2016年厦门市中考数学试卷~含内容答案解析
2016年福建省厦门市中考数学试卷-答案

福建省厦门市2016年初中毕业及高中阶段各类学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】1°等于60'.【提示】根据1=60'︒,换算单位即可求解.【考点】度分秒的换算2.【答案】C【解析】由22(2)0x x x x =-=-得10x =,22x =,所以答案选C.【提示】直接利用因式分解法将方程变形进而求出答案.【考点】一元二次方程的因式分解法3.【答案】D【解析】由题意得ABF △与DCE △全等,点F 与点E 为对应点,所以DEC AFB ∠=∠,故选D.【提示】根据全等的三角形的对应边和对应角分别相等即可得到结论.【考点】三角形全等的性质4.【答案】A【解析】由26x <得3x <,由14x +≥-得5x ≥-,所以原不等式组的解集为53x -≤<,故选A.【提示】一般由两个一元一次不等式组成的不等式组有四种基本类型【考点】一元一次不等式组的解法5.【答案】B【解析】DE 是△ABC 的中位线,AE CE ∴=,CF ∥BD ,DAE FCE ∴∠=∠,AED CEF ∠=∠,AED CEF ∴≅△△,EF DE ∴=,故选B.【考点】三角形的中位线、两直角线平行的性质、三角形全等的判定和性质6.【答案】D【解析】由题意得知两函数图象都经过点(4,3),又因为两函数图象有且仅有一个交点,所以交点只能为(4,3),交点的纵坐标为3,故选D.【提示】观察表格中的数据得到交点坐标是解题的关键.【考点】函数图象上点的坐标【解析】该公司2015年平均每人所创年利润为:36127616820112116811⨯+⨯+⨯+⨯=+++ 答:该公司2015年平均每人所创年利润为21万元.【提示】利用加权平均数的计算公式计算即可.本题考查的是加权平均数的计算,掌握加权平均数的计算公式是解题的关键.【考点】加权平均数20.【答案】证明:OC OE =,25E C ∴∠=∠=︒,50DOE C E ∴∠=∠+∠=︒.50A ∠=︒,A DOE ∴∠=∠,AB CD ∴∥.【提示】先利用等腰三角形的性质得到25E C ∠=∠=︒,再根据三角形外角性质计算出50DOE ∠=︒,则有A DOE ∠=∠,然后根据平行线的判定方法得到结论.【考点】平行线的判定,等腰三角形的性质21.【答案】(1)将1x =-,1y =代入一次函数解析式:2y kx =+,可得12k =-+,解得1k = ∴一次函数的解析式为:2y x =+(2)当0x =时,2y =;当0y =时,2x =-,所以函数图象经过(0,2),(2,0)-【答案】解:如图,在将sin DBC∠∴=DE2 CD=,3∴=,BC3∴=BC CD BD平分∴∠=ABD AB∴∥CD故成人用药后,血液中药物则至少需要6小时达到最大浓度.【提示】利用待定系数法分别求出直线OA 与双曲线的函数解析式,再令它们相等得出方程,解方程即可求解.【考点】反比例函数的应用25.【答案】2【解析】过点P 作x 轴的平行线PE 交BC 于点E ,如图所示.设直线BC 的解析式为y kx b =+,将点(1)B a m +,、(33)C m +,代入中y kx b =+,得:133m ak b m k b +=+⎧⎨+=+⎩,解得:23333k a a b m a ⎧=⎪⎪-⎨-⎪=+⎪-⎩, ∴直线BC 的解析式为23333a y x m a a -=++--. 当y n =时,(3)()3(1)2a n m a x --+-=, (3)()3(1)2a n m a E n --+-∴(,),(3)()3(1)2a n m a PE n m --+-=﹣(﹣)(1)(3)2a n m ---=. 11A m +(,),1B a m +(,),33C m +(,),1D m a +(,),P n m n -(,), 1AD a ∴=﹣,111122PAD P A SAD x x a n m ∴==--(﹣)(﹣)(), 11(1)(3)2222PBC C B a n m S PE y y ---==⨯(﹣)(1)(3)2a n m ---=. PAD PBC S S = ,1112a n m =---()()112a n m ---=()(), 解得:2n m -=.【解析】(1)OA OC =,60COA ∠=︒,ACO ∴△为等边三角形,60CAD ∴∠=︒,又70CDO ∠=︒,∴10ACD CDO CAD ∠=∠-∠=︒.(2)连接AG ,延长CP 交BF 于点Q ,交圆O 于点H ,令CG 交BF 于点R ,如图所示.在COD △和BOQ △中,OCD OBD OC OBCOD BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()COD BOQ ASA ∴△≌△,1BQ CD ∴==,CDO BQO ∠=∠.2BG =,OQ BG ∴⊥,90CQG ∴∠=︒.180CGQ GCQ CQG ∠+∠+∠=︒,180RCP CPR CRP ∠+∠+∠=︒,CGQ CFP CPF ∠=∠=∠, 90CRP CQG ∴∠=∠=︒,CFP CPF ∠=∠,FCG HCG ∴∠=∠,FG GH ∴=.OCD OBG ∠=∠,FCG FBG ∠=∠,ABF GCH ∴∠=∠,GH AF ∴=.90CDO BQO ∠=∠=︒,AC AF BH ∴==,∴点G 为AB 中点,∴AGB △、OQB △为等腰直角三角形.1BQ =,1OQ BQ ∴==,OB ==在Rt CGQ 中,1GQ =,1CQ CO OQ =+,CG ∴【提示】(1)由OA OC =,60COA ∠=︒即可得出ACO △为等边三角形,根据等边三角形的性质即可得出60CAD ∠=︒,再结合70CDO ∠=︒利用三角形外角的性质即可得出结论;(2)连接AG ,延长CP 交BF 于点Q ,交圆O 于点H ,令CG 交BF 于点R ,根据相等的边角关系即可证出()COD BOQ ASA △≌△,从而得出1BQ CD ==,CDO BQO ∠=∠,再根据2BG =即可得出OQ BG ⊥.利用三角形的内角和定理以及CFP CPF ∠=∠即可得出FCG HCG ∠=∠,结合交的计算以及同弧的圆周角相等即可得出FG GH =,GH AF =,AC AF BH ==,由此即可得出G 为AB 中点,进而得出AGB △、OQB △为等腰直角三角形,根据等腰直角三角形的性质以及勾股定理即可算出CG 的长度.【考点】圆的综合题27.【答案】(1)抛物线解析式为246y x x =-++【解析】解:(1)∵直线4y x m =-+过点B (3,9),943m ∴=⨯+﹣,解得:21m =,∴直线的解析式为421y x =-+,点A (5,)n 在直线421y x =-+上,45211n ∴=-⨯+=,∴点A (5,1),将点A (5,1)、B (3,9)代入2y x bx c =-++中,得:1255993b c b c =-++⎧⎨=-++⎩,解得:46b c =⎧⎨=⎩, ∴此抛物线的解析式为246y x x =-++;(2)由抛物线246y x x =-++与直线4y x m =-+交于A (5,n )点,得:255p q n -++=①,20m n +=-②,2y x px q =-++过(1,2)得:12p q -++= ③,则有255201225p q n m n p q m q -++=⎧⎪-+=⎪⎨-++=⎪⎪-=⎩①②③④解得:22263m n p q =⎧⎪=⎪⎨=⎪⎪=-⎩ ∴平移后的抛物线为263y x x=-+﹣, 一次函数的解析式为:422y x =-+,A (5,2),当抛物线在平移的过程中,a 不变,抛物线与直线有两个交点,如图所示,抛物线与直线一定交于点A ,所以当抛物线过点C 以及抛物线在点A 处与直线相切时,只有一个交点介于点A 、C 之间,①当抛物线2y x bx c =-++过A (5,2)、C (0,22)时,得22c =,1b =,抛物线解析式为:222y x x =-++,顶点189(,)24;②当抛物线2y x bx c =-++在点A 处与直线相切时,2422y x bx c y x ⎧=-++⎨=-+⎩, 2422x bx c x ++=+﹣﹣,24220x b x c +++=﹣()﹣,424220b c ∆=+-⨯⨯+=()(-1)(-)①,∵抛物线过2y x bx c =-++点A (5,2),2552b c ++=﹣,527c b =+﹣,把527c b =+﹣代入①式得:212360b b -+=,126b b ==,则56273c =⨯+=﹣﹣,∴抛物线的解析式为:263y x x =+-﹣,2(3)6y x =--+,顶点坐标为(3,6),8965644-=; 则6504S <<.【提示】(1)根据点B 的坐标可求出m 的值,写出一次函数的解析式,并求出点A 的坐标,最后利用点A 、B 两点的坐标求抛物线的解析式;(2)根据题意列方程组求出p 、q 、m 、n 的值,计算抛物线与直线最上和最下满足条件的解析式,并计算其顶点坐标,向下平移的距离主要看顶点坐标的纵坐标之差即可. 【考点】二次函数图象与几何变换。
厦门中考数学试题6-中考 (2).doc

:2016年厦门中考数学试题第6页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
厦门中考数学试题及答案-中考 (2).doc

:2016年厦门中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
【精编】2016年福建省厦门市海沧区数学中考模拟试卷与解析

