ,∠A 1AB =∠A 1AC =60,∠BAC =90,A 1A =3,AB =AC =2,则线段AO 的长度为( )A B C D 【答案】A【解析】因为四边形11BCC B 是平行四边形,()111122BO BC BC BB ∴==+, 111111122222AO AB BO AB BC AA AC AB AA ∴=+=++=++11160,90,3,2,A AB A AC BAC A A AB AC ︒︒∠=∠=∠====22214,9,0AB AC AA AB AC ∴===⋅=,1132cos603AB AA AC AA ⋅=⋅=⨯⨯=,()22114AO AB AC AA ∴=++,()22211112224AB AC AA AB AC AB AA AC AA =+++⋅+⋅+⋅ 294=||AO →∴=,即AO =. 故选:A8.(2021·天津市)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值,则在单位正方体1111ABCD A BC D -中,直线AC 与1BC 之间的距离是( )A .2B .3C .12D .13【答案】B【解析】设M 为直线AC 上任意一点,过M 作1MN BC ⊥,垂足为N , 设AM AC AB AD λλλ==+,11BN BC AD AA μμμ==+, 则1(1)()MN AN AM AB BN AM AB AD AA λμλμ=-=+-=-+-+, 11BC AA AD =+,1MN BC ⊥,∴1·0MN BC =,即11[(1)()]()0AB AD AA AD AA λμλμ-+-+⋅+=, 221()0AD AA μλμ∴-+=,即0μλμ-+=, 2λμ∴=,∴1(12)MN AB AD AA μμμ=--+,(1MN ∴==∴当13μ=时,||MN ,故直线AC 与1BC 之间的距离是3. 故选:B.二、多选题(每题至少有两个选项为正确答案,每题5分,4题共20分) 9.(2021·全国高二单元测试)在以下命题中,不正确的命题有( ) A .a b a b -=+是a 、b 共线的充要条件 B .若//a b ,则存在唯一的实数λ,使λabC .对空间任意一点O 和不共线的三点A 、B 、C ,若22OP OA OB OC =--,则P 、A 、B 、C 四点共面D .若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底 【答案】ABC【解析】对于A 选项,充分性:若a b a b -=+,则a 、b 方向相反,且a b ≥,充分性成立; 必要性:若a 、b 共线且方向相同,则a b a b +=+,即必要性不成立, 所以,a b a b -=+是a 、b 共线的充分不必要条件,A 选项错误; 对于B 选项,若0b =,0a ≠,则//a b ,但不存在实数λ,使得λa b ,B 选项错误;对于C 选项,对空间任意一点O 和不共线的三点A 、B 、C ,若P 、A 、B 、C 四点共面,可设AP xAB yAC =+,其中x 、y R ∈,则()()OP OA x OB OA y OC OA -=-+-,可得()1OP x y OA xOB yOC =--++, 由于22OP OA OB OC =--,22111--=-≠,此时,P 、A 、B 、C 四点不共面,C 选项错误;对于D 选项,假设a b +、b c +、c a +共面,可设()()()a b m b c n c a na mb m n c +=+++=+++,由于{},,a b c 为空间的一个基底,可得110m n m n =⎧⎪=⎨⎪+=⎩,该方程组无解,假设不成立,所以,{},,a b b c c a +++构成空间的另一个基底,D 选项正确. 故选:ABC.10.(2021·江苏常州市)下列条件中,使点P 与A ,B ,C 三点一定共面的是( ) A .1233PC PA PB =+ B .111333OP OA OB OC =++ C .QP QA QB OC =++ D .0OP OA OB OC +++=【答案】AB【解析】对于A ,由1233PC PA PB =+,12133+=,所以点P 与A ,B ,C 三点共面.对于B ,由111333OP OA OB OC =++,1111333++=,所以点P 与A ,B ,C 三点共面.对于C ,由OP OA OB OC =++,11131++=≠,所以点P 与A ,B ,C 三点不共面.对于D ,由0OP OA OB OC +++=,得OP OA OB OC =---,而11131---=-≠,所以点P 与A ,B ,C 三点不共面.故选:AB11.(2021·湖南)如图,正方体1111ABCD A BC D -的棱长为1,P 是线段1BC 上的动点,则下列结论中正确的是( )A .1AC BD ⊥B .1APC .1//A P 平面1ACDD .