九年级 数学圆的基本性质专题练习

合集下载

初三人教版圆的性质练习题

初三人教版圆的性质练习题

初三人教版圆的性质练习题圆是初中数学中的一个基本几何图形,对圆的性质的理解和掌握是提高数学能力的关键。

本文将为大家提供一些关于圆的性质的练习题,帮助大家巩固对圆的认识和应用。

练习题一:判断题1. 半径相等的两个圆一定是同心圆。

()2. 圆的直径等于其半径的两倍。

()3. 圆的周长是它的直径的两倍。

()4. 圆的面积与其半径的平方成正比。

()5. 切线是与圆相切且过圆心的直线。

()练习题二:填空题1. 圆的一个扇形的弧长是5cm,圆心角为60°,则这个圆的半径为_________。

2. 已知圆的周长为24π cm,则其半径为_________。

3. 圆的直径是10cm,那么它的面积是_________。

4. 圆的周长是8π cm,则它的直径为_________。

练习题三:应用题1. 一个圆的半径为7cm,一只蚂蚁从圆的某一点出发,顺着圆的边界行走,最后回到出发点所经过的距离是多少?2. 一个球的直径为18cm,求该球的表面积和体积。

解答:练习题一:判断题1. 正确。

同心圆是指有同一个圆心的两个或多个圆。

2. 错误。

直径等于半径的两倍,即直径=2×半径。

3. 错误。

圆的周长是其直径的π倍,即周长=π×直径。

4. 正确。

圆的面积等于半径的平方乘以π,即面积=π×半径²。

5. 错误。

切线与圆只有一个交点,并且与圆相切。

练习题二:填空题1. 该圆的半径为5cm。

由圆心角的定义可知,弧长的长度等于圆心角的弧度数(单位为弧度)乘以圆的半径。

2. 该圆的半径为6cm。

已知圆的周长为2πr,其中r为半径。

3. 该圆的面积为75π cm²。

圆的面积等于半径的平方乘以π。

4. 该圆的直径为8cm。

圆的周长等于直径的π倍。

练习题三:应用题1. 蚂蚁行走的距离等于圆的周长,即2π×半径=2π×7=14π cm。

2. 该球的表面积为4π×半径²=4π×9²=36π cm²,体积为(4/3)π×半径³=(4/3)π×9³=972π cm³。

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1 圆的有关概念(1)圆:平面上到的距离等于的所有点组成的图形.如图所示的圆记做⊙O。

(2)弦与直径:连接任意两点的叫做弦过圆心的叫做直径直径是圆内最长的。

(3)弧:圆上任意两点间的部分叫做小于半圆的弧叫做大于半圆的弧叫做。

(4)圆心角:顶点在的角叫做圆心角。

(5)圆周角:顶点在并且两边都与圆还有一个交点的角叫做圆周角。

(6)弦心距:到弦的距离叫做弦心距。

(7)等圆:能够的两个圆叫做等圆。

(8)等弧:在同圆或等圆中能的弧叫等弧。

考点2垂径定理(1)定理:垂直于弦的直径这条弦并且弦所对的两条弧。

(2)推论:①平分弦(不是直径)的直径于弦并且弦所对的两条弧②弦的垂直平分线经过并且弦所对的两条弧。

(3)延伸:根据圆的对称性如图所示在以下五条结论中:①AC AD=③CE=DE④AB⊥CD⑤AB是直径。

=②BC BD只要满足其中两个另外三个结论一定成立即推二知三。

考点3 弧弦圆心角之间的关系(1)定理:在同圆或等圆中相等的圆心角所对的相等所对的相等。

(2)推论:在同圆或等圆中如果两个圆心角两条弧两条弦中有一组量相等那么它们所对应的其余各组量都分别相等。

考点4圆周角定理及其推论。

(1)定理:一条弧所对的圆周角等于它所对的的一半.如图a=12图a图b图c( 2 )推论:①在同圆或等圆中同弧或等弧所对的圆周角相等.如图b ①A=。

①直径所对的圆周角是直角.如图c=90°。

①圆内接四边形的对角互补.如图a ①A+=180° ①ABC+=180°。

关键点:垂径定理及其运用(1)垂径定理及推论一条直线在下列5条中只要具备其中任意两条作为条件就可以推出其他三条结论.称为知二得三(知二推三)。

①平分弦所对的优弧②平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)③平分弦④垂直于弦⑤过圆心(或是直径)(2)常用的辅助线作垂直于弦的直径或只画弦心距。