2016年福建省厦门市海沧区中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)化简的值为()A.4 B.﹣4 C.±4 D.22.(4分)下列计算正确的是()A.a2+a2=a4 B.2a﹣a=2 C.(a2)3=a5D.(ab)2=a2b23.(4分)不等式2x+1>3的解集在数轴上表示正确的是()A.B.C.D.4.(4分)小张参加某节目的海选,共有17位选手参加决逐争取8个晋级名额,已知他们的分数互不相同,小张要判断自己是否能够晋级,只要知道17名选手成绩统计量中的()A.众数B.方差C.中位数D.平均数5.(4分)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.6.(4分)计算743×369﹣741×370的值是()A.﹣3 B.﹣2 C.3 D.77.(4分)如图,将△ABC沿直线AB翻折后得到△ABC1,再将△ABC绕点A旋转后得到△AB2C2,对于下列两个结论:①“△ABC1能绕一点旋转后与△AB2C2重合”;②“△ABC1能沿一直线翻折后与△AB2C2重合”的正确性是()A.结论①、②都正确B.结论①、②都错误C.结论①正确、②错误D.结论①错误、②正确8.(4分)已知抛物线y=2(x﹣1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<0,那么下列结论一定成立的是()A.y1<y2<0 B.0<y1<y2C.0<y2<y1D.y2<y1<09.(4分)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D10.(4分)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD 相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈 B.2圈 C.3圈 D.4圈二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)已知正比例函数y=kx(k≠0)的图象经过点(﹣1,2),则实数k=.12.(4分)掷一枚质地均匀标有1,2,3,4,5,6的正方体骰子,向上一面的数字是3的概率为..13.(4分)分解因式:x2﹣9=.14.(4分)如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为.15.(4分)如图,OP=1,过P作PP1⊥OP,且PP1=1,得OP1=;再过P1作P1P2⊥OP1,且P1P2=1,得OP2=;又过P2作P2P3⊥OP2,且P2P3=1,得OP3=2;…依此法继续作下去,得OP2016=.16.(4分)如图,有一圆经过△ABC的三个顶点,且线段BC的垂直平分线与圆弧相交于D点,连结CD、AD,若∠B=74°,∠ACB=52°,则∠BAD=.三、解答题(本大题有11小题,共86分)17.(7分)计算:.18.(7分)在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的△A1B1C1.19.(7分)解方程:2x2﹣3x+1=0.20.(7分)在一个不透明的口袋中装有三个形状、大小、质地完全相同的球,球的编号分别为1,2,3.先从袋中随机摸出一个球,记下编号,将球放回袋中,然后再从袋中随机摸出一个球,记下编号,求两次摸出的球编号相同的概率.21.(7分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠22.(7分)一个滑雪者从山坡滑下,为了得出滑行距离s(单位:m)与滑行时间t(单位:s)之间的关系式,测得的一些数据(如表)为观察s与t之间的关系,建立坐标系(如图),以t为横坐标,s为纵坐标,请描出表中数据对应的5个点,并用平滑曲线连接它们,再根据这条曲线图象,利用我们所学的函数,近似地表示s关于t的函数关系式.23.(7分)阅读材料:求1+2+22+23+24+…+22015+22016的值.解:设S=1+2+22+23+24+…+22015+22016,①将①×2得:2S=2+22+23+24+…+22016+22017,②由②﹣①得:2S﹣S=22017﹣1,即S=22017﹣1,即1+2+22+23+24+…+22015+22016=22017﹣1请你仿照此法计算:1+3+32+33+34+…+3n(其中n为正整数).24.(7分)张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书,则李强的工作效率可以是张明的2倍吗?请说明理由.25.(7分)如图,直线AB与反比例函数y=(x>0)的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,求v的取值范26.(11分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线交AB的延长线于点D,已知CD=CA.(1)求∠CAD的大小;(2)已知P是的中点,E是线段AC上一点(不含端点,且AE>EC),作EF ⊥PC,垂足为F,连接EP,当EF+EP的最小值为6时,求⊙O的半径.27.(12分)如图,已知点P(m,5)在直线y=kx(k>0)上,线段OP的垂直平分线交y轴于点A,交x轴于点B,连接AP,BP,得“筝形”四边形PAOB.(1)当m=2时,求tan∠POA的值;(2)若直线x=5交x轴于点C,交线段AB于点D(异于端点),记“筝形”四边形PAOB的面积为s,△DCB的面积为t,试比较s与2t+的大小,并说明理由.2016年福建省厦门市海沧区中考数学模拟试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)化简的值为()A.4 B.﹣4 C.±4 D.2【解答】解:∵42=16,∴=4.故选A.2.(4分)下列计算正确的是()A.a2+a2=a4 B.2a﹣a=2 C.(a2)3=a5D.(ab)2=a2b2【解答】解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(a2)3=a2×3=a6,故本选项错误;D、(ab)2=a2b2,故本选项正确.故选D.3.(4分)不等式2x+1>3的解集在数轴上表示正确的是()A.B.C.D.【解答】解:不等式2x+1>3的解集为:x>1,故选C.4.(4分)小张参加某节目的海选,共有17位选手参加决逐争取8个晋级名额,已知他们的分数互不相同,小张要判断自己是否能够晋级,只要知道17名选手成绩统计量中的()A.众数B.方差C.中位数D.平均数【解答】解:因为8位获奖者的分数肯定是17名参赛选手中最高的,而且17个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.5.(4分)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.【解答】解:如图所示:故选:A.6.(4分)计算743×369﹣741×370的值是()A.﹣3 B.﹣2 C.3 D.7【解答】解:743×369﹣741×370=743×(370﹣1)﹣741×370=743×370﹣741×370﹣743=(743﹣741)×370﹣743=2×370﹣743=740﹣743=﹣3.故选:A.7.(4分)如图,将△ABC沿直线AB翻折后得到△ABC1,再将△ABC绕点A旋转后得到△AB2C2,对于下列两个结论:①“△ABC1能绕一点旋转后与△AB2C2重合”;②“△ABC1能沿一直线翻折后与△AB2C2重合”的正确性是()A.结论①、②都正确B.结论①、②都错误C.结论①正确、②错误D.结论①错误、②正确【解答】解:由图可知,①“△ABC1不能绕一点旋转后与△AB2C2重合”,故本小题错误;②“△ABC1沿BB2的垂直平分线翻折后能与△AB2C2重合”,故本小题正确;综上所述,结论①错误、②正确.故选D.8.(4分)已知抛物线y=2(x﹣1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<0,那么下列结论一定成立的是()A.y1<y2<0 B.0<y1<y2C.0<y2<y1D.y2<y1<0【解答】解:∵y=2(x﹣1)2,∴a=2>0,有最小值为0,∴抛物线开口向上,∵抛物线y=2(x﹣1)2对称轴为直线x=1,∵x1<x2<0,∴0<y2<y1.故选C.9.(4分)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D【解答】解:∵,∴,∴,∵点B表示的数是﹣1.5,在﹣2~﹣1之间,∴点B最接近,故选:B.10.(4分)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD 相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈 B.2圈 C.3圈 D.4圈【解答】解:如图,连接AD、AB与⊙O的切点E、F,则OE⊥AD,OF⊥AB.易证四边形OEAF是正方形,则AF=OE=1.∵⊙O的周长=2π×1=2π,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的路程是:2(AB+BC)﹣8AF=20﹣8=12,又因为在每个角硬币滚动一段弧,四个角的弧就是一个整圆,∴硬币自身滚动的圈数大约是:12÷2π≈2(圈).故选B.二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)已知正比例函数y=kx(k≠0)的图象经过点(﹣1,2),则实数k=﹣2.【解答】解:∵正比例函数y=kx(k≠0)的图象经过点(﹣1,2),∴2=﹣k,解得k=﹣2.故答案为:﹣2.12.(4分)掷一枚质地均匀标有1,2,3,4,5,6的正方体骰子,向上一面的数字是3的概率为..【解答】解:∵1、2、3、4、5、6中数字是3的数是3,只有1个,∴掷得向上一面的数字是3的概率为.故答案为.13.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).14.(4分)如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为或.【解答】解:如图1所示,AC=2AB,∴最小角为∠C,根据勾股定理得:BC==AB,则tanC===;如图2所示,BC=2AB,∴tanC==,综上,这个直角三角形的较小的锐角的正切值为或.故答案为:或.15.(4分)如图,OP=1,过P作PP1⊥OP,且PP1=1,得OP1=;再过P1作P1P2⊥OP1,且P1P2=1,得OP2=;又过P2作P2P3⊥OP2,且P2P3=1,得OP3=2;…依此法继续作下去,得OP2016=.【解答】解:∵OP=1,OP1=,OP2=,OP3==2,∴OP4==,…,OP2016=.故答案为:.16.(4分)如图,有一圆经过△ABC的三个顶点,且线段BC的垂直平分线与圆弧相交于D点,连结CD、AD,若∠B=74°,∠ACB=52°,则∠BAD=117°.