1.4有理数乘法分配律

合集下载

人教版七年级上册数学有理数乘法分配律课件

人教版七年级上册数学有理数乘法分配律课件
可逆用乘法分配律求解.
解:原式 (1)(51)(1)3.5(1)2
4 24
4
(1)(51 3.52) 42
10 4
0
人教版七年级上册数学1.4.1第二课时 有理数乘法分配律 课件(14张PPT)
人教版七年级上册数学1.4.1第二课时 有理数乘法分配律 课件(14张PPT)
以上的例题你发 现了什么?
4.98 ×(-5)
解:原式 =(5-0.02) ×(-5) = 5×(-5)-0.02 ×(-5) = -25+0.1
= -24.9
人教版七年级上册数学1.4.1第二课时 有理数乘法分配律 课件(14张PPT)
人教版七年级上册数学1.4.1第二课时 有理数乘法分配律 课件(14张PPT)
相信你能行!
(1)(-1002)×17
(2)3
18 19
×(-19)
人教版七年级上册数学1.4.1第二课时 有理数乘法分配律 课件(14张PPT)
人教版七年级上册数学1.4.1第二课时 有理数乘法分配律 课件(14张PPT)
例4、计算:
( 1 ) ( 1 2 ) ( 1 ) ( 1 2 3 ) ( 1 ) ( 1 1 )
5
5
5
人教版七年级上册数学1.4.1第二课时 有理数乘法分配律 课件(14张PPT)
人教版七年级上册数学1.4.1第二课时 有理数乘法分配律 课件(14张PPT)
例5、计算:
( 1 ) ( 5 1 ) 1 ( 3 .5 ) ( 1 ) 2
4 24
4
分析:细心观察本题三项积中,都有-1/4这个因数,所以
5
人教版七年级上册数学1.4.1第二课时 有理数乘法分配律 课件(14张PPT)

有理数乘法的运算律及运用

有理数乘法的运算律及运用
乘法结合律(a×b)×c=a×(b×c)
5、(-8)+(-9)=(-9)+(-8)
加法交换律:a+b=b+a
注意
1、乘法的交换律、结合律只涉及一种运算, 而分配律要涉及两种运算。
2、分配律还可写成:a×b+a×c=a×(b+c), 利用它有时也可以简化计算。
3、字母a、b、c可以表示正数、负数,也可以表示零, 即a、b、c可以表示任意有理数。
1.4 有理数的乘除法
1.4.1.2 有理数乘法的运算律及应用
知识回顾
1.有理数的乘法法则是什么? 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数和零相乘,都得0
2.如何进行多个有理数的乘法运算? (1)定号(奇负偶正) (2)算值(积的绝对值) 3.小学时候大家学过乘法的哪些运算律?
乘法交换律、乘法结合律、乘法分配律
解法2的运算量小,因为解法1先要通分计算三个分数的和.
当堂练习
1.计算(-2)×(3- 1 ),用乘法分配律计算过程正确的是(
2
A.(-2)×3+(-2)×(-
1
)
A
)
2
1
B.(-2)×3-(-2)×(- 2 )
C.2×3-(-2)×(- 1 )
2
D.(-2)×3+2×(- 1 )
2
2、计算:P33
(+
- )×12
2×3-(-2)×(- ) 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
解法 3 (-2)×3+(-2)×(- ) 1: 原式= ( + 各运算律在有理数范围内仍然适用 12 有理数的乘法法则是什么?
2 12