异面直线1AP 与1AD,所成角的取值范围是,42ππ⎡⎤⎢⎥⎣⎦ 【答案】ABC【解析】如图建立空间直角坐标系,则()1,0,0A ,()0,1,0C ,()10,0,1D ,()11,0,1A ,()1,1,0B ,()10,1,1C ,所以()1,1,0AC =-,()11,1,1BD =--,()10,1,1A B =-,()11,0,1BC =-,所以10AC BD =,所以1AC BD ⊥,故A 正确;因为P 是线段1BC 上一动点,所以1B B C P λ=()01λ≤≤,所以()()()110,1,11,0,1,1,1A P B B A P λλλ=+=-+-=--,所以21A P λ==12λ=时m 1in A P =,故B 正确; 设平面1ACD 的法向量为(),,n x y z =,则1·0·0n AC n AD ⎧=⎪⎨=⎪⎩,即00x y x z -+=⎧⎨-+=⎩,令1x =,则1y z ==,所以()1,1,1n =,因为1110n P A λλ=-++-=,即1n A P⊥,因为1A P ⊄平面1ACD ,所以1//A P 平面1ACD ,故C 正确;设直线1AP 与1AD 所成的角为θ,因为11//AD BC ,当P 在线段1BC 的端点处时,3πθ=,P 在线段1BC 的中点时,2πθ=,所以,32ππθ⎡⎤∈⎢⎥⎣⎦,故D 错误; 故选:ABC12.(2021·辽宁)已知直四棱柱1111ABCD A BC D -,底面ABCD 为矩形,2AB =,BC =,侧棱长为3,设P 为侧面11AA DD 所 在平面内且与D 不重合的任意一点,则直线1BD 与直线PD 所成角的余弦值可能为( ) A .12-B .12C.2D .78【答案】BC【解析】以D 为原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系如图,则)B ,()10,0,3D,则()12,3BD =--,设点(),0,P x z ,则(),0,DP x z =.设直线1BD 与直线PD 所成的角为θ,则111cos cos ,4BD DP BD DP BD DPθ-⋅===⋅,令cos x r α=,sin z r α=,其中0r >, 则cos62πθα⎛⎫===-≤ ⎪⎝⎭, 所以,cosθ⎡∈⎢⎣⎦. 显然,12⎡∈⎢⎣⎦⎡⎢⎣⎦.故选:BC三.填空题(每题5分,4题共20分)13.(2021·全国高二课时练习)已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且2MG GN =,现用基底{,,OA OB OC }表示向量OG ,有OG =x OA +y OB +z OC ,则x ,y ,z 的值分别为____.【答案】x=16,y=13,z=13. 【解析】∵OG =OM +MG =12OA +23MN =12OA +()23ON OM -12OA =+()211322OB OC OA ⎡⎤+-⎢⎥⎣⎦=111633OA OB OC ++∴x=16,y=13,z=13. 故答案为:x=16,y=13,z=13.14.(2021·全国高二课时练习)下列关于空间向量的命题中,正确的有______. ①若向量a ,b 与空间任意向量都不能构成基底,则//a b ; ②若非零向量a ,b ,c 满足a b ⊥,b c ⊥,则有//a c ; ③若OA ,OB ,OC 是空间的一组基底,且111333OD OA OB OC =++,则A ,B ,C ,D 四点共面; ④若向量a b +,b c +,c a +,是空间一组基底,则a ,b ,c 也是空间的一组基底.【答案】①③④【解析】对于①:若向量a , b 与空间任意向量都不能构成基底,只能两个向量为共线向量,即//a b ,故①正确;对于②:若非零向量a ,b ,c 满足a b ⊥,b c ⊥,则a 与c 不一定共线,故②错误;对于③:若OA ,OB ,OC 是空间的一组基底,且111333OD OA OB OC =++, 则11()()33OD OA OB OA OC OA -=-+-,即1133AD AB AC =+, 可得到,,A B C ,D 四点共面,故③正确;对于④:若向量a b +,b c +,c a +,是空间一组基底,则空间任意一个向量d ,存在唯一实数组(,,)x y z ,使得()()()()()()d x a b y b c z c a x z a x y b y z c =+++++=+++++, 由,,x y z 的唯一性,则x z +,x y +,y z +也是唯一的则a ,b ,c 也是空间的一组基底,故④正确.故答案为:①③④ 15.(2021·河南高二三模(理))如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,AD DC ⊥,//AB DC ,2DC PD AB AD ===,Q 为PC 的中点,则直线PC 与平面BDQ 所成角的正弦值为__________.【解析】建立如图所示的空间直角坐标系,设2DC =,则1PD AB AD ===,PC =()()()10,0,1,0,2,0,1,1,0,0,1,2P C B Q ⎛⎫ ⎪⎝⎭, ()()10,2,1,1,1,0,0,1,2PC DB DQ ⎛⎫=-== ⎪⎝⎭ 设平面BDQ 的法向量为(),,n x y z =,则00DB n DQ n ⎧⋅=⎨⋅=⎩,即0102x y y z +=⎧⎪⎨+=⎪⎩,取1x =,则()1,1,2n =-, 直线PC 与平面BDQ 所成角为α,sin 2n PCn PC α⋅===⋅. 16.(2021·新疆乌鲁木齐市)如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<则下列结论:则下列结论:①CN ME =; ②当12a =时,ME 与CN 相交; ③MN 始终与平面BCE 平行;④异面直线AC 与BF 所成的角为45.