【解答】解:连接BD,如图所示:∵DE是线段BC的垂直平分线,∴BD=CD,∴,∵∠B=74°,∠ACB=52°,∴的度数=2×74°=148°,的度数=2×52°=104°,∴2的度数=的度数﹣的度数=44°,∴的度数=22°,∴∠ACD=×22°=11°,∴∠BCD=52°+11°=63°,∴∠BAD=180°﹣∠BCD=117°;故答案为:117°.三、解答题(本大题有11小题,共86分)17.(7分)计算:.【解答】解:原式=2﹣2+1=2﹣1.18.(7分)在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的△A1B1C1.【解答】解:如图,△ABC和△A1B1C1为所作.19.(7分)解方程:2x2﹣3x+1=0.【解答】解:方程分解因式得:(2x﹣1)(x﹣1)=0,可得2x﹣1=0或x﹣1=0,解得:x1=,x2=1.20.(7分)在一个不透明的口袋中装有三个形状、大小、质地完全相同的球,球的编号分别为1,2,3.先从袋中随机摸出一个球,记下编号,将球放回袋中,然后再从袋中随机摸出一个球,记下编号,求两次摸出的球编号相同的概率.【解答】解:画树状图为:共有9种等可能的结果数,其中两次摸出的球编号相同的结果数为3,所以两次摸出的球编号相同的概率==.21.(7分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.【解答】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.22.(7分)一个滑雪者从山坡滑下,为了得出滑行距离s(单位:m)与滑行时间t(单位:s)之间的关系式,测得的一些数据(如表)为观察s与t之间的关系,建立坐标系(如图),以t为横坐标,s为纵坐标,请描出表中数据对应的5个点,并用平滑曲线连接它们,再根据这条曲线图象,利用我们所学的函数,近似地表示s关于t的函数关系式.【解答】解:描点,连线,如图所示.观察函数图象,s与t的关系可近似看成二次函数,设s关于t的函数关系式为s=at2,将(4,48)代入s=at2,48=16a,解得:a=3,∴近似地表示s关于t的函数关系式为s=3t2.23.(7分)阅读材料:求1+2+22+23+24+…+22015+22016的值.解:设S=1+2+22+23+24+…+22015+22016,①将①×2得:2S=2+22+23+24+…+22016+22017,②由②﹣①得:2S﹣S=22017﹣1,即S=22017﹣1,即1+2+22+23+24+…+22015+22016=22017﹣1请你仿照此法计算:1+3+32+33+34+…+3n(其中n为正整数).【解答】解:设S=1+3+32+33+34+…+3n①(其中n为正整数),将①×3得:3S=3+32+33+34+…+3n+1②,由②﹣①得:3S﹣S=3n+1﹣1,即S=,故1+3+32+33+34+…+3n=(其中n为正整数).24.(7分)张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书,则李强的工作效率可以是张明的2倍吗?请说明理由.【解答】解:李强的工作效率不是张明的2倍,设李强单独清点这批图书需要x小时,根据题意,得1.2(+)=,解得:x=4,经检验x=4是原方程的根,∴李强的工作效率为,张明的工作效率为=,则李强的工作效率是张明的÷=倍.25.(7分)如图,直线AB与反比例函数y=(x>0)的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,求v的取值范围.【解答】解:∵∠ACO=45°,∴设直线AB的解析式为y=﹣x+b.∵点A(u,p)和点B(v,q)为反比例函数y=(x>0)的图象上的点,∴p=,q=,∴点A(u,),点B(v,).又∵点A、B为直线AB上的点,∴=﹣u+b①,=﹣v+b②,①﹣②得:=v﹣u,即v=.又∵<u<2,∴2<v<12.26.(11分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线交AB的延长线于点D,已知CD=CA.(1)求∠CAD的大小;(2)已知P是的中点,E是线段AC上一点(不含端点,且AE>EC),作EF⊥PC,垂足为F,连接EP,当EF+EP的最小值为6时,求⊙O的半径.【解答】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵CD=CA,OC=OA,∴∠D=∠CAD,∠CAD=∠OCA,∵∠D+∠OCD+∠OCA+∠CAD=180°,即∠CAD+90°+∠CAD+∠CAD=180°,∴∠CAD=30°;(2)连接OP,如图,∵∠COD=2∠CAD=60°∴∠AOC=120°,∵P是的中点,∴∠POC=∠AOP=60°,OP⊥AC,∴△POC和△POA都是等边三角形,∴AC垂直平分OP,OF交AC于E,如图,则EP=EO,∵EF+EP=EF+EO=OF,∴此时EP+EF最小,即OF=6,∵OF⊥PC,∴∠PFO=90°,∠POF=POC=30°在Rt△POF中,∵cos∠POF=,∴OP==4,即⊙O的半径为4.27.(12分)如图,已知点P(m,5)在直线y=kx(k>0)上,线段OP的垂直平分线交y轴于点A,交x轴于点B,连接AP,BP,得“筝形”四边形PAOB.(1)当m=2时,求tan∠POA的值;(2)若直线x=5交x轴于点C,交线段AB于点D(异于端点),记“筝形”四边形PAOB的面积为s,△DCB的面积为t,试比较s与2t+的大小,并说明理由.【解答】解:(1)如图,∵PE⊥OA,∵m=2,∴P(2,5),∴PE=2,OE=5,在Rt△OPE中,tan∠POA==.(2)S>2t+理由:∵P(m,5)在直线y=kx上,∴5=mk,F(,)∴k=,∵线段OP的垂直平分线交y轴于点A,交x轴于点B,∴直线AB解析式为y=﹣x+,∴A(0,),B(,0),∴OA=,OB=,∴S=2××()()=()()∵直线x=5交x轴于点C,∴令x=5,则有y=﹣×5+=﹣m+,∴CD=﹣m+,BC=﹣5,∴2t+=2×(﹣5)(﹣m+)+=(﹣5)(﹣m+)+=()()﹣[(m﹣)2+],∴S﹣(2t+)=()()﹣{()()﹣[(m﹣)2+]}=(m﹣)2+>0,∴S>2t+.。
2016年厦门市湖里区中考数学模拟试卷含答案解析

2016年福建省厦门市湖里区中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.的相反数是()A.B.C.3 D.﹣32.一组数据6,6,6,6,6,添加一个数0后,方差将会()A.变大B.变小C.不变D.无法确定3.下列不等式组中解集为x<1的是()A.B.C.D.4.如图,在平面直角坐标系中,直线OA过点A(3,4),则tanα的值是()A.B.C.D.5.下列运算正确的是()A.20=0 B.=±2 C.2﹣1=D.23=66.如图,AB是半圆的直径,∠ABC=50°,点D是的中点,则∠DAB等于()A.40°B.50°C.65°D.70°7.事件“反比例函数y=(k>0)经过点(0,3)”的概率是()A.0 B.C.D.18.在△ABC中,若点D为AB中点,点E是AC上一点,则下列条件能判断线段DE一定为△ABC中位线的是()A.DE⊥AC B.CE=2AEC.=1 D.=9.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1)B.(1,2)和(﹣1,﹣2) C.(1,2)和(2,1)D.(﹣1,2)和(1,2)10.在△ABC中,∠B=2∠C,则AC与2AB之间的大小关系是()A.AC>2AB B.AC=2AB C.AC≤2AB D.AC<2AB二、填空题(本大题有6小题,每小题4分,共24分)11.方程x2=2x的解是.12.已知山的坡度i=1:3,若小明在爬山过程中的铅直高度上升了30米,则他在水平方向移动米.13.某次数学考试中,一学习小组的四位同学A,B,C,D的平均分是80分,为了让该小组成员之间能更好的互帮互学,老师调入了E同学,调入后,他们五人本次的平均分变为90分,则E同学本次考试为分.14.若a=1954×1946,b=1957×1943,c=1949×1951,则a,b,c的大小关系为(用“<”连接).15.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=度.16.利用勾股定理可以顺次作出,,,…的线段.例如要作长为的线段,可以利用如下等式:()2=()2+1=()2+()2=22+()2=42﹣32来构造直角三角形.若k是大于1的正整数,请你通过构造一个两边均为有理数的直角三角形,作出长为的线段,则这个直角三角形的两边可以为:,.三、解答题(本大题有11小题,共86分)17.计算: +﹣x.18.如图,在平面直角坐标系中,已知点A(1,0),B(3,2),请在图中画出线段AB,并在y轴上找一点P,使得PA=PB.(要求:尺规作图,并保留作图痕迹)19.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:∠A=∠D.20.如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).21.如图,在△ABC中,点D是AB边的三等分点(AD<BD),DE∥BC交AC于点E,DF∥AC交BC于点F,求的值.22.西藏林芝米林县与厦门某校开展共建活动,为了让西藏的同学也能读到更多好书,小红同学把自己多年积攒的零花钱5005元计划买300本书送给他们.其中含江苏凤凰出版的A类书《中国历史》,一本20元,山东科技出版的B类书《初中数学解题思路与方法》,一本15元,如果购买的A类书少于B类书的一半,请问小红同学的钱够不够,并说明理由.23.如图,在平面直角坐标系中,已知点A(1,1),点B在直线y=1上,点C (2+,4),点D(2,4),且∠D=∠B,试判断四边形ABCD的形状,并证明你的结论.24.已知点M为抛物线y=x2+bx+b的顶点,抛物线与x轴无交点,点N在抛物线的对称轴上且位于点M上方.若点N到点M的距离是点M到x轴距离的两倍,直线ON的解析式为y=kx,请求出k关于b的函数关系式.25.阅读以下证明过程:已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2.