九年级数学下----圆的基本性质练习

九年级数学下----圆的基本性质练习

九年级数学下----圆的基本性质练习基础过关题1.如下图1,A ,B ,C 是⊙O 上的三点,∠B =75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120°2.如上图2,AB 是⊙O 的直径,BC 是⊙O 的弦.若∠OBC =60°,则∠BAC 的度数是( )A .75°B .60°C .45°D .30°3.如上图3,在⊙O 中,弦AB 与CD 交于点M ,∠A =45°,∠AMD =75°,则∠B 的度数 是( )A .15° B .25° C .30° D .75°4.如上图4,在⊙O 中,若点C 是AB ︵的中点,∠A =50°,则∠BOC =( )A .40°B .45°C .50°D .60°5、如下图1,在⊙O 中,劣弧AB 所对的圆心角∠AOB =120°,点C 在劣弧AB 上,则圆周角∠ACB =( )A .60° B .120° C .135° D .150°6.如上图2,⊙O 的直径AB 垂直于弦CD ,垂足是点E ,∠A =22.5°,OC =4,则CD 的 长为( )A .2 2 B .4 2 C .4 D .87.如上图3,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB ,OC ,若∠BAC 和∠BOC 互补,则弦BC 的长度为( )A .3 3 B .4 3 C .5 3 D .6 38.如上图4,已知AC 是⊙O 的直径,点B 在圆上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB =3∠ADB ,则( )9、如下图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为点A ,B ,AB =40 cm ,脸盆的最低点C 到AB 的距离为10 cm ,则该脸盆的半径为 cm.A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB10、如下图3,在⊙O 中,弦AB =6,圆心O 到AB 的距离OC =2,则⊙O 的半径长为 .11、如下图4,在⊙O 中,AB 是弦,C 是AB ︵上一点.若∠OAB =25°,∠OCA =40°,则∠BOC 的大小为 度.12.如上图4,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2, 则tanD = .13.如图,在△ABC 中,∠C =90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连接EF.(1)求证:∠1=∠F ;(2)若sinB =55,EF =25,求CD 的长.能力提升题:14.如下图1,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A .45°B .50°C .55°D .60°15.如上图2,在⊙O 上有定点C 和动点P ,位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点Q ,已知:⊙O 半径为52,tan ∠ABC =34,则CQ 的最大值是( ) A .5 B.154 C.253 D.20316.如下图1,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠B =30°,CE 平分∠ACB 交⊙O 于点E ,交AB 于点D ,连接AE ,则S △ADE ∶S △CDB 的值等于( )A .1∶ 2B .1∶ 3C .1∶2D .2∶317.如下图2,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③CB 平分∠ABD ;④AF =DF ;⑤BD =2OF ;⑥△CEF ≌△BED.其中一定成立的是( )A .②④⑤⑥B .①③⑤⑥C .②③④⑥D .①③④⑤18.如图,以Rt △ABC 的直角边AB 为直径作⊙O ,交斜边AC 于点D ,点E 为OB 的中点,连接CE 并延长交⊙O 于点F ,点F 恰好落在AB ︵的中点,连接AF 并延长与CB 的延长线相交于点G ,连接OF.(1)求证:OF =12BG ; (2)若AB =4,求DC 的长.19.如图,在半径为5的⊙O 中,弦AB =8,P 是弦AB 所对的优弧上的动点,连接AP ,过点A 作AP 的垂线交射线PB 于点C ,当△PAB 是等腰三角形时,求线段BC 的长.。

专题训练. 圆的基本性质--八大题型总结(拔尖篇)- 九年级数学上册 (浙教版)

专题训练. 圆的基本性质--八大题型总结(拔尖篇)- 九年级数学上册 (浙教版)