正确的序号是___________.【答案】③【解析】如图建立空间坐标系,则(1A ,0,0),(0C ,0,1),(1F ,1,0),(0E ,1,0), CM BN a ==,M ∴0,1,N 0).∴CN ME === 显然CN ME ≠,故①错误;若ME 与CN 相交,则四点共面,又∵M C E 、、在平面ACE ,∴当且仅当N 在平面ACE 时,ME 与CN 相交,此时a =故②错误; 平面BCE 的法向量为()1,0,0BA = ,1MN ⎛⎫=- ⎪⎝⎭, 此时0BA MN ⋅=,∴MN 始终与平面BCE 平行,故③正确;()()1,0,1,1,1,0,AC BF =-=设异面直线AC 与BF 所成的角为θ,∴1cos 22AC BFAC BF θ⋅===⋅, ∴异面直线AC 与BF 所成的角为60.故④错误.故答案为:③四.解答题(17题10分,其余每题12分,7题共70分)17.(2021·全国高二课时练习)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥底面ABCD ,E 是PC 的中点,已知2AB =,2PA =.(Ⅰ)求证:AE PD ⊥;(Ⅰ)求证:平面PBD ⊥平面PAC .【答案】(Ⅰ)证明见解析;(Ⅰ)证明见解析.【解析】证明:以A 为原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P .(Ⅰ)因为E 是PC 的中点,所以E 的坐标为()1,1,1,所以(1,1,1)AE =,又因为()0,2,2PD =-,所以10121(2)0AE PD ⋅=⨯+⨯+⨯-=,所以AE PD ⊥,即有AE PD ⊥;(Ⅰ)因为底面ABCD 是正方形,所以BD AC ⊥,因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以BD AP ⊥,因为AC PA A ⋂=,所以BD ⊥平面PAC ,所以平面PAC 的一个法向量为()2,2,0BD =-,设平面PBD 的一个法向量为(,,)n x y z =,(2,0,2)PB =-,(0,2,2)PD =-,由220220n PB x z n PD y z ⎧⋅=-=⎨⋅=-=⎩,取1z =,1x =,1y =,所以平面PBD 的一个法向量为(1,1,1)n =,因为1(2)12000n BD ⋅=⨯-+⨯+⨯=,所以n BD ⊥,所以平面PBD ⊥平面PAC .18.(2021·河南高二月考(理))如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中//,3,2AD BC AD AB BC ===,PA ⊥平面ABCD ,且3PA =,点M 在棱PD 上,2DM MP =,点N 为BC 中点.(1)证明:直线//MN 平面PAB ;(2)求二面角C PD N --的正弦值.【答案】(1)证明见解析;(2 【解析】如图,以A 为原点,分别以,,AB AD AP 方向为,x y ,z 轴方向建立空间直角坐标系.由题意,可得()0,0,0A ,()()()()()2,0,0,2,2,0,0,3,0,0,0,3,0,1,2B C D P M ,()2,1,0N(1)显然,()0,3,0AD =是平面ABP 的一个法向量,()2,0,2MN =-,故0MN AD ⋅=,即MN AD ⊥.又因为MN ⊄平面PAB ,故直线MN //平面PAB .(2)设平面PCD 的一个法向量为(),,n x y z =,由()()2,1,0,0,3,3DC DP =-=-,有 0,0,n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩即20,330,x y y z -=⎧⎨-+=⎩不妨取2z =,可得()1,2,2n =. 由已知可得()()2,2,0,0,3,3ND DP =-=-.同理可求平面PDN 的一个法向量为()1,1,1m =.所以,12cos ,3m nm n m n ++===⨯ 因此2sin ,1cos ,19m n m n ⎛=-=-= 所以,二面角C PD N -- 19.(2021·浙江高二期末)如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,//AD BC ,AD AB ⊥,且3,1PB AB AD BC ====.(1)若点F 为PD 上一点且13PF PD =,证明://CF 平面PAB ; (2)求直线PA 与平面BPD 所成角的正弦值.【答案】(1)证明见解析(2)12【解析】(1)作//FH AD 交PA 于H ,连接BH13PF PD = 113HF AD ∴== 又//AD BC 且1BC = //HF BC ∴且HF BC = ∴四边形HFCB 为平行四边形 //CF BH ∴ BH ⊂平面PAB ,CF ⊄平面PAB //CF ∴平面PAB (2)PB ⊥平面ABCD ,BC ⊂平面ABCD PB BC ∴⊥ 又AD AB ⊥,//AD BC AB BC ∴⊥则可以B 为坐标原点,建立如图所示的空间直角坐标系:则()0,0,0B ,()0,0,3P ,()3,3,0D ,()0,3,0A ()3,3,3PD ∴=-,()0,3,3PA =-,()3,3,0BD = 设平面PBD 的法向量(),,n x y z →= 则3330330n PD x y z n BD x y ⎧⋅=+-=⎨⋅=+=⎩,令1x =,则1y =-,0z = ()1,1,0n →∴=-设直线PA 与平面BPD 所成角为θ||1sin |cos ,|2PA n PA n PA n θ→→→→→→⋅∴=<>=== 20.