证明:假设a2+b2=c2,则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2.请用类似的方法证明以下问题:已知:a,b是正整数,若关于x的一元二次方程x2+2a(1﹣bx)+2b=0有两个实根x1和x2,求证:x1≠x2.26.△ABC是⊙O的内接三角形,BC=.(1)如图1,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.(2)如图2,∠B=120°,点D是优弧的中点,DE∥BC交BA延长线于点E,BE=2,请将图形补充完整并求AB的值.27.已知点A(m,n)在反比例函数y1=上.=6,求点A的坐标;(1)若m=,点M(0,3)且S△AOM(2)若m=n=2,点A到直线y2=﹣x+b的距离为,点B(p,q)在y2=﹣x+b 上,过点B作BC⊥x轴,垂足为点C,交y1于点D.当0<p<q时,求p•BD的取值范围.2016年福建省厦门市湖里区中考数学模拟试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.的相反数是()A.B.C.3 D.﹣3【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选B.2.一组数据6,6,6,6,6,添加一个数0后,方差将会()A.变大B.变小C.不变D.无法确定【考点】方差.【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,依此定义可知方差将会变大.【解答】解:一组数据6,6,6,6,6,添加一个数0后,方差将会变大.故选A.3.下列不等式组中解集为x<1的是()A.B.C.D.【考点】解一元一次不等式组.【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定每个不等式组的解集即可.【解答】解:A、的解集为:x<1;B、无解;C、的解集为:x>2;D、的解集为:1<x<2;故选:A.4.如图,在平面直角坐标系中,直线OA过点A(3,4),则tanα的值是()A.B.C.D.【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据锐角的正切等于对边比邻边,可得答案.【解答】解:如图,tanα==,故选:D.5.下列运算正确的是()A.20=0 B.=±2 C.2﹣1=D.23=6【考点】负整数指数幂;算术平方根;零指数幂.【分析】根据负整数指数幂、算术平方根、零指数幂的定义和计算公式分别对每一项进行判断即可.【解答】解:A、20=1,故本选项错误;B、=2,故本选项错误;C、2﹣1=,故本选项正确;D、23=8,故本选项错误;故选C.6.如图,AB是半圆的直径,∠ABC=50°,点D是的中点,则∠DAB等于()A.40°B.50°C.65°D.70°【考点】圆周角定理.【分析】连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.【解答】解:连结BD,如图,∵点D是的中点,即弧CD=弧AD,∴∠ABD=∠CBD,∵∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选C.7.事件“反比例函数y=(k>0)经过点(0,3)”的概率是()A.0 B.C.D.1【考点】反比例函数的图象;概率公式.【分析】根据反比例函数的定义解答即可.【解答】解:因为反比例函数y=(k>0),x不能等于0,所以点(0,3)不在反比例函数y=(k>0)上,所以事件“反比例函数y=(k>0)经过点(0,3)”的概率是0,故选A.8.在△ABC中,若点D为AB中点,点E是AC上一点,则下列条件能判断线段DE一定为△ABC中位线的是()A.DE⊥AC B.CE=2AEC.=1 D.=【考点】三角形中位线定理.【分析】可先假设DE∥BC,由三角形中位线定理进而可得出结论.【解答】解:根据题意可假设DE∥BC,则可得△ADE∽△ABC,∵点D为AB中点,DE∥BC,∴DE是△ABC中位线,∴,∴,故选D.9.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1)B.(1,2)和(﹣1,﹣2) C.(1,2)和(2,1)D.(﹣1,2)和(1,2)【考点】正比例函数的图象.【分析】分别把各点坐标代入函数y=2x进行检验即可.【解答】解:A、∵当x=2时,y=4,∴点(2,1)不符合,故本选项错误;B、∵当x=1时,y=2;当x=﹣1时,y=﹣2,∴两组数据均符合,故本选项正确;C、∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D、∵当x=﹣1时,y=﹣2≠2;当x=1时,y=4≠2,∴两组数据均不符合,故本选项错误.故选B.10.在△ABC中,∠B=2∠C,则AC与2AB之间的大小关系是()A.AC>2AB B.AC=2AB C.AC≤2AB D.AC<2AB【考点】三角形三边关系;三角形的外角性质.【分析】延长CB到D,使DB=AB,连接AD,从而可得到∠BAD=∠D,再根据三角形的外角的性质可推出∠ABC=2∠D,从而不难得到△ADC是等腰三角形,根据三角形三边关系即可得到2AB与AC的关系.【解答】解:如图,延长CB到D,使DB=AB,连接AD,∵在△ABD中,AB=BD,∴∠BAD=∠D,∵∠ABC是△ABD的外角,∴∠ABC=2∠D,∵∠ABC=2∠C,∴∠C=∠D,∴AD=AC,在△ABD中,AB+BD>AD=AC,即2AB>AC.故选D.二、填空题(本大题有6小题,每小题4分,共24分)11.方程x2=2x的解是x1=0,x2=2.【考点】解一元二次方程﹣因式分解法.【分析】先移项得到x2﹣2x=0,再把方程左边进行因式分解得到x(x﹣2)=0,方程转化为两个一元一次方程:x=0或x﹣2=0,即可得到原方程的解为x1=0,x2=2.【解答】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为x1=0,x2=2.12.已知山的坡度i=1:3,若小明在爬山过程中的铅直高度上升了30米,则他在水平方向移动90米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据斜坡AB的坡度i=1:3,可得BC:AC=1:3,将BC=30米代入求出AC的长度.【解答】解:∵斜坡AB的坡度i=1:3,∴BC:AC=1:3,∵BC=30米,∴AC=30×3=90(米).故答案为:90.13.某次数学考试中,一学习小组的四位同学A,B,C,D的平均分是80分,为了让该小组成员之间能更好的互帮互学,老师调入了E同学,调入后,他们五人本次的平均分变为90分,则E同学本次考试为130分.【考点】加权平均数.【分析】根据一学习小组的四位同学A,B,C,D的平均分是80分,可以求得这四位同学的总分,根据老师调入了E同学,调入后,他们五人本次的平均分变为90分,可以求得这五位同学的总分,从而可以求得E的分数,本题得以解决.【解答】解:由题意可得,A,B,C,D四位同学的总分是:80×4=320分,A,B,C,D,E五位同学的总分是:90×5=450分,∴E同学的分数是:450﹣320=130分,故答案是:130.14.若a=1954×1946,b=1957×1943,c=1949×1951,则a,b,c的大小关系为c>a>b(用“<”连接).【考点】有理数大小比较.【分析】根据平方差公式,可得答案.【解答】解:a=1954×1946==19502﹣16,b=1957×1943==19502﹣49,c=1949×1951==19502﹣1,c>a>b,故答案为:c>a>b.15.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60度.【考点】圆周角定理;平行四边形的性质.【分析】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD+∠OCD的度数.【解答】解:法一:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60.法二:连接OB∵四边形OABC为平行四边形∴AB=OC=OB=OA=BC∴△OAB和△OBC都为等边三角形∴∠OAB=∠OCB=60°∵ABCD为圆的内接四边形∴∠DAB+∠DCB=180°∴∠OAD+∠OCD=180°﹣60°﹣60°=60°16.利用勾股定理可以顺次作出,,,…的线段.例如要作长为的线段,可以利用如下等式:()2=()2+1=()2+()2=22+()2=42﹣32来构造直角三角形.若k是大于1的正整数,请你通过构造一个两边均为有理数的直角三角形,作出长为的线段,则这个直角三角形的两边可以为:,1.【考点】勾股定理;勾股定理的逆定理.【分析】根据题目中提供的信息以及勾股定理解答即可.【解答】解::()2=()2+1=()2+()2=22+()2=42﹣32,∴()2=()2﹣12(k是大于1的正整数),∴这个直角三角形的两边可以为,1,故答案为:,1.三、解答题(本大题有11小题,共86分)17.计算: +﹣x.【考点】分式的加减法.【分析】原式通分并利用同分母分式的加减法则计算即可得到结果.【解答】解:原式===1.18.如图,在平面直角坐标系中,已知点A(1,0),B(3,2),请在图中画出线段AB,并在y轴上找一点P,使得PA=PB.(要求:尺规作图,并保留作图痕迹)【考点】作图—基本作图.【分析】在坐标系内描出A、B两点,作出线段AB,作线段AB的垂直平分线交y轴于点P,则点P即为所求.【解答】解:如图所示;19.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】利用SAS可证△ABC≌△CDE,从而可得∠A=∠D.【解答】证明:∵BC∥DE,∴∠BCA=∠CED,在△ABC与△CED中,,∴△ABC≌△CED(SAS),∴∠A=∠D20.如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).【考点】列表法与树状图法.【分析】先画树状图展示所有12种等可能的结果数,再找出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次抽到卡片上的文字含有“文明”、“诚信”价值取向的结果数为2,所以两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率==.21.