转矩控制矢量控制和VF控制解析(终审稿)

合集下载

转矩控制矢量控制和VF控制解析

转矩控制矢量控制和VF控制解析

转矩控制矢量控制和V F控制解析IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】转矩控制、矢量控制和VF控制解析1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。

如皮带运输机提升机等机械负载控制就是变频器输出频率与输出电压比值为恒定值或正比。

例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm式中:E1--定子每相由气隙磁通感应的电动势的有效值,V;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。

那么要保证Φm不变,只要U1/f1始终为一定值即可。

这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。

基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。

在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。

3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。

它既可以控制电机的转速,也可以控制电机的扭矩。

矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG的反馈或速度推定值)的偏差值为0。

变频器的VF控制与矢量控制

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。

但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。

另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

因此人们又研究出矢量控制变频调速。

一、矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。

通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

矢量控制方法的提出具有划时代的意义。

然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

V/F控制与矢量都是恒转矩控制。

U/F相对转矩可能变化大一些。

而矢量是根据需要的转矩来调节的,相对不好控制一些。

对普通用途。

两者一样1、矢量控制方式——矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。

转矩控制、矢量控制和VF控制解析

转矩控制、矢量控制和VF控制解析

转矩控制、矢量控制和VF控制解析转矩控制、矢量控制和VF控制解析1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。

如皮带运输机提升机等机械负载2.VF控制就是变频器输出频率与输出电压比值为恒定值或正比。

例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。

那么要保证Φm不变,只要U1/f1始终为一定值即可。

这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。

基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。

在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。

3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。

它既可以控制电机的转速,也可以控制电机的扭矩。

矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

变转矩和恒转矩、矢量控制和VF控制的区别1

变转矩和恒转矩、矢量控制和VF控制的区别1

简单举例变转矩就是负载转矩随增大电机转速而增大,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,如皮带运输机提升机等机械负载VF控制就是变频器输出频率与输出电压比值为恒定值或正比例50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制矢量控制,把输出电流分励磁和转矩电流并分别控制矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

一、V/F控制方式变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。

由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。

不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。

一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。

空载电流很大,励磁也越大。

何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。

变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。

故空载电流是影响变频器输出电流的主要因素之一。

V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。

上图中有个公式,描述转矩、转速、功率之间的关系。

变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。

变转矩和恒转矩、矢量控制和VF控制的区别

变转矩和恒转矩、矢量控制和VF控制的区别

简单举例变转矩就是负载转矩随增大电机转速而增大,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,如皮带运输机提升机等机械负载VF控制就是变频器输出频率与输出电压比值为恒定值或正比例50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制矢量控制,把输出电流分励磁和转矩电流并分别控制矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