(2021·全国高二专题练习)如图,在直四棱柱1111ABCD A BC D -中,1// 22AD BC AB AD AB AD AA BC ⊥====,,(1)求二面角111C BC D --的余弦值;(2)若点P 为棱AD 的中点,点Q 在棱AB 上,且直线1BC 与平面1B PQ 求AQ 的长.【答案】(1)23,(2)1=AQ 【解析】(1)在直四棱柱1111ABCD A BC D -中, 因为1AA ⊥平面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD , 所以11,,AB AA AD AA ⊥⊥因为AB AD ⊥,所以以A 为原点,分别以AB ,AD ,1AA 所在的直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系,因为122AB AD AA BC ====,所以(0,0,0),(2,0,0),(2,1,0),(0,2,0),A B C D 1111(0,0,2),(2,0,2),(2,1,2),(0,2,2)A B C D , 所以111(2,2,0),(0,1,2)B D BC =-=-,设平面11B CD 的一个法向量为(,,)n x y z =,则 11122020n B D x y n B C y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令2x =,则(2,2,1)n =, 因为AB ⊥平面11B C C ,所以平面11B C C 的一个法向量为(2,0,0)AB =,设二面角111C BC D --的平面角为α,由图可知α为锐角, 所以二面角111C BC D --的余弦值为42cos 323n ABn AB α⋅===⨯ (2)设(02)AQ λλ=≤≤,则(,0,0)Q λ, 因为点P 为AD 的中点,所以(0,1,0)P , 则1(,1,0),(2,0,2)PQ BQ λλ=-=--, 设平面1B PQ 的一个法向量为111(,,)z m x y =,则 111110(2)20m PQ x y m B Q x z λλ⎧⋅=-=⎪⎨⋅=--=⎪⎩,令12x =,则(2,2,2)m λλ=-, 设直线1BC 与平面1B PQ 所成角的大小为β, 因为直线1BC 与平面1B PQ所以11sin 5B C mB C m β⋅===, 解得1λ=或15λ=-(舍去) 所以1=AQ21.(2021·山东)在正六棱柱111111ABCDEF A BC D E F -中,122AA AB ==.(1)求BC 到平面11ADC B 的距离; (2)求二面角11B AD E --的余弦值.【答案】(1;(2)1319.【解析】(1)连接AE ,因为六边形ABCDEF 为正六边形,则120AFE DEF ∠=∠=, 因为AF EF =,则30AEF ∠=,故90AED ∠=,因为1EE ⊥底面ABCDEF ,不妨以点E 为坐标原点,EA 、ED 、1EE 所在直线分别为x 、y 、z 轴建立空间直角坐标系,如下图所示:则)A、)B、1,022C ⎛⎫⎪ ⎪⎝⎭、()0,1,0D、)12B、11,222C ⎛⎫⎪ ⎪⎝⎭、()10,0,2E ,在正六棱柱111111ABCDEF A BC D E F -中,11//BB CC 且11BB CC =, 所以,四边形11BB C C 为平行四边形,则11//BC BC , 因为BC ⊄平面11ADC B ,11BC ⊂平面11ADC B ,所以,//BC 平面11ADC B ,所以,BC 到平面11ADC B 的距离等于点B 到平面11ADC B 的距离,设平面11ADC B 的法向量为()111,,m x y z =,()AD =-,()10,1,2AB =,由111113020m ADy m AB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取1y =(m =, ()0,1,0AB =,所以,直线BC 到平面11ADC B 的距离为21919AB m d m⋅===;(2)设平面1ADE 的法向量为()222,,n x y z =,()AD =-,()10,1,2DE =-, 由221223020n ADy n DE y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取2y =(2,23,n =,13cos ,19m n m n m n⋅<>==⋅, 由图可知,二面角11B AD E --为锐角,所以,二面角11B AD E --的余弦值为1319.22.(2021·江西(理))在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2PA PD ==,112BC AD ==,CD =.(1)求证:平面MQB ⊥平面PAD ;(2)若BM PC ⊥,求直线AP 与BM 所成角的余弦值; (3)若二面角M BQ C --大小为60,求QM 的长.