专题3.12圆的基本性质章末八大题型总结(拔尖篇)【题型1动态图形的扫过的面积的计算】(2023秋·江苏·九年级专题练习)2.如图,半圆O的直径时停止滑动,若M是(2023·黑龙江鸡西·校考三模)3.在平面直角坐标系中,已知()2,0A ,()3,1B ,()1,3C ;(1)将ABC 沿x 轴负方向平移2个单位至111A B C △,画图并写出1C 的坐标____________;(2)以1A 点为旋转中心,将111A B C △逆时针方向旋转90︒得22A B C 1△,画图并写出2C 的坐标_____;(3)在平移和旋转过程中线段BC 扫过的面积为___________.(2023秋·浙江·九年级专题练习)4.如图所示,扇形OAB 从图①无滑动旋转到图②,再由图②到图③,60O ∠=︒,1OA =.(1)求O 点运动的路径长;(2)求O 点走过路径与射线l 围成的面积.【题型2圆周角定理有关的计算与证明】【方法点拨】圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径(2023秋·北京西城·九年级北京八中校考期中)5.如图,已知:过O 上一点A 作两条弦AB 、AC ,且45BAC ∠=︒,(AB ,AC 都不经过)O 过A 作AC 的垂线AF 交O 于D ,直线BD ,AC 交于点E ,直线BC ,DA 交于点F .(1)证明:BE BF =;(2)探索线段AB 、AE 、AF 的数量关系,并证明你的结论.(2023秋·湖北·九年级期末)6.已知ABC 内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC .(1)如图①,当120BAC ∠=︒时,请直接写出线段(2)如图②,当90BAC ∠=︒时,试探究线段(1)求ADB ∠的度数;(2)求AC 的长度;(3)判定四边形AFBC 的形状,并证明你的结论.(2023秋·江苏盐城·九年级统考期中)8.如图,在O 的内接四边形(1)若75DAE ∠=︒,则(2)过点D 作DE AB ⊥(3)若62AB AE ==、【题型3垂径定理的实际应用】【方法点拨】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径条弧.(2023秋·河北石家庄9.如图是一位同学从照片上剪切下来的海上日出时的画面,圆的半径为5厘米,上”太阳与海平线的位置关系是(2023秋·浙江台州·10.我市在创建全国文明城市检查中,发现一些破旧的公交车候车亭有碍观瞻,现已更换新的公交候车亭图2所示的是侧面示意图,FG为水平线段,PQ⊥FG,点H为垂足,FG=4m,FH=2.4m,点P在弧FG上,且弧FG所在的圆的圆心O到FG,PQ的距离之比为5:2,则PH的长约为多少米?(2023春·浙江台州·九年级台州市书生中学校考期中)11.如图这是我市某跨海大桥正侧面的照片,大桥的主桥拱为圆弧型,桥面AB长为800米,且与水面平行,小王用计算机根据照片对大桥进行了模拟分析,在桥正下方的水面上取一点P,在桥面AB上取点C,作射线PC交弧(主桥拱)于点D,右边画出了PC与PD关于AC长的函数图象,下列对此桥的判断不合理的是()A.桥拱的最高点与桥面AB的实际距离约为210米B.桥拱正下方的桥面EF的实际长度约为500米C.拍摄照片时,桥面离水面的实际高度约为110米D.桥面上BF段的实际长度约200米(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦【题型4由点与圆的位置关系求求最值】【方法点拨】解决此类问题关键要记住若半径为当d=r时,点在圆上,当d<(2023秋·江苏苏州·九年级苏州市振华中学校校考期中)13.如图,在平面直角坐标系中,已知点为半径的圆上运动,且始终满足(2023秋·山东泰安·九年级校联考期末)15.如图,点()34P P ,,半径为大值是()A .32B .52(2023秋·河南驻马店·九年级平舆县第二初级中学校考期末)16.