如图,在△ABC中,点D是AB边的三等分点(AD<BD),DE∥BC交AC于点E,DF∥AC交BC于点F,求的值.【考点】相似三角形的判定与性质.【分析】根据已知条件得到四边形DECF是平行四边形,根据平行四边形的性质得到DE=CF,根据相似三角形的性质即可得到结论.【解答】解:∵DE∥BC交AC于点E,DF∥AC交BC于点F,∴四边形DECF是平行四边形,∴DE=CF,∵D是AB边的三等分点,∴,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=.22.西藏林芝米林县与厦门某校开展共建活动,为了让西藏的同学也能读到更多好书,小红同学把自己多年积攒的零花钱5005元计划买300本书送给他们.其中含江苏凤凰出版的A类书《中国历史》,一本20元,山东科技出版的B类书《初中数学解题思路与方法》,一本15元,如果购买的A类书少于B类书的一半,请问小红同学的钱够不够,并说明理由.【考点】一元一次方程的应用.【分析】可设A类书买了x本,则B类书买了,根据等量关系:A类书的钱数+B 类书的钱数=5005元,不等量关系:购买的A类书<B类书的一半,列出方程和不等式求解即可.【解答】解:设A类书买了x本,则B类书买了,依题意有20x+15=5005,解得x=101,x<,解得x<100,∵101>100,∴小红同学的钱够.23.如图,在平面直角坐标系中,已知点A(1,1),点B在直线y=1上,点C (2+,4),点D(2,4),且∠D=∠B,试判断四边形ABCD的形状,并证明你的结论.【考点】坐标与图形性质.【分析】连接AC,由点C、D的纵坐标相同可得出直线CD的解析式,由点A的坐标以及点B所在的直线即可得出直线AB的解析式,从而得出AB∥CD,进而可得出∠ACD=∠CAB,由此即可证出△ACD≌△CAB(AAS),根据全等三角形的性质即可得出AB=CD、AD=CB,再利用两点间的距离公式即可求出AD=CD,从而得出四边形ABCD为菱形.【解答】解:四边形ABCD为菱形,理由如下:连接AC,如图所示.∵点C(2+,4),点D(2,4),∴直线CD的解析式为y=4,∵点A(1,1),点B在直线y=1上,∴直线AB的解析为y=1,∴CD∥AB,∴∠ACD=∠CAB.在△ACD和△CAB中,,∴△ACD≌△CAB(AAS),∴AB=CD,AD=CB.∵A(1,1),C(2+,4),D(2,4),∴AD==,CD=2+﹣2=,∴AD=CD,∴AB=BC=CD=AD,∴四边形ABCD为菱形.24.已知点M为抛物线y=x2+bx+b的顶点,抛物线与x轴无交点,点N在抛物线的对称轴上且位于点M上方.若点N到点M的距离是点M到x轴距离的两倍,直线ON的解析式为y=kx,请求出k关于b的函数关系式.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】利用配方法求出点M坐标,根据条件求出点N坐标代入y=kx,求出k,再根据△<0确定b的取值范围即可.【解答】解:y=x2+bx+b=(x+)2+,∴点M坐标(﹣,),抛物线对称轴x=﹣,∴点N的横坐标为﹣,点N的纵坐标为+=,∴N(﹣,),代入y=kx得到k×(﹣)=,∴k=b﹣6,∵抛物线与x轴无交点,∴△=b2﹣4b<0,∴0<b<4,∴k=b﹣6 (0<b<4).25.阅读以下证明过程:已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2.证明:假设a2+b2=c2,则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2.请用类似的方法证明以下问题:已知:a,b是正整数,若关于x的一元二次方程x2+2a(1﹣bx)+2b=0有两个实根x1和x2,求证:x1≠x2.【考点】反证法.【分析】假设x1=x2,则方程x2﹣2abx+2a+2b=0有两个相等的实数根,即判别式△=0,据此即可得到a和b的关系,然后根据a、b是正整数从而得到错误的结论,从而证明△=0错误,得到所证的结论.【解答】证明:假设x1=x2,则方程x2﹣2abx+2a+2b=0有两个相等的实数根,∴△=4a2b2﹣8a﹣8b=4a2b2﹣4(2a+2b)=0,则a2b2=2a+2b,a2b2=2(a+b).∵a、b是正整数,∴2(a+b)是偶数,∴a2b2也是偶数,又∵a、b为正整数,∴a、b中必有一个是2的倍数,不妨设a是偶数,即a是2的倍数,则a2是4的倍数.∴a2b2是4的倍数.∴a+b是2的倍数.∵a是2的倍数,a2b2=2(a+b),∴=a+b,=,=+.∵a、b是偶数,∴位正偶数,∴+为正整数.又∵a、b位偶数,∴a=b=2,此时,a2b2=16,而2(a+b)=8,a2b2≠2(a+b)与事实不符.∴△≠0,即x1≠x2.26.△ABC是⊙O的内接三角形,BC=.(1)如图1,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.(2)如图2,∠B=120°,点D是优弧的中点,DE∥BC交BA延长线于点E,BE=2,请将图形补充完整并求AB的值.【考点】直线与圆的位置关系.【分析】(1)作OF⊥l于F,CE⊥l于E,设AD=a,则AB=2AD=2a,只要证明OF 是梯形ADEC的中位线即可解决问题.(2)只要证明△EDA≌△BDC,得AE=BC,即可解决问题.【解答】解:(1)图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵DE⊥BD,∴∠BDE=90°,∴BD⊥DE,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA,∴直线l是⊙O切线.(2)图形如图2所示,连接AD,BD,CD.∵=,∠ABC=120°,∴∠EBD=∠CBD=60°,∵DE∥CB,∴∠ABC+∠E=180°,∴∠E=60°,∴△BED是等边三角形,∴∠EDB=60°,ED=DB,∵∠ACD=∠ABD=60°,∠DAC=∠CBD=60°,∴△ACD是等边三角形,∴∠ADC=60°,DA=DC,∴∠EDB=∠ADC,∴∠EDA=∠BDC,在△EDA和△BDC中,,∴△EDA≌△BDC,∴AE=BC=,∵BE=2,∴AB=BE﹣AE=2﹣.27.已知点A(m,n)在反比例函数y1=上.=6,求点A的坐标;(1)若m=,点M(0,3)且S△AOM(2)若m=n=2,点A到直线y2=﹣x+b的距离为,点B(p,q)在y2=﹣x+b 上,过点B作BC⊥x轴,垂足为点C,交y1于点D.当0<p<q时,求p•BD的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法求出k,再根据三角形面积公式可以确定点A横坐标,由此即可解决问题.(2)如图,首先判断直线y2在点A上方,点B在线段EF上运动(不包括点E),构建二次函数即可解决问题.【解答】解:(1)∵点A(m,n)在反比例函数y1=上,且m=,∴k=mn=1,∴y=,∵点M(0,3),∴OM=3,=6,∵S△AOM∴A的横坐标为±4,∴m=±4,∵n=,∴A(4,)或(﹣4,﹣);(2)如图,直线OA与y2交于点E,∵AE=,A(2,2),∴K=4,y=,∴点E坐标(3,3),∵点B(p,q)在y2=﹣x+b上,过点B作BC⊥x轴,垂足为点C,交y1于点D.0<p<q,∴点B在点E上方,点F下方,∴p•BD=p(﹣p+6﹣)=﹣p2+6p﹣4=﹣(p﹣3)2+5,∴p•BD的最大值为5,当点B与点F重合时取得最小值0,∵0<p<q,∴p≠3,∴0≤p•BD<5.2017年3月11日。
厦门中考数学试题4-中考.doc

:2016年厦门中考数学试题第4页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
福建省厦门市2016年中考一模数学试卷(6)及答案详解详解

厦门市2016年中考一模数学试卷(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.如果两个实数b a 、满足0=+b a ,那么b a 、一定是A .都等于0B .一正一负C .互为相反数D .互为倒数2.袋子中有10个黑球、1个白球, 他们除颜色外无其它差别.随机从袋子中摸出一个球,则 A .摸到黑球、白球的可能性大小一样B .这个球一定是黑球C .事先能确定摸到什么颜色的球D .这个球可能是白球 3.下列运算结果是6a 的式子是A .23a a ⋅B .6()a - C .33()a D .126a a -4.如图1,下列语句中,描述错误的是A .点O 在直线AB 上 B .直线AB 与直线OP 相交于点OC .点P 在直线AB 上D .∠AOP 与∠BOP 互为补角 5.下列角度中,可以是多边形内角和的是A .450°B .900°C .1200°D .1400°6.在数学活动课上,老师和同学们判断一个四边形是否为矩形,下面是一个学习小组拟定的方案,其中正确的是A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量对角线是否相等D .测量其中三个角是否都为直角7.命题“关于x 的一元二次方程210x bx ++=,必有实数解.”是假命题.则在下列选项中,可以作为反例的是A .b =﹣1B .b =﹣2C .b =﹣3D .b =28.在平面直角坐标系中,将y 轴所在的直线绕原点逆时针旋转45°,再向下平移1个单位后得到直线a ,则直线a 对应的函数表达式为A .1y x =-B .1y x =-+C .1y x =+D .1y x =--9.如图2,正比例函数y 1=k 1x 的图象与反比例函数y 2=2k x的图象相交于A ,B 两点, PBOA 图1其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是 A .x <﹣2或x >2 B .x <﹣2或0<x <2 C .﹣2<x <0或0<x <﹣2 D .﹣2<x <0或x >210.已知抛物线213662y x x =-++与x 轴交于点A 和点B ,与y 轴交于点C , 若D 为AB 的中点,则CD 的长为 A .154 B .92 C .132 D .152二、填空题(本大题有10小题,每小题4分,共24分) 11x 的取值范围是____________.12.计算(2)(2)__________x x +-=13.