第一章有理数1.4.1有理数的乘法运算律

第一章有理数1.4.1有理数的乘法运算律

(用分配律)
3、(-10)×(-8.24) ×(-0.1)
(一、三项结合起来运算)
1 4、(-7.25)×19+5-×19 4 (用分配律)
分析:本题从题型结构来看,直接计算比较麻烦,又不具备应 用分配律的条件,但观察它的数量特点,使用拆分方法,可以创 造应用分配律的条件解题,即将 71 15 拆分成一个整数与一 16 个分数之差,再用分配律计算. 解:原式
§1.4.2有理数的乘法运算律
刘冬冬
学习目标:
1、掌握有理数乘法的运算律; 2、能应用运算律使运算简便; 3、能熟练地进行加、减、乘混合运算. 自学指导: (三分钟) 1.看课本32页到33页,重点看例题. 2.理解乘法运算律. 思考:运算律的作用,什么时候使用运算律.
计算:
(1)(-6 )×5 =-30
三个数相乘,先把前两个数相乘, 或先把后两个数相乘,积不变. 乘法结合律:(ab)c=a(bc).
思考: a(b+c+d)与ab+ac+ad是否 相等?试验证.
根据分配律可以推出: 一个数同几个数的和相乘,等于 先把这个数分别同这几个数相乘,再 把积相加.即:a(b+c+d)=ab+ac+ad。
本节课我们主要学习了乘法的 交换律、结合律和分配律以及它 们的应用,乘法运算律在运算中 的作用主要是使运算简便,提高 计算速度和准确性,能否灵活合 理地运用运算律是解题能力高低 的具体体现.
作 业:
课本P37 习题1.4
第7题(1)(2)(3)
1 1 1 解法三: (1 ) 60 2 3 4
解 法 三:去 括 号 法 则
+( ) 去掉 括号里的各项都不变号

1.4.1 第3课时 有理数的乘法运算律

1.4.1 第3课时 有理数的乘法运算律

1.4 有理数的乘除法
4 5 解:(1)(-7)×- × 3 14 5 4 =(-7)× ×- 14 3 5 4 - - = × 2 3
7 5 3 7 (2) - + - ×36 9 6 4 18
am+bm+cm 解法二: 乘法的分配律是(a+b+c)m=________________ . 根
据乘法的分配律先做三个乘法,后做加减法.具体步骤如下: 1 1 1 12 12 12 原式= ×______+ ×______- ×______( 乘法分配律的应 4 6 2 用)
3+2-6 =______________( 计算三个乘法)
1.4 有理数的乘除法
3.分配律:有理数乘法中,一个数同两个数的和相乘,等于 把这个数分别同这两个数相乘,再把积________ 相加 ,即a(b+c)
ab+ac . =__________
[点拨] 分配律是乘法对加法的分配律,加数的个数可以不限 于两个.一个数除以多个数的和不能用分配律.
1.4 有理数的乘除法
2 2 1 5 (2)(-13)× -0.34× + ×(-13)- ×0.34. 3 7 3 7
[解析] (1)直接计算比较麻烦,观察发现三个乘积式中都有 2 - 这个因数,因此可反用乘法分配律简化计算.(2)观察式 3 子可发现第一、三个乘积式中都有-13 这个因数,第二、四 个乘积式中都有 0.34 这个因数, 所以可分别反用乘法分配律 简化计算.
1.4 有理数的乘除法
2 解:(1)原式=- ×(15-16-20) 3 2 =- ×(-21)=14. 3 2 1 2 5 (2)原式=(-13)× + ×(-13)-0.34× - ×0.34 3 3 7 7 2 1 2 5 =(-13)×( + )-0.34×( + ) 3 3 7 7 =-13-0.34 =-13.34.

新人教版七上1.4《有理数的乘除法》教案

新人教版七上1.4《有理数的乘除法》教案

1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。

七年级数学上册第1章有理数1-4有理数的乘除法1-4-1有理数的乘法教学课件新版新人教版

七年级数学上册第1章有理数1-4有理数的乘除法1-4-1有理数的乘法教学课件新版新人教版

探究新知 知识点 1 有理数的乘法法则
探究:如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的 点O.
O
l
1. 如果一只蜗牛向右爬行2cm记为+2cm,那么向左爬行2cm
应该记为 –2cm . 2.如果3分钟以后记为+3分钟,那么3分钟以前应该记
为 –3分钟 .
探究新知 【思考】
1.如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它在什么位置? 2.如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置? 3.如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它在什么位置? 4.如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它在什么位置? 5.原地不动或运动了零次,结果是什么?
1. 2×3×4×(–5)