如图,Rt ABC 中,AB 的最小值为(2023秋·安徽淮北·九年级校考期末)的直径,18.如图,AB是O+的最小值为(点,则PC PDA.22B.2(2023秋·陕西渭南·九年级统考期末)19.如图,A、B是半圆O上的两点,的最小值为.(2023秋·广东广州·九年级校考期末)20.(1)如图①,在ABC 中,120A ∠= ,5AB AC ==.尺规作图:作ABC 的外接圆O ,并直接写出ABC 的外接圆半径R 的长.(2)如图②,O 的半径为13,弦24AB =,M 是AB 的中点,P 是O 上一动点,求PM 的最大值.(3)如图③所示,AB ,AC 、 BC是某新区的三条规划路,其中6km AB =,3km AC =,60BAC ∠= , BC 所对的圆心角为60 ,新区管委会想在 BC路边建物资总站点P ,在AB ,AC 路边分别建物资分站点E 、F ,也就是,分别在 BC、线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天都要将物资在各物资站点间按P E F P →→→的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷、环保和节约成本.要使得线段PE 、EF 、FP 之和最短,试求PE EF FP ++的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)【题型6动点的运动轨迹长度计算】(2023秋·江苏连云港·九年级校考阶段练习)22.如图,已知90ABC ∠=︒停止,圆心O 运动的路程是(2023秋·江苏徐州·九年级校考阶段练习)23.如图,有一块长为4cm 、宽为3cm 的矩形木板在桌面上按顺时针方向无滑动地翻滚,木板上顶点化为12A A A →→,其中,第二次翻滚时被桌面上一个小木块挡住,使木板边沿滚到点2A 的位置经过的路径长为()A .10cmB .3.5cm π(2023·浙江温州·校考三模)24.图1是挂桶式垃圾车的联动装置,通过钢轴先后作两次旋转移动垃圾桶,实现对垃圾桶提升和翻转,将垃圾桶内的垃圾自动收入车厢.图2,图110cm,AB =303cm,30cm BC CD ==【题型7正多边形与圆】【方法点拨】定义:正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心正多边形的一边的距离叫做正多边形的边心距.(2023秋·山东淄博·九年级统考期末)25.已知四个正六边形如图摆放在图中,顶点A ,B ,C ,D ,E ,F 在圆上.若两个大正六边形的边长均为小正六边形的边长是()A .33-B .2312-C .312+D .1312-(2023秋·河南驻马店·九年级统考期末)26.如图,已知O 的半径为4,则该圆内接正六边形ABCDEF 的边心距OG (① DF 的长为2π;②2DF OF =;③ODE 为等边三角形;④S 正八边形【题型8圆锥侧面积的相关计算】【方法点拨】解决此类问题掌握圆锥侧面积的计算公式是关键,并且能够灵活运用(2023秋·全国·九年级专题练习)29.小华的爸爸要用一块矩形铁皮加工出一个底面半径为缝(接缝忽略不计)()1你能求出这个锥形漏斗的侧面展开图的圆心角吗?()2如图,有两种设计方案,请你计算一下,哪种方案所用的矩形铁皮面积较少?(2023秋·江苏·九年级专题练习)31.如图是一张直角三角形卡片,DE⊥AB.若将该卡片绕直线DE旋转一周,则形成的几何体的表面积为(2023秋·全国·九年级专题练习)32.如图,在一张四边形ABCD的纸片中,、交于点E、径的圆分别与AB AD(1)求证:DC与A的切线;(要求:尺规作图,不写作法,保留作图痕迹)(2)过点B作A(3)若用剪下的扇形AEF围成一个圆锥的侧面,能否从剪下的两块余料中选取一块,剪出一个圆作为这个圆锥的底面?。