一、V/F控制方式变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。

由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。

不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。

一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。

空载电流很大,励磁也越大。

何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。

变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。

故空载电流是影响变频器输出电流的主要因素之一。

V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。

上图中有个公式,描述转矩、转速、功率之间的关系。

变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。

VF控制和矢量控制的区别

VF控制和矢量控制的区别

VF统造战矢量统造的一些辨别之阳早格格创做尔是搞变频器开垦的一线人员,有过完备的针对付三相同步电机战永磁共步电机变频器开垦经历,产品也正在商场上卖,教力圆里,正在海内正规书籍院拿到了电机工程的博士教位(无炫耀之意,不过证明正在那个范畴比较认识),陈伯真老先死的书籍基础翻烂过,也战陈老先死共桌吃过饭.瞅到计划比较热烈,也去收个止,道道对付变频器VF统造、矢量统造的认识.针对付同步电机,为了包管电机磁通战着力稳定,电机改变频次时,需保护电压V战频次F的比率近似稳定,所以那种办法称为恒压频比(VF)统造.VF统造-统造简朴,通用性强,经济性好,用于速度细度央供不格中庄重大概背载变动较小的场合.从真量上道,VF统造本量上统造的是三相接流电的电压大小战频次大小,然而接流电有三果素,便是除了电压大小战频次除中,还存留相位.VF统造不对付电压的相位举止统造,那便引导正在瞬态变更历程中,比圆突加背载的时间,电机转速受冲打会变缓,然而是电机供电频次也便是共步速仍旧脆持稳定,那样同步电机会爆收瞬时得步,进而引起转矩战转速振荡,通过一段时间后正在一个更大转好下脆持仄稳.那个瞬时历程中不对付相位举止统造,所以回复历程较缓,而且电机转速会随背载变更,那便是所谓VF统造细度不下战赞同较缓的本果.矢量统造海中也喊磁场定背统造,本去量是正在三相接流电的电压大小战频次大小统造的前提上,还加上了相位统造,那个相位正在简曲支配中体现为一个角度,简朴的道便是电机定子电流相对付于转子的位子角.咱们了解,电机定子三相对付称接流电的概括效验是一个转动磁铁,通电后那个转动磁场通过感触正在转子上死成三相接流电流,那个电流也等效成一个磁铁,那样便相称于定子磁铁拖着转子磁铁转动了,那个是电机转动的基根源基本理.那里有个问题,便是惟有定子磁铁战转子磁铁的相对付位子靠得迩去,爆收的力矩才最大,所以怎么样正在电机三相定子绕组上通电赢得最大转矩,本量上还战转子位子有闭的.矢量统造会通过真测回去的电流分离电机参数,真时估计出转子位子,那个历程便是所谓的“磁场定背”,而后真时决断三相定子绕组上电压的相位,那样表里上不妨搞到共样的电流下爆收的转矩最劣,进而减小电机背载变更时的瞬态历程.别的,矢量统造逆便还会根据转子位子供出转速,利用电机参数对付转速举止瞬时补偿,进一步劣化了统造本能.综上,尔感触矢量统造战VF统造的最真量的辨别便是加进了电压相位统造上.从支配层里上瞅,矢量统造普遍把电流收会成转矩电流战励磁电流,那里转矩电流战励磁电流的比率便是由转子位子角度(也便是定子电压相位)决断的,那时转矩电流战励磁电流共共爆收的转矩是最好.简曲真止不妨参照陈老先死的书籍战其余所有一本道矢量统造的书籍.宏瞅上瞅,矢量统造战VF统造的电压,电流,频次正在电机宁静运止时出进不大,皆是三相对付称接流,基础上皆谦脚压频比闭系,不过正在瞬态历程如突加、突减背载的情况下,矢量统造会随着速度的变更自动安排所加电压、频次的大小战相位,使那个瞬时历程更快回复仄稳.至于矢量统造内里那些坐标变更,是一种便于明白战形貌的脚法,不是真量问题.从电机表里去瞅,正在dq共步转动坐标系里,三相正弦接流量不妨变更成二相曲流量,那样不妨简化运算,便于数字处理,本量上真正在系统里本去不存留转矩电流战励磁电流的,那些是一种数教抽象,算完了统造完毕后最后仍旧要体目前本量三相接流电上.好比咱们数教里的推普推斯变更,不妨把微分圆程形成代数圆程简化运算,运算完了后再反变更回去是一个原理.刘志斌教授大概对付矢量统造明白有误,大概者大概书籍上出把物理真量道得很收会.刘志斌教授的第一面“1、电感的电流降后电压90度,您能统造那个角度吗?”那句话利害常细确,电感的电流降后电压90度,对付杂电感而止那个90角度是不可能统造的,然而是不克不迭推出“9、所谓对付定子电流解耦,对付有功电流、无功电流分别统造是句谎止,大概者是无知的笑话!”.