某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分笔试成绩为90分.若公司分别赋予面试成绩和笔试成绩6和4的权,则甲的平均成绩的是____分. 14.若反比例函数xk y 1-=图像在第二、四象限,则k 的取值范围是 . 15. 若函数1y x =-(1)当2x =-时,y = ;(2)当14x -≤<时,y 的取值范围是 .16.如图3, 以数轴上的原点O 为圆心,为半径的扇形中,圆心角90AOB ∠=,另一个扇形是以点P 为圆心,5为半径,圆心角60CPD ∠=,点P 在数轴上表示实数a ,(1)计算︵CD l =___________.(2)如果两个扇形的圆弧部分(AB 和CD )相交,那么实数a 的取值范围是 .三、解答题(本大题有11小题,共86分) 17.(本题满分7分)O 图360计算:2(2)42sin 30-+-︒18.(本题满分7分)在平面直角坐标系中,已知点A (-4,1),B (-2,0),C (-3, -1),请在图4上画出△ABC ,并画出与△ABC 关于y 轴对称的图形.19.(本题满分7分)解不等式组22263x x x>⎧⎨+≤+⎩20.(本题满分7分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球, 求这两个小球的号码之和大于4的概率. 21.(本题满分7分) 先化简下式,再求值:221(1)121x x x x +-⨯+-+,其中,31x =+.22.(本题满分7分)某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产96个零件比8个工人生产这些零件少用2小时,求这台机器每小时生产多少个零件?23.(本题满分7分)如图5,已知AB ∥CD ,AC 与BD 相交于E , 若CE =2,AE =3,AB =5,BD =320, 求sin A 的值. 24.(本题满分7分)如图6,在平面直角坐标系中,已知点A ()0,2,P 是函数()0>=x x y 图象 上一点,PQ ⊥AP 交y 轴于点Q . 设点P 的横坐标为a ,点Q 的纵坐标为b , 若210<OP ,求b 的取值范围.25.(本题满分7分)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫做这个图4 EDCBA 图5四边形的和谐线.已知在四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形 ABCD 的和谐线,求∠BCD 的度数.(注:已画四边形ABCD 的部分图,请你补充完整,再求解)26.(本题满分11分)已知BC 是⊙O 的直径,BF 是弦,AD 过圆心O ,AD ⊥BF ,AE ⊥BC 于E ,连接FC . (1)如图7,若OE =2,求CF ;(2)如图8,连接DE ,并延长交FC 的延长线于G ,连接AG ,请你判断直线AG 与⊙O的位置关系,并说明理由.27.(本题满分12分)已知直线(0)y kx m k =+<与抛物线2y x bx c =++相交于抛物线的顶点P 和另一点.Q (1)若点(2,)P c -, Q 的横坐标为1-,求点Q 的坐标;(2)过点Q 作x 轴的平行线与抛物线2y x bx c =++的对称轴交于点E ,直线PQ 与y 轴交于点M ,若242,(40)4b PE EQc b -==-<≤,求△OMQ 的面积S 的最大值.图8C图7A D BAD BA DB答案详解1.C 2.D 3.B 4.C 5.B 6.D 7.A 8.D 9. D 10.D 11.x ≥2. 12.x 2-413.85×0.6+90×0.4=51+36=87 14.k<1.15. (1)3;(2)0≤y<416.(1)ππ35180560=⋅;(2)-4≤a ≤-2.17.4+2-1=518.略。
福建省厦门市2016年中考数学一模试卷(含解析)

2016年福建省厦门六中中考数学一模试卷一、选择题(每小题4分,共40分)1.4的平方根是()A.2 B.±2 C.D.﹣22.计算(a2)3结果正确的是()A.3a2B.a6C.a5D.6a3.分式﹣可变形为()A.﹣B. C.﹣D.4.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形5.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF6.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤27.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是()A.30,27 B.30,29 C.29,30 D.30,288.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.9.命题:“关于x的一元二次方程x2+bx+1=0,当b<0时,必有实数根”;能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=﹣2 C.b=﹣3 D.b=﹣410.已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是()A.3 B.4 C.5 D.6二、填空题(每小题4分,共24分)11.方程x2=x的解是.12.同时抛掷两枚材质均匀的硬币,则正面都向上的概率为.13.如图,在△ABC中,AB=AC,∠B=40°,以B为圆心,BA的长为半径画弧,交BC于点D,连接AD,则∠DAC的度数是°.14.如图,⊙O的半径为2,OA=3.5,∠OAB=30°,则AB与⊙O的位置关系是.15.对于任意实数,我们可以用 max{a,b},表示两数中较大的数.(1)max{﹣1,﹣2}= ;(2)max{1,﹣x2+2x﹣1}( x为任意实数)= .16.已知=(a﹣b)(c﹣a)且a≠0,则= .三、解答题(共86分)17.计算:×sin45°﹣20150+2﹣1.18.如图,AB、CD相交于点O,O是AB的中点,AD∥BC,求证:O是CD的中点.19.解方程:.20.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.21.学校开展“献爱心”捐款活动,某班50名同学积极参加了这次活动,下表是李华同学对全班捐款情况的统计表:捐款(元) 5 10 20 A 30 人数18 20 B 4 2已知全班平均每人捐款11.4元.请求出A、B的值.22.甲、乙两商场春节期间都进行让利酬宾活动.其中,甲商场对一次购物中超过200元后的价格部分打7折,如图所示,表示甲商场在让利方式下y关于x的函数图象,x(单位:元)表示商品原价,y(单位:元)表示购物金额.若乙商场所有商品按8折出售,请在同一坐标系下画出乙商场在让利方式下y关于x的函数图象,并说明如何选择这两家商场购物更省钱.23.如图,点A在∠B的边BG上,AB=5,sin∠B=,点P是∠B的边BH上任意一点,连接AP,以AP为直径画⊙O交BH于C点.若BP=,求证:BG与⊙O相切.24.如图,点B(3,3)在双曲线y=(其中x>0)上,点D在双曲线y=(其中x<0)上,点A、C分别在x、y轴的正半轴上,且点A、B、C、D围成的四边形为正方形.设点A 的坐标为(a,0),求a的值.25.阅读下面的材料:某数学学习小组遇到这样一个问题:如果α,β都为锐角,且tanα=,tanβ=,求α+β的度数.该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA,BC在直线BD的两侧,连接AC.(1)观察图象可知:α+β= °;(2)请参考该数学小组的方法解决问题:如果α,β都为锐角,当tanα=3,tanβ=时,在图2的正方形网格中,画出∠MON=α﹣β,并求∠MON的度数.26.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.(1)连接AC,证明:PC=2AQ;(2)当点F为BC的中点时,AP与PF满足什么样的数量关系?并说明理由.27.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如图中的函数是有界函数,其边界值是1.(1)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(2)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位长度,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2016年福建省厦门六中中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.4的平方根是()A.2 B.±2 C.D.﹣2【考点】平方根.【分析】根据平方根的定义求出4的平方根即可.【解答】解:4的平方根是±2;故选B.2.计算(a2)3结果正确的是()A.3a2B.a6C.a5D.6a【考点】幂的乘方与积的乘方.【分析】直接利用幂的乘方运算法则求出答案即可.【解答】解:(a2)3=a6.故选:B.3.分式﹣可变形为()A.﹣B. C.﹣D.【考点】分式的基本性质.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选D.4.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【考点】多边形内角与外角.【分析】一个多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.5.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【考点】全等三角形的判定.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选B.6.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤2【考点】在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式组解集的方法进行解答即可.【解答】解:由数轴可得:关于x的不等式组的解集是:x≥2.故选:A.7.