2. 2×3×(–4)×(–5)

3. 2×(–3)×(–4)×(–5)

4. (–2)×(–3)×(–4)×(–5)

5. 7.8×(–8.1)×0×(–19.6)

【思考】几个有理数相乘,因数都不为 0 时,积的符号怎样确定?
有一个因数为 0 时,积是多少?
探究新知
(
3 5
)
(
5 6
)
(2).
(2)
(
3 5
)
(
5 6
)
(2)
[( 3 5)] (2) 56
1 (2) = −1 . 2
解题后的反思:连续两次使用乘法法则,计算起来比较麻烦. 如果我们把乘法法则推广到三个以上有理数相乘,
只“一次性地”先定号,再绝对值相乘即可.
探究新知
知识点 3 倒数
【想一想】计算并观察结果有何特点?

七年级数学上章1.4有理数的乘除法(人教版)

七年级数学上章1.4有理数的乘除法(人教版)

七年级数学上章1.4有理数的乘除法(人教版)4 有理数的乘除法.4.1 有理数的乘法第1课时有理数的乘法法则.了解有理数乘法的实际意义..理解有理数的乘法法则..能熟练的进行有理数乘法运算.阅读教材P28~30,思考并回答下列问题.知识探究.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘..通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值..乘积为1的两个数互为倒数.如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.自学反馈计算:×=1,×=-6,0×=0,123×=-2,×=5,-│-3│×=6.运用乘法法则,先确定积的符号,再把绝对值相乘;0没有倒数.活动1 小组讨论例1 计算:×9;8×;×.解:×9=-27.×=-8.×=1.例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1气温的变化量为-6℃,攀登3后,气温有什么变化?解:×3=-18.答:气温下降18℃.活动2 跟踪训练.计算:×0.2=-1;×=2;×=1;0.1×=-0.001..若a×=1,则a=-65.已知一个有理数的倒数的绝对值是7,则这个有理数是±17..判断对错:两数相乘,若积为正数,则这两个数都是正数.两数相乘,若积为负数,则这两个数异号.互为相反的数之积一定是负数.正数的倒数是正数,负数的倒数是负数.活动3 课堂小结.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘..倒数:乘积是1的两个数互为倒数.第2课时多个有理数的乘法进一步学习有理数乘法运算,掌握多个有理数相乘积的符号的确定.阅读教材P31,思考并回答下列问题.知识探究体会几个不等于零的有理数相乘,积的符号的确定方法:.几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;当负因数的个数是奇数时,积为负..几个数相乘,如果其中有因数为0,那么积等于0.自学反馈计算:××=-30,×3×=1,××××0=0.活动1 小组讨论例计算:×56××;×6××14.解:-98.6.活动2 跟踪训练计算:×0.01×0=0;×××=-250.活动3 课堂小结.几个不为0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数..任何数同0相乘,都得0.第3课时有理数的乘法运算律.进一步应用乘法法则进行有理数的乘法运算..能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用..培养学生通过观察、思考找到合理解决问题的能力.阅读教材P32~33,思考并回答下列问题.知识探究乘法交换律的文字表达:两个数相乘,交换因数的位置,积相等.乘法交换律的字母表达:ab=ba.乘法结合律的文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律的字母表达:c=a.乘法分配律的文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.乘法分配律的字母表达:a=ab+ac.自学反馈.计算:×56××××.