人教版九年级数学上册 圆的基本性质 专题训练(含答案)

人教版九年级数学上册 圆的基本性质 专题训练(含答案)

人教版九年级数学上册 圆的基本性质 专题训练一、单选题1.如图,AB 是⊙O 的直径,若⊙BAC=35°,则⊙ADC=( )A .35°B .55°C .70°D .110°2.如图,两弦AB 、CD 相交于点E ,且AB CD ⊥,若30A ∠=︒,则弧BD 的度数为( ).A .30°B .50︒C .60︒D .70︒ 3.如图,四边形ABCD 为⊙O 的内接四边形,若110ADC ∠=︒,则AOC ∠的度数是( )A .110︒B .120︒C .130︒D .140︒ 4.下列说法中,正确的是( )A .经过半径的端点并且垂直于这条半径的直线是这个圆的切线B .平分弦的直径垂直于弦,并且平分弦所对的两条弧C .90°的圆周角所对的弦是直径D .如果两个圆周角相等,那么它们所对的弦相等.5.已知在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3,则⊙O 的面积是( ) A .9π B .16π C .25π D .64π 6.如图,点A 、B 、C 是⊙O 上的三点,若056=∠OBC ,则A ∠的度数是( ).A .28︒B .30︒C .34︒D .56︒7.如图,在同圆中,弧AB 等于弧CD 的2倍,试判断AB 与2CD 的大小关系是( )A .2AB CD > B .2AB CD <C .2AB CD = D .不能确定 8.如图所示,⊙O 的半径为13,弦的长度是24,ON AB ⊥,垂足为N ,则ON =( )A .5B .7C .9D .119.如图,⊙ABC 内接于⊙O ,若⊙OAB =26°,则⊙C 的大小为( )A .26°B .52°C .60°D .64°10.已知⊙ABC 内接于⊙O ,连接AO 并延长交BC 于点D ,若⊙B =60°,⊙C =50°,则⊙ADB 的度数是( )A .70°B .80°C .82°D .85°11.如图,⊙O 是正五边形ABCDE 的外接圆,点P 是弧BE 的一点,则⊙CPD 的度数是( )A .30°B .36°C .45°D .72°12.如图, BC 是O e 的直径,AB 切⊙O 于点B ,8AB BC ==,点D 在⊙O 上,DE AD ⊥交BC 于E ,3BE CE =,则AD 的长是( )A B C . D .二、填空题13.如图,⊙O 中,直径20cm CD =,弦AB CD ⊥于点M ,:3:2OM MD =,则AB 的长是________cm .14.如图,⊙O 经过原点,并与两坐标轴分别交于A ,D 两点,已知30OBA ∠=︒,点A 的坐标为()2,0,则点D 的坐标为________.15.如图,将⊙O 沿弦AB 折叠,使弧AB 经过圆心O ,则⊙OAB=_______°.16.若⊙O 的半径为4cm ,弦AB =4cm ,则点O 到AB 的距离为_____cm .17.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .18.如图,AB 是半圆O 的直径,C 为半圆上一点,AB =10,BC =6,过O 作OE ⊙AB 交AC 于点E ,则OE 的长为_____.19.如图,四边形ABCD 内接于⊙O ,延长CO 交圆于点E ,连接BE .若110A ∠=︒,70E ∠=︒ ,则OCD ∠=__________度.20.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,⊙ABD =58°,则⊙BCD =_____.三、解答题21.如图,已知⊙O 的直径6AB =,E 、F 为AB 的三等分点,M 、N 为»AB 上两点,且MEB NFB ∠=∠60︒=,求EM FN +的值.22.如图,已知AB 、MD 是⊙O 的直径,弦CD⊙AB 于E .(1)若CD=16cm ,OD=10cm ,求BE 的长;(2)若⊙M=⊙D ,求⊙D 的度数.23.如图,BC 为⊙O 的直径,AD BC ⊥,垂足为D ,点A 是弧BF 的中点,BF 和AD 相交于E ,求证:AE BE =.24.如图,AB 为⊙O 的直径,AC 切O e 于点A ,连结BC 交O 于点D ,E 是⊙O 上一点,且与点D 在AB 异侧,连结DE(1)求证:C BED ∠=∠;(2)若50C ∠=︒,2AB =,则»BD的长为(结果保留π)25.如图,AD 是⊙O 直径,B ,C 是圆上点且在AD 同侧.(1)如果30COD ︒∠=,则ACO ∠=________°.(2)如果2BOC COD ∠=∠,45BAD ∠=︒,求BAC ∠度数.26.如图,AB 是⊙O 的一条弦,C 、D 是⊙O 上的两个动点,且在AB 弦的异侧,连接CD .(1)若AC=BC,AB平分⊙CBD,求证:AB=CD;(2)若⊙ADB=60°,⊙O的半径为1,求四边形ACBD的面积最大值.参考答案1.B2.C3.D4.C5.C6.C7.B8.A9.D10.B11.B12.A13.1614.(0, 15.3016.1718.154 19.50° 20.32°.21 22.(1)4cm ;(2)30° 23.略 24.(1)略;(2)59π 25.(1)15(2)30BAC ∠=︒26.(1)略;(2.。