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是()A.30,27 B.30,29 C.29,30 D.30,28【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中30出现了3次,次数最多,故众数是30;将这组数据从小到大的顺序排列为:27,27,28,29,30,30,30,处于中间位置的那个数是29,那么由中位数的定义可知,这组数据的中位数是29.故选B.8.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.【考点】锐角三角函数的定义.【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.【解答】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD===,只有选项C错误,符合题意.故选:C.9.命题:“关于x的一元二次方程x2+bx+1=0,当b<0时,必有实数根”;能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=﹣2 C.b=﹣3 D.b=﹣4【考点】命题与定理.【分析】先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.【解答】解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选A.10.已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是()A.3 B.4 C.5 D.6【考点】二次函数图象上点的坐标特征.【分析】把A点和B点坐标分别代入解析式得到方程组,消去k得到可解得a=,然后利用a>0得到h的取值范围,再利用此范围对各选项进行判断.【解答】解:把A(0,1)、B(8,2)分别代入y=a(x﹣h)2+k(a>0)得,②﹣①得64a﹣16ah=1,解得a=>0,所以h<4.故选A.二、填空题(每小题4分,共24分)11.方程x2=x的解是x1=0,x2=1 .【考点】解一元二次方程﹣因式分解法.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=112.同时抛掷两枚材质均匀的硬币,则正面都向上的概率为.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,求出正面都向上的概率即可.【解答】解:列表如下:正反正(正,正)(反,正)反(正,反)(反,反)所有等可能的情况有4种,正面都向上的情况有1种,则P=,故答案为:13.如图,在△ABC中,AB=AC,∠B=40°,以B为圆心,BA的长为半径画弧,交BC于点D,连接AD,则∠DAC的度数是30 °.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠C=∠B=40°,由AB=BD,得到∠ADB=70°,根据三角形的外角的性质即可得到结论.【解答】解:∵AB=AC,∠B=40°,∴∠C=∠B=40°,∵AB=BD,∴∠ADB=70°,∴∠DAC=∠ADB﹣∠C=30°,故答案为:30.14.如图,⊙O的半径为2,OA=3.5,∠OAB=30°,则AB与⊙O的位置关系是相交.【考点】直线与圆的位置关系.【分析】如图,作OH⊥AB于H,求出OH与半径半径即可判断.【解答】解:如图,作OH⊥AB于H,在RT△AOH中,∵∠OAH=30°.OA=3.5,∠OHA=90°,∴OH=OA=<2,∴⊙O与AB相交.故答案为相交.15.对于任意实数,我们可以用 max{a,b},表示两数中较大的数.(1)max{﹣1,﹣2}= ﹣1 ;(2)max{1,﹣x2+2x﹣1}( x为任意实数)= 1 .【考点】二次函数的性质.【分析】(1)比较﹣1和﹣2的大小关系即可求得答案;(2)把﹣x2+2x﹣1可化为完全平方式的形式,则可比较其与1的大小关系,即可求得答案.【解答】解:(1)∵﹣1>﹣2,∴max{﹣1,﹣2}=﹣1,故答案为:﹣1;(2)∵﹣x2+2x﹣1=﹣(x﹣1)2≤0,∴1>﹣x2+2x﹣1,∴max{1,﹣x2+2x﹣1}=1,故答案为:1.16.已知=(a﹣b)(c﹣a)且a≠0,则= 2 .【考点】整式的混合运算;非负数的性质:偶次方.【分析】根据题意将原式变形,盘后主要利用添项法可配成完全平方式,再利用偶次方的非负性即可得出答案.【解答】解:,化简:4a2﹣4a(b+c)+(b+c)2=0,,即:,所以=2.故答案为:2.三、解答题(共86分)17.计算:×sin45°﹣20150+2﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用特殊角的三角函数值及二次根式性质化简,第二项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=2×﹣1+=1.18.如图,AB、CD相交于点O,O是AB的中点,AD∥BC,求证:O是CD的中点.【考点】全等三角形的判定与性质.【分析】根据线段中点的定义求出OA=OB,再根据两直线平行,内错角相等可得∠A=∠B,∠C=∠D,然后利用“角角边”证明△AOD和△BOC全等,根据全等三角形对应边相等可得OC=OD,最后根据线段中点的定义证明即可.【解答】证明:∵O是AB的中点,∴OA=OB,∵AD∥BC,∴∠A=∠B,∠C=∠D,在△AOD和△BOC中,,∴△AOD≌△BOC(AAS),∴OC=OD,∴O是CD的中点.19.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2a=a+2,解得:a=2,经检验x=2是增根,分式方程无解.20.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.【考点】作图—复杂作图;线段垂直平分线的性质.【分析】(1)利用线段垂直平分线的作法得出D点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.【解答】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°﹣37°=16°.21.学校开展“献爱心”捐款活动,某班50名同学积极参加了这次活动,下表是李华同学对全班捐款情况的统计表:捐款(元) 5 10 20 A 30 人数18 20 B 4 2已知全班平均每人捐款11.4元.请求出A、B的值.【考点】二元一次方程组的应用;加权平均数.【分析】根据总人数50和加权平均数的计算公式得出A、B的值.【解答】解:根据题意,得:,解得:,故A的值为25,B的值为6.22.甲、乙两商场春节期间都进行让利酬宾活动.其中,甲商场对一次购物中超过200元后的价格部分打7折,如图所示,表示甲商场在让利方式下y关于x的函数图象,x(单位:元)表示商品原价,y(单位:元)表示购物金额.若乙商场所有商品按8折出售,请在同一坐标系下画出乙商场在让利方式下y关于x的函数图象,并说明如何选择这两家商场购物更省钱.【考点】一次函数的应用.【分析】利用两点法作出函数图象即可,求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【解答】解:乙商场的让利方式y关于x的函数图象如图所示:∵y乙=0.8x,y甲=200+0.7(x﹣200)=0.7x+60,令0.7x+60=0.8x,得x=600,当x>600元时,选择甲,当x=600元时,甲乙一样,当x<600元时,选择乙.23.如图,点A在∠B的边BG上,AB=5,sin∠B=,点P是∠B的边BH上任意一点,连接AP,以AP为直径画⊙O交BH于C点.若BP=,求证:BG与⊙O相切.【考点】切线的判定;圆周角定理;相似三角形的判定与性质;解直角三角形.【分析】根据圆周角定理得出∠ACP=90°,求出∠A CB=90°,求出AC=3,BC=4,计算求出==,根据相似三角形的判定得出△BCA∽△BAP,根据相似求出∠BAP=90°,根据切线的判定得出即可.【解答】证明:∵AP为⊙O的直径,∴∠ACP=90°,∴∠ACB=90°,∵AB=5,sin∠B=,∴AC=3,BC==4,∵BP=,∴==,∵∠B=∠B,∴△BCA∽△BAP,∴∠BCA=∠BAP,∵∠BCA=90°,∴∠BAP=90°,∴PA⊥AB,∵PA过圆心O,∴BG与⊙O相切.24.如图,点B(3,3)在双曲线y=(其中x>0)上,点D在双曲线y=(其中x<0)上,点A、C分别在x、y轴的正半轴上,且点A、B、C、D围成的四边形为正方形.设点A 的坐标为(a,0),求a的值.【考点】反比例函数图象上点的坐标特征;正方形的判定.【分析】如图,作DE⊥OC于E,DF⊥x轴于F,BM⊥OA于M,先证明△CDE≌△ADF,△ADF ≌△BAM,推出DE=DF,AF=BM,求出点D坐标即可解决问题.【解答】解:如图,作DE⊥OC于E,DF⊥x轴于F,BM⊥OA于M.∵四边形ABCD是正方形,∴CD=AD=AB,∠CDA=∠DAB=90°,∵∠DFO=∠DEO=∠EOF=90°,∴∠EDF=90°=∠CDA,∴∠CDE=∠ADF,在△CDE和△ADF中,,∴△CDE≌△ADF,同理△ADF≌△BAM,∴DE=DF,AF=BM=3,∵点D在y=﹣上,∴点D坐标(﹣2,2),∴DE=DF=2,∴OA=1,∴点A坐标(1,0).∴a=1.25.阅读下面的材料:某数学学习小组遇到这样一个问题:如果α,β都为锐角,且tanα=,tanβ=,求α+β的度数.该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA,BC在直线BD的两侧,连接AC.(1)观察图象可知:α+β= 45 °;(2)请参考该数学小组的方法解决问题:如果α,β都为锐角,当tanα=3,tanβ=时,在图2的正方形网格中,画出∠MON=α﹣β,并求∠MON的度数.【考点】解直角三角形.【分析】(1)由BC2=AB2+AC2=2AB2,得出△ABC是等腰直角三角形,且∠BAC=90°,那么α+β=∠ABC=45°;(2)连结MN,由OM2=ON2+MN2=2ON2,得出△OMN是等腰直角三角形,且∠ONM=90°,那么α﹣β=∠MON=45°.【解答】解:(1)如图1.