解:-9..计算:-34×;1819×.解:-4310.-299419.运用运算律进行简便运算.活动1 小组讨论例计算:×××113;×12;×;××722×2122;×27-1117×8+117×8.解:-1.-1270.-5.-4.3.活动2 跟踪训练.运用分配律计算×,下面有四种不同的结果,其中正确的是A.×4-3×2-3×3B.×-3×2-3×3c.×+3×2-3×3D.×-3×2+3×3.在运用分配律计算3.96×时,下列变形较合理的是A.×B.×c.3.96×D.3.96×.对于算式XX×+×,逆用分配律写成积的形式是A.XX×B.-XX×c.XX×D.-XX×.计算1357×316,最简便的方法是A.×316B.×316c.×316D.×316.计算:×8××0.1××10;×117;×-4.73×-25×;解:-10.1921.250.活动3 课堂小结.有理数乘法交换律..有理数乘法结合律..有理数乘法分配律.4.2 有理数的除法第1课时有理数的除法法则.理解除法的意义,掌握有理数的除法法则..能熟练进行有理数的除法运算.阅读教材P34,思考并回答下列问题.知识探究.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数..两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.自学反馈计算:÷9=-2;0÷=0;25÷=-32.活动1 小组讨论例计算:÷9;÷.解:÷9=-=-4.÷=×=45.在做除法运算时,先定符号,再算绝对值.若算式中有小数、带分数,一般情况下化成真分数和假分数进行计算.活动2 跟踪训练.两个不为零的有理数的和等于0,那么它们的商是A.正数B.-1c.0D.±1.计算:-0.125÷;÷1110.解:13.-2.活动3 课堂小结.a÷b=a•1b..两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得第2课时有理数的乘除混合运算.掌握有理数除法法则,能够化简分数..能熟练地进行有理数的乘除混合运算.阅读教材P35,思考并回答下列问题.自学反馈.化简:204=5;-255=-5..计算:5÷15=25;÷3×4=-16.活动1 小组讨论例1 化简下列分数:-123;-45-12;解:-123=÷3=-4.-45-12=÷=45÷12=154.例2 计算:÷;-2.5÷58×.解:2517.1.活动2 跟踪训练.化简:-729;-30-45;0-75.解:-8.23.0..计算:÷×0;-112÷34××134÷1.4×.解:0.-310.活动3 课堂小结.化简分数..乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.第3课时有理数的加减乘除混合运算.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算..能解决有理数加减乘除混合运算应用题..了解用计算器进行有理数的加减乘除运算.阅读教材P36~37,思考并回答下列问题.知识探究有理数加减乘除混合运算的顺序:先乘除,后加减,有括号的先算括号内的.自学反馈计算:-÷;×+÷7;÷8-×;2×+÷.解:2.-16.-156.-25.在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.活动1 小组讨论例1 计算:-8+4÷;×-90÷.解:-8+4÷=-8+=-10.×-90÷=35-=35+6=41.例2 一架直升机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?解:210米.活动2 跟踪训练.计算:×-÷;|-512|÷×.解:-1.3..高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.解:4千米..某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低0.7℃,深度就增加30米,求该湖的深度.解:300米.活动3 课堂小结有理数加减乘除混合运算的顺序:无括号,先算乘除,后算加减;有括号,先算括号里面的.。