浙教版数学九年级上册 第3章 圆的基本性质(含答案)

浙教版数学九年级上册  第3章 圆的基本性质(含答案)

第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图,△ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以C 为旋转中心旋转180°,得到△A₁B₁C,请画出△A₁B₁C;(2)平移△ABC,使点 A的对应点.A₂的坐标为(−2,−6),请画出平移后对应的图形△A₂B₂C₂;(3)若将△A₁B₁C绕某一点旋转可得到△A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB是⊙O的直径,C是圆周上的动点,P 是ABC的中点.(1)求证:OP//BC;(2)如图,连结PA,PC交直径AB于点D,当(OC=DC时,求∠A的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离如图(1)中的 OC,OC′,弦心距也可以说成圆心到弦的垂线段的长度 l请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.(1)求证:AB=CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt△AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC−m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB DF,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°−60°−55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°−∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM⊥AB.过点 O 作OD⊥MN 于点 D,由垂径定理,得 MD =12MN =23cm,在Rt△ODM 中,OM=4cm, MD =23cm,∴OD =OM 2−MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH⊥AC,∵A B 是⊙O 的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OA C= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OP C=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM⊥AB 于点M,ON⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠EPF,∴O M=ON,∵OM⊥AB,ON⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM⊥PB,ON⊥PD,垂足分别为M,N,∵PC平分∠EPF,∴OM=ON,∵OM⊥AB,ON⊥CD,∴PB=PD;当点P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。

九年级数学圆的性质及习题

九年级数学圆的性质及习题

一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;(3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系·1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;'A相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;【五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD;中任意2个条件推出其他3个结论。

第3章 圆的基本性质 浙教版数学九年级上册测试(含答案)

第3章 圆的基本性质 浙教版数学九年级上册测试(含答案)