【答案】(1)证明见解析;(2;(3. 【解析】(1)Q 为AD 的中点,且2AD BC =,则DQ BC =,又因为//BC AD ,则//BC DQ ,故四边形BCDQ 为平行四边形, 因为90ADC ∠=,故四边形BCDQ 为矩形,所以,BQ AD ⊥, 平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,BQ ⊂平面ABCD ,BQ ∴⊥平面PAD ,BQ ⊂平面MBQ ,因此,平面MQB ⊥平面PAD ;(2)连接PQ ,由(1)可知,BQ ⊥平面PAD ,PA PD =,Q 为AD 的中点,则PQ AD ⊥,以点Q 为坐标原点,QA 、QB 、QP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()1,0,0A、(P、()B、()C -、()1,0,0D -,设(()(),01PM PC λλλλ==-=-≤≤,(()()0,,BM BP PM λλ=+=+-=-,因为BM PC ⊥,则3333760BM PC λλλλ⋅=+--+=-=,解得67λ=,6,7BM ⎛=- ∴⎝⎭,(AP =-,则9cos ,2AP BM AP BM AP BM⋅<>===⋅⨯. 因此,直线AP 与BM 所成角的余弦值为28; (3)易知平面BQC 的一个法向量是()0,0,1n =,设(()()0,,0,3QM QP PM λλ=+-==+-,()QB =,设平面MBQ 的法向量为(),,m x y z =,由)30m QM x y zm QB y λ⎧⋅=-++=⎪⎨⎪⋅==⎩,取x =,可得()3,0,m λ=-,由题意可得(1cos ,231m n m n m n⋅<>===⋅,解得12λ=,所以,1,222QM ⎛=- ⎝⎭,因此,72QM =.。
空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【同步教育信息】一. 本周教学内容:期末复习专题:空间向量与立体几何二. 知识分析:知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.3、公式cos ,a b a b a b ⋅<>=⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法(1)线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.(2)线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥.(3)线面平行用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线方向向量是共线向量;③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量.(4)线面垂直用向量证明线面垂直的方法主要有:①证明直线方向向量与平面法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.6、运用空间向量求空间角(1)求两异面直线所成角利用公式cos ,a b a b a b ⋅<>=⋅,但务必注意两异面直线所成角θ的范围是0,2π⎛⎤ ⎥⎝⎦,故实质上应有:cos cos ,a b θ=<>.(2)求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sin θ=| cos φ|.(3)求二面角用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.(1)点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.(2)点与面的距离点面距离的求解步骤是:①求出该平面的一个法向量;②求出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力.2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法.4、加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向.若向量a对应的有向线段的起点是A,终点是B,则向量a可以记为AB,其模长为a或AB.3、零向量长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”.4、单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到.5、相等向量长度相等且方向相同的空间向量叫做相等向量.若向量a与向量b相等,记为a=b.零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关.6、相反向量长度相等但方向相反的两个向量叫做相反向量.a的相反向量记为-a二、共面向量1、定义平行于同一平面的向量叫做共面向量.2、共面向量定理若两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x 、y,使得p =xa yb +。