∵BC2=32+52=34,AB2=42+12=17,AC2=42+12=17,∴BC2=AB2+AC2=2AB2,∴△ABC是等腰直角三角形,且∠BAC=90°,∴α+β=∠ABC=45°.故答案为45;(2)如图2,连结MN.∵OM2=32+12=10,ON2=22+12=5,MN2=22+12=5,∴OM2=ON2+MN2=2ON2,∴△OMN是等腰直角三角形,且∠ONM=90°,∴α﹣β=∠MON=45°26.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.(1)连接AC,证明:PC=2AQ;(2)当点F为BC的中点时,AP与PF满足什么样的数量关系?并说明理由.【考点】平行四边形的性质.【分析】(1)〖法二〗如图2,延长DE,CB相交于点R,作BM∥PC,根据AQ∥PC,BM∥PC,和E是AB的中点,D、E、R三点共线,求证△AEQ≌△BEM.同理△AED≌△REB.再求证△RBM∽△RCP,利用其对应边成比例即可证明结论.(2)如图3,当点F为BC的中点时,PF=2AP不成立.作BN∥AF,交RD于点N.根据△RBN∽RFP.利用F是BC的中点,RB=BC,可得=,又利用AE=BE,∠NEB=∠PEA,∠NBE=∠PAE.求证△BNE≌△APE即可.【解答】(1)证明:延长DE,CB相交于点R,作BM∥PC.如图1所示:∵AQ∥PC,BM∥PC,∴MB∥AQ.∴∠AQE=∠EMB.∵E是AB的中点,D、E、R三点共线,∴AE=EB,∠AEQ=∠BEM.∴△AEQ≌△BEM.∴AQ=BM.同理△AED≌△REB.∴AD=BR=BC∵BM∥PC,∴△RBM∽△RCP,相似比是.PC=2MB=2AQ.(2)解:当点F为BC的中点时,AP=PF.理由如下:作BN∥AF,交RD于点N.如图2所示;则△RBN∽RFP.∵F是BC的中点,由(1)得:RB=BC,∴RB=RF.∴=,又AE=BE,∠NEB=∠PEA,∠NBE=∠PAE.∴△BNE≌△APE,∴AP=BN.∴AP=BN=PF.27.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如图中的函数是有界函数,其边界值是1.(1)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(2)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位长度,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【分析】(1)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(2)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1,﹣m≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.【解答】解:(1)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(2)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在平移过程中,若抛物线 向下平移了S( )个单位长度,求 的取值范围.
解析:算出所有摸出球的事件,从中找出符合题意的摸出白球的事件,然后代入概率公式
答案:
12.计算 .
解析:直接同分母相加减
答案:1
13.如图3,在△ABC中,DE∥BC,且AD=2,DB=3,则 .
解析:证明出 ,所以AD与AB为对应边,DE与BC为对应边,所以求出相似比为
答案:
14.公元3世纪,我国古代数学家刘徽就能利用近似公式 得到的近似值.他的算法是:先将 看出 :由近似公式得到 ;再将 看成 ,由近似值公式得到 ;……依此算法,所得 的近似值会越来越精确.当 取得近似值 时,近似公式中的 是, 是.
A. B. C. D.
解析:本题属于基础题,主要考察解不等式组,分别解得两个不等式的解为:x<3和x≥-5综合解集为 。
答案:A
5.如图2,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()
A.EF=CFB.EF=DEC.CF<BDD.EF>DE
图2
解析:本题主要考察中位线和平行四边形的性质,由于 ,所以四边形BD CF为□, 故,
A.△ABC的边AB的垂直平分线B.∠ACB的平分线所在的直线
C.△ABC的边BC上的中线所在的直线D.△ABC 的边AC上的高所在的直线
解析:本题主要考察等腰三角形的性质,由BC=l-AB可以得到AB=AC,故△ABC为等腰三角形,由等腰三角形三线合一可以等到,底边BC的中线所在直线一定为△ABC的对称轴。
2016年厦门市中考数学试卷
一、选择题(本大题10小题,每小题4分,共40分)
1.1°等于()
A.10′B.12′C.60′D.100′
解析:本题属于基础题,主要考察度数的单位换算。
答案:C
2.方程 的根是()
A. B. C. , D. ,
解析:本题属于基础题,主要考察一元二次方程的解,解得 :,故答案选择C。
答案:D
9.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,
则现年20岁的这种动物活到 25岁的概率是()
A.0.8B.0.75 C.0.6D.0.48
解析:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为.
答案:C
3.如图1,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,
AF与DE交于点M,则∠DCE=()
A.∠BB.∠AC.∠EMFD.∠AFB
解析:本题属于基础题,主要考察三角形全等的性质,根据全等对应角相等,得到∠D EC=∠AFB.
答案:D
4.不等式组 的解集是()
(2)如图11,点E在线段OD上(不与O,D重合),CD、CE的延长线 分别交⊙O于点F、G,连接BF,BG,点P是CO的延长线与BF的交点,若CD=1,BG=2,∠OCD=∠OBG,∠CFP=∠CPF,求CG的长.
27.(12分)已知抛物线 与直线 相交于第一象限不同的两点, ,
(1)若点B的坐标为(3,9),求此抛物线的解析式;
25.(7分)如图9,在平面直角坐标系中xOy中,已知点 , , , ,
, ,点 是四边形ABCD内的一点,且△PAD与△PBC的面积相等,求 的值.
26.(11分)已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).
(1)如图10,若∠COA=60°,∠CDO=70°,求∠ACD的度数.
若点A,B的对应点分别我点D,E,画出旋转后的三角形,并求点A与点D之间的距离.(不要求尺规作图)
23.(7分)如图7,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD= ,sin∠DBC= ,求对角线AC的长.
24.(7分)如图8,是药品研究所所测得的某种新药在成人用药后,血液中 的药物浓度y(微克/毫升)用药后的时间 (小时)变化的图象(图象由线段OA与部分双曲线AB组成).并测得当 时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓则至少需要多长时间达到最大度?
解析:本题主要考察反比例函数和正比例函数的增减性。由P= 可以知道,当受力面积S一定时,压强P和压力F是正比例函数,因为S>0,所以压强随压力的增大而增大,排除B选项;当压力F一定时,压强P和受力面积S是反比例函数,因为F>0,所以压强随受力面积的减小而增大,排除C选项。但是根据题意刀刃磨薄,刀具就会变得锋利,可以知道是受力面积变小。
三、解答题(共86分)
17.(7分)计算:
18.(7分)解方程组
19.(7分)某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如下表所示,
求该公式2015年平均每人所创年利润.
部门
人数
每人所创年利润/万元
A
1
36
B
6
27
C
8
16
D
11
20
解:设该公司2015年平均每人所创年利润为x万元.
答案: C
8.已知压强的计算公式是 ,我们知道,刀具在使用一段时间后,就好变钝,如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是()
A.当受力面积一定时,压强随压力的增大而增大
B.当受力面积一定时,压强随压力的增大而减小
C.当压力一定时,压强随受力面积的减小而减小
D.当压力一定时,压强随受力面积的减小而增大
答案:B
10.设681×2019-681×2018=a,2015×2016-2013×2018=b, ,
则 , , 的大小关系是()
A. B. C. D.
二、填空题(本大题有6小题,每小题4分,共24分)
11.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,
则摸出白球的概率是.
=21
答:该公司2015年平均每人所创年利润为21万元。
20.(7分)如图5,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥C D.
21.(7分)已知一次函数 ,当 时, ,求此函数的解析式,并在平面直角坐标系中画出此函数图象.
22.(7分)如6,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点 C顺时针旋转90°,
15.已知点 在抛物线 上,当 时,总有 成立,则 的取值范围是 .
16.如图4,在矩形ABCD中,AD=3,以顶点D为圆心,1为半径作⊙D,过边BC上的一点P作射线PQ与⊙D相切于点Q,且交边AD于点M,连接AP,若 ,∠APB=∠QPC,则∠QPC的大小约为度分.(参考数据:sin11°32′= ,tan36°52′= )
答案:B
6.已知甲、乙两个函数图象上部分点的横坐标x与对应的纵坐标y分别如下表所示,两个函数图象仅有一个交点,则交点的纵坐标y是()
A.0B.1C.2 D.3
解析:本题主要考察一次函数的交点问题,由甲乙两个表可以得到甲乙的交点(4,3)。
答案:D
7.已知△ABC的周长是l,BC=l-2AB,则下列直线一定为△ABC的对称轴的是()