浙教版数学九年级上册第三章圆的基本性质一、选择题1.下列说法正确的是( )A.三个点可以确定一个圆B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.长度相等的弧是等弧2.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为( )A.24B.22C.12D.63.如图,点A、B、C在⊙O上,∠C=40∘,则∠AOB的度数是( )A.50∘B.60∘C.70∘D.80∘4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.5C.25D.65.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°6.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )A .103πB .109πC .59πD .518π7.如图, AB 是半圆O 的直径,点C ,D 在半圆O 上.若 ∠ABC =50° ,则 ∠BDC 的度数为( )A .90°B .100°C .130°D .140°8. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .239.如图,正五边形ABCDE 内接于⊙O ,阅读以下作图过程:①作直径AF ;②以点F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接AM ,MN ,AN .结论Ⅰ:△AMN 是等边三角形;结论Ⅱ:从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正十八边形.对于结论Ⅰ和结论Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E (0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是( )A.3B.412C.72D.5二、填空题11.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B= °.12.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC= .13.如图,四边形ABCD内接于⊙O ,若四边形ABCD的外角∠DCE=65°,则∠BAD的度数是 .14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为 .15.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O,若用圆内接正十二边形作近似估计,可得π的估计值为 .的面积,可得π的估计值为33216.如图,点M(2,0)、N(0,4),以点M为圆心5为半径作⊙M交y轴于A、B两点,点C为⊙M上一动点,连接CN,取CN中点D,连接AD、BD,则A D2+B D2的最大值为 .三、解答题17.如图,四边形ABCD为⊙O的内接四边形,AC是⊙O的直径,AD=BD,∠CAB=32°.求∠ACD的度数.18.如图,OC为⊙O的半径,弦AB⊥OC于点D,OC=10,CD=4,求AB的长.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)△A1B1C1与△ABC关于坐标原点O成中心对称,则B1的坐标为__________;(2)BC与B1C1的位置和数量关系为___________;(3)将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(―1,―2),B2(1,―3),C2(0,―5),则旋转中心的坐标为___________.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,(1)求∠ACB的度数;(2)求BC的长;(3)求AD,BD的长.21.如图,AB是⊙O的直径,C是⏜BD的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.22.如图所示,AB为☉O的直径,AC是☉O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90 cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=63,求阴影部分的面积(结果保留π).23.如图,AB是⊙O的直径,弦CD⊥AB与点E,已知AB=10,AE=8,点P为AB上任意一点,(点P不与A、B重合),连结CP并延长与⊙O交于点Q,连QD,PD,AD.(1)求CD的长.(2)若CP=PQ,直接写出AP的长.(3)①若点P在A,E之间(点P不与点E重合),求证:∠ADP=∠ADQ.②若点P在B,E之间(点P不与点E重合),求∠ADP与∠ADQ满足的关系.答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】C11.【答案】3512.【答案】513.【答案】65°14.【答案】15°15.【答案】316.【答案】49217.【答案】61°18.【答案】1619.【答案】(1)(2,2);(2)平行且相等;(3)(0,―1).20.【答案】(1)∠ACB=90°(2)BC=8cm(3)BD=AD=52cm21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°-∠ABC.∵CE⊥AB,∴∠ECB=90°-∠ABC,又∵C是BD的中点,∴CD=BC,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF= BF;(2)解:∵BC=CD,∴BC=CD=6.在Rt△ABC中,AB= BC2+AC2=62+82=10,∴⊙O的半径为5;∵S△ABC= 12AB×CE= 12BC×AC,∴CE= BC×ACAB =6×810=245.22.【答案】(1)解:如图所示,连接OD,∵D为BC的中点,∴∠CAD=∠BAD.∵OA=OD,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD∥AE.∵DE⊥AC,∴OD⊥EF.∴OD的长是圆心O到EF的距离.∵AB=90 cm,∴OD=12AB=45 cm.(2)解:如图所示,过点O作OG⊥AD交AD于点G.∵DA=DF,∴∠F=∠BAD.由(1),得∠CAD=∠BAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°.∴∠BOD=2∠BAD=60°,OF=2OD.∵在Rt△ODF中,OF2-OD2=DF2,∴(2OD)2-OD2=(63)2,解得OD=6.在Rt△OAG中,OA=OD=6,∠OAG=30°,AG=OA2―O G2=33,AD=23,S△AOD=1×63×3=93.2+93=6π+93.∴S阴影=S扇形OBD+S△AOD=60π×6236023.【答案】(1)解:连接OD,∵直径AB=10,AE=8,∴BE=2.∴OE=5-2=3.又∵AB⊥CD,在Rt△PED中,P D2=P E2+E D2∴ED=52―32=4∴CD=2ED=8(2)解:若CP=PQ,则点P与点O重合,或点P与点E重合.所以AP=5或8(3)解:①连接AC,由图可知∠ACQ=∠ADQ,因为AB是⊙O的直径,AB⊥CD,所以CE=DE,即AB是CD的垂直平分线,所以AC=AD,PC=PD,因为AP=AP,所以∠ACP=∠ADP ,所以∠ADP=∠ADQ .②∠ADP+∠ADQ=180°.理由如下:连接AC ,因为AB 是直径,AB ⊥CD ,所以AC=AD ,CE=DE ,所以△ACP ≌△ADP (SSS ),所以∠ACP=∠ADP ,因为∠ACP=12ADQ ,∠ADQ=12ACQ ,所以∠ACP+∠ADQ=12(ADQ +ACQ )=180°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本性质专题练习
一、选择题
A1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )
A .4个
B .3个
C . 2个
D . 1个
A2如图,△ ABC 内接于⊙O ,D 为线段AB 的中点,延长OD 交⊙O 于点E ,连接AE ,BE ,则下列五个结论①AB ⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C ,⑤,正确结论的个数是( )
A 、2个
B 、3个
C 、4个
D 、5个 A3.如图,点B 、C 在⊙O 上,且BO=BC ,则圆周角BAC ∠等于( )
A .60︒
B .50︒
C .40︒
D .30︒
A4.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠B 大小为 ( )
A .25°
B .35°
C .45°
D .65°
A5. 已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为 A .2.5 B .5 C .10
D .15 A6、如图,AB 是⊙O 的弦,半径OA=2, 120=∠AOB ,则弦AB 的长是 ( )
(A )22 (B )32 (C )5 (D )23
B7.如图2,△ABC 内接于⊙O ,若∠OA B=28°,则∠C 的大小是( )
A .62°
B .56°
C .28°
D .32°
B8. 如图,点A 、B 、P 在⊙O 上,且∠APB=50°若点M 是⊙O 上的动
点,要使△ABM 为等腰三角形,则所有符合条件的点M 有
A .1个
B .2个
C .3个
D .4个
B9、 如图,⊙O 过点B 、C 。