3、空间平面的表达式空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y 使MP xMA yMB =+或对空间任一定点O,有或OP xOA yOB zOM =++(其中1x y z ++=)这几个式子是M,A,B,P 四点共面的充要条件.三、空间向量基本定理1、定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组x 、y 、z ,使p =xa yb +zc +2、注意以下问题(1)空间任意三个不共面的向量都可以作为空间向量的一个基底.(2)由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0。
(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联的不同概念.由空间向量的基本定理知,若三个向量a 、b 、c 不共面。
那么所有空间向量所组成的集合就是{}|,,,p p xa yb zc x y z R =++∈,这个集合可看做是由向量a 、b 、c 生成的,所以我们把{},,a b c 称为空间的一个基底。
a 、b 、c 叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底.3、向量的坐标表示(1)单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{},,i j k 表示.(2)空间直角坐标系 在空间选定一点O 和一个单位正交基底{},,i j k 以点O 为原点,分别以i 、j 、k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.则建立了一个空间直角坐标系O -xyz,点O 叫原点,向量i 、j 、k 都叫坐标向量.(3)空间向量的坐标给定一个空间直角坐标系和向量a ,且设i 、j 、k 为坐标向量,存在唯一有序数组(x ,y ,z )使a xi y j zk =++,有序数组(x ,y ,z )叫做a 在空间直角坐标系O -xyz 中的坐标,记为a =(),,x y z 。
对坐标系中任一点A ,对应一个向量OA ,则OA =a xi y j zk =++。
在单位正交基底i 、j 、k 中与向量OA 对应的有序实数组(x ,y ,z ),叫做点A 在此空间直角坐标系中的坐标,记为A (x ,y ,z ).四、空间向量的运算1、空间向量的加法三角形法则(注意首尾相连)、平行四边形法则,加法的运算律:交换律 a b b a +=+结合律 ()()a b c a b c ++=++2、空间向量的减法及几何作法几何作法:在平面内任取一点O ,作,OA a OB b ==,则BA a b =-,即从b 的终点指向a 的终点的向量,这就是向量减法的几何意义.3、空间向量的数乘运算(1)定义实数λ与a 的积是一个向量,记为a λ,它的模与方向规定如下:① a a λλ=⋅ ② 当0λ>时,a λ与a 同向;当0λ<时,a λ与a 异向;当0λ=时.0a λ= 注意:① 关于实数与空间向量的积a λ的理解:我们可以把a 的模扩大(当λ>1时),也可以缩小(λ< 1 时),同时,我们可以不改变向量a 的方向(当0λ>时),也可以改变向量a 的方向(当0λ<时)。
.② 注意实数与向量的积的特殊情况,当0λ=时,0a λ=;当0λ≠,若0a =时,有0a λ=。
③ 注意实数与向量可以求积,但是不能进行加减运算.比如a λ+,a λ-无法运算。
(2)实数与空间向量的积满足的运算律设λ、μ是实数,则有()()a a λμλμ= (结合律)()a a a λμλμ+=+ (第一分配律)()a b a b λλλ+=+ (第二分配律)实数与向量的积也叫数乘向量.4、共线向量(1)共线向量定义若表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量,也叫做平行向量。
若a 与b 是共线向量,则记为a //b 。
注意:零向量和空间任一向量是共线向量.(2)共线向量定理对空间任意两个向量a 、b (b ≠0),a //b 的充要条件是存在实数λ使a =λb(3)空间直线的向量表示式如果直线 l 是经过已知点 A 且平行于已知非零向量a 的直线,那么对任一点 O ,点P 在直线 l 上的充要条件是存在实数t ,满足等式=+OP OA ta ,其中向量a 叫做直线 l 的方向向量.注意:①若在 l 上取AB a =,则有(),(1)OP OA t AB OP OA t OB OA t OA tOB =+∴=+-=-+ )(1)B OA t OA tOB -=-+②上式可解决三点P 、A 、B 共线问题的表示或判定. ③当12t =时,1122OP OA OB =+,点P 为AB 的中点,这是中点公式的向量表达式.④ 若P 分AB 所成比为λ,则111OP OA OB λλλ=+++ 5、空间直角坐标系在空间直角坐标系中,三条坐标轴两两互相垂直,轴的方向通常这样选择:从z 轴的正方向看,x 轴正半轴沿逆时针方向转 900能与 y 轴的正半轴重合。
让右手拇指指向 x 轴正方向.食指指向 y 轴的正方向,如果中指指向 z 轴的正方向,那么称这个坐标系为右手直角坐标系。
一般情况下,建立的坐标系都是右手直角坐标系.在平面上画空间直角坐标系 O -xyz 时,一般使∠xOy=135°,∠yOz=90°。