七年级数学上册 1.4 有理数的乘除法 活用乘法分配律来解题素材 (新版)新人教版

七年级数学上册 1.4 有理数的乘除法 活用乘法分配律来解题素材 (新版)新人教版

活用乘法分配律来解题进行有理数的运算时,活用乘法的分配律,可以有效地简化计算,提高运算的速度和解题的准确性。

一、正向使用例1计算(125836121+-+-))24(-⨯。

分析:直接把括号内的分数通分进行运算也未尝不可,但计算过程比较烦琐,认真观察发现,)24(-是括号内各分母的公倍数,所以可以利用乘法分配律去括号变形运算。

解:原式=)24(125)24(83)24(61)24()21(-⨯+-⨯--⨯+-⨯- =12-4+9-10=7。

点评:巧妙地运用乘法分配律,可避免异分母分数相加减的烦琐运算,但要注意要连同符号一起去乘,如本题中的)24(-中的负号不能丢。

例2计算)5(252449-⨯。

分析:本题直接相乘很麻烦,若将252449拆成)25150(-,然后再用乘法分配律可简化运算。

解:原式=)25150(-×(-5) =50×(-5)-251×(-5) =-250+51 =54249-。

点评:把有理数进行拆分变形,正向使用乘法分配律,把目标分开处理,即分成的整数部分与分数部分分别与乘数相乘,这样可减少运算量。

二、逆向使用例3计算)1275(6571256)657(-⨯+⨯- 。

分析:仔细观察发现此题中每一项都含有相同的因数657,可以逆向使用乘法分配律,提出657,再进行运算。

解:原式=657)12751256(--⨯ =657×(-12) = -94。

点评:乘法分配律是一个恒等变形过程,因此,我们在运用过程中,不但要知道能正向使用,有时还可以逆向使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=-7 解:原式= =-15 +20 -12 =-7
Hale Waihona Puke 1 1 ( 1 )( 6) ( ) 2 3
1 1 1 (2)( ) 12 4 2 6
例3 计算:
4.98×(-5)
分析: 本题从题型结构来看,直接计算比较麻烦,又不具备应
用分配律的条件,但观察它的数量特点,使用拆分方法,可以创 造应用分配律的条件解题,即将 4.98 拆分成一个整数与一 个分数之差,再用分配律计算.
竹根滩镇初级中学
一、温故知新
想一想,做一做
(先乘后加) 计算: (―3)×(―7)+9×(―6)
解:原式 =21+(―54)
=-33
计算下列式子的值
(1)5×[3+(-7)]
3 4 (3)12 [( 4 ) ( 9 )]
(2) 5×3 + 5×(-7) ( 4)
3 4 12 ( ) 12 ( ) 4 9
例2 计算:
3 4 14 8 (1) 4 3 15
2 2 3 (2) 8 4 8 5 5 9
(3)-3.2 × 35.5+6.4 × (-23.1)-0.32 × 183
1、乘法运算除了满足交换律和结合律外,还满足什 么运算定律? 1 1 1 1 6 6 如: 6 2 3 2 3 2、那么这个运算定律用公式又如何表示?
(a+b) ×c=a×c +b×c 这个运算律在有理数乘法运 算中也是成立的吗?
1.3.1有理数乘法的运算律(二) ——有理数乘法的分配律
=60-30-20-15 =-5 1 1 1 解:原式= 60 1 60 60 60 2 3 4
60 30 20 15 5
例2.计算
2 2 1 30 3 5 2
1 2 2 解:原式 30 30 30 2 5 3 =-15 +20 -12
2、分配律逆运用:
a×b+a×c=a×(b+c)
1 1 1 例1,计算: 60 (1 ) 2 3 4
1 1 1 解:原式= 60 1 60 ( ) 60 ( ) 60 ( ) 2 3 4 1 1 1 60 1 60 60 60 2 3 4
4.98 ×(-5)
解:原式 =(5-0.02) ×(-5)
= 5×(-5)-0.02 ×(-5)
= -25+0.1 = -24.9
相信你能行!
(1)(-1002)×17
18 3 ×(-19) (2) 19
例4、计算:
2 3 1 (11) ( ) (11) (2 ) (11) ( ) 5 5 5
5×[3+(-7)]
3 4 12 [( ) ( )] 4 9
=
5×3+5×(-7)
3 4 12 ( ) 12 ( ) 4 9
=
一个数同两个数的和相乘,等于把这个数分别 同这两个数相乘,再把积相加。
乘法分配律: a(b+c) = ab+ac
注意
1、乘法的交换律、结合律只涉及一种运算, 而分配律要涉及两种运算。
例5、计算:
1 1 1 1 ( ) (5 ) (3.5) ( ) 2 4 2 4 4
分析:
细心观察本题三项积中,都有-1/4这个因数,所以 可逆用乘法分配律求解.
1 1 1 1 解:原式 ( ) (5 ) ( ) 3.5 ( ) 2 4 2 4 4 1 1 ( ) (5 3.5 2) 4 2 1 0 4 0
以上的例题你发 现了什么?
适当的应用运算律,可使运算简便;有时需 要先把算式变形,才能用分配律;有时也可 以反用分配律
说明:乘法分配律揭示了加法和乘法的运算性
质,利用它可以简化有理数的运算,对于乘法 分配律,不仅要会正向应用,而且要会逆向应 用,有时还要构造条件变形后再用,以求简便、 迅速、准确解答习题.
相关文档
最新文档