圆心O 在等腰直角△ABC 的内部,∠BAC =900,OA =1,BC =6, 则⊙O 的半径为( )
A )10
B )32
C )23
D )13
C10.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )
A. (45)+ cm
B. 9 cm
C. 45cm
D. 62cm
(第2题图) (第3题图)
(第4题图) (第6题图) (第7题图) (第8题图)
C11.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是
直径MN 上一个动点,则PA+PB 的最小值为
A .22
B .2
C .1
D .2
C12、如图所示,在圆⊙O 内有折线OABC ,其中OA =8,AB =12,
∠A =∠B =60°,则BC 的长为()
A .19
B .16
C .18
D .20
二、填空题
A1.如图,⊙O 是正三角形ABC 的外接圆,点P 在劣弧AB 上, ABP ∠=22°,则BCP ∠的度数为_____.
A2.如图在等边△ABC 中,以AB 为直径的⊙O 与BC 相交于点D ,连结AD ,则∠DAC 的度数为 .
A3.如图,在直径AB =12的⊙O 中,弦C D ⊥AB 于M ,且M 是半径OB 的中点,则弦C D 的长是_______.
A4.如图,以点P 为圆心的圆弧与x 轴交于A ,B ;两点,点P 的坐标为(4,2),点A 的坐标
为(23,0)则点B 的坐标为 .
A5.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =l ,则弦AB 的
长是 .
A6. 如图,△ABC 是⊙O 的内接三角形,点D 是 BC 的中点,已知∠AOB =98°,∠COB =120°.则∠ABD
的度数是 .
A7. 现有一个圆心角为 90,半径为cm 8的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).
该圆锥的高为__________
B8.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD 的度数是 .
A B C
D
O
D C B
A
O (第9题图) (第10题
(第11
题图) (第12题图) (第1题图) (第2题图)
(第3题图)
(第5题图) (第6题图) (第4题图)
B9.如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角 = .
B10.如图,菱形OABC 中,∠A=120°,OA=1,将菱形OABC 绕点O 按顺时针方向旋转90°至OA ′
B ′
C ′的位置,则图中由BB ′,B ′A ′,A ′C ,CB 围成的阴影部分的面积是_______
C11.已知⊙O 的半径为10,弦AB 的长为103,点C 在⊙O 上,且C 点到弦AB 所在直线的距离为 5,
则以O 、A 、B 、C 为顶点的四边形的面积是 .
C12、如图,将半径为1、圆心角为60°的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至扇形A’O’B’
处,则顶点O 经过的路线总长为 .
C13、将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,
圆柱的底面半径是___________cm.
三、解答题 A1. 如图,△ABC 内接于⊙O,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似
吗?请证明你的结论.
A2.如图,⊙O 的直径AB 长为6,弦AC 长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的
面积.
· A B
C
O
D A B
D
O C
(第8题图) (第9题图) (第10题图)
(第12题图) (第13题图)
A3.如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接
BD ,CD .
(1) 求证:BD CD =;
(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.
B4.如图9,在平行四边形ABCD 中,E 为BC 边上的一点,且AE 与DE 分别平分∠BAD 和∠ADC. ( 1)求证:AE ⊥DE;
(2)设以AD 为直径的半圆交AB 于F,连接DF 交AE 于G ,已知CD=5,AE=8,求
FG AF
的值.
C5.如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点
P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作CP 的垂线CD 交PB 的延长线于D 点.
(1)求证:A C ·CD=PC ·BC ;
(2)当点P 运动到AB 弧中点时,求CD 的长;
(3)当点P 运动到什么位置时,△PCD 的面积最大?并求出这个最大面积S 。

A
B C
E
F D。

相关文档
最新文档