对付电机而止,尔念那个论坛里很多人该当教过电机教,了解三相同步电机的等效电路,三相同步电机电感不妨认为是稳定的,然而是转子的等效电阻不妨瞅成二部分,一部分是转子自己的本量电阻r2,不思量温度什么的那个不妨认为稳定,另一个是背载等效电阻(1s)r2/s(s是转好率),那个本量上战转好有闭,也便是道跟电机的共步速、背载等果素有闭了,那样转子的等效电阻本量上是可变的,电机电感战电阻的比率闭系本去不是牢固的,那么通过改变共步速战相映的电压、相位,对付有功电流、无功电流的分别统造是可止的,而矢量统造便是提供了那样一种道路.那里尔要澄浑一下,“对付有功电流、无功电流的分别统造”,本去不是道您能把有功电流、无功电流统造到任性值,念怎么统造便怎么统造,对付同步电机而止,无功电流永近是感性,那是本理决断的,您不可能把它统造成容性无功,而且有功电流、无功电流的推拢爆收的转矩必须战背载仄稳,那个是拘束条件.矢量统造的目标,本量上是“通过对付有功电流、无功电流的分别统造真止劣化推拢”,达到瞬时转矩最劣,动背历程最短的脚法.而VF统造少了那样一个对付电流瞬时统造的历程,是细线条的统造,表里上便要好些.好比您让一个小弟搞活,VF统造便是“小弟,您把那个物品搞出去”,给出一个央供便止了;矢量统造便是您不不过报告小弟把那个物品搞出去,而且还要报告他,第一步怎么搞,第二步怎么搞,细节怎么处理,那样隐而后者得到的截止要细细些.上头是一些表里收会,从本量去瞅,VF统造是暂时变频器合流统造要收,辅以适合的补偿要收不妨普及其本能.暂时普及VF统造本能的主要要收有:矮频力矩补偿、死区补偿、动背磁通统造、追踪自开用等,不妨适用于80%以上的工况.正在某些对付动背央供很下的场合,则需要使用矢量统造,如伺服、印刷等.矢量统造是根据丈量到的电流、电压战磁通等数据,分离电机内里的电阻电感等参数估计出目前的转速战位子,并举止需要的建正,进而正在分歧频次下运止时,得到更好的统造模式.由于估计量较大,且需要了解电机内里参数,所需数据中的相称部分,普遍用户是很罕见到的.那给矢量统造的应用戴去了艰易.对付此,变频器皆必须摆设自动检测电效果参数的功能.总体而止,矢量统造不妨得到更好的本能,矮频转矩大,动背赞同好,然而应用比较不便当,如果参数分歧适大概还不克不迭宁静运止,使用范畴受到一些节造.本量中推荐用户能用VF统造便尽管不必矢量统造.究竟上大普遍情况减少了转矩提下、死区补偿、滑好补偿的下本能的VF能谦脚绝大部分央供,而且宁静性更好.暂时矢量统造的主要问题是适用性不如VF强,VF基础上什么同步电机皆能上,然而是矢量统造正在博用电机能达到的最下火仄让VF视尘莫及.尔到西门子瞅赏的时间,他们对付电机的统造到了令人震惊的程度,那便是用三台电机分别启动一台时钟的秒针、分针战时针!念念是什么观念:12小时转一圈啊,那种超矮速统造是尔念皆无法念的.那便是技能好同!那千万于代表了天下上电机统造的最下火仄,而基根源基本理便是矢量统造.至于ABB的间接转矩统造,天下上独此一家.老真道,尔简曲尝试过波形,是正在无法明白是怎么样真止的,特地是细节部分,体现出的波形跟教科书籍上的真足纷歧样.只可道自己孤陋鳏闻.。

变转矩和恒转矩、矢量控制和VF控制的区别

简单举例变转矩就是负载转矩随增大电机转速而增大,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,如皮带运输机提升机等机械负载VF控制就是变频器输出频率与输出电压比值为恒定值或正比例50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制矢量控制,把输出电流分励磁和转矩电流并分别控制矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

一、V/F控制方式变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。

由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。

不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。

一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。

空载电流很大,励磁也越大。

何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。

变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。

故空载电流是影响变频器输出电流的主要因素之一。

V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。

上图中有个公式,描述转矩、转速、功率之间的关系。

变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。

变转矩和恒转矩矢量控制和VF控制的区别

变转矩和恒转矩矢量控制和V F控制的区别 Company number【1089WT-1898YT-1W8CB-9UUT-92108】简单举例变转矩就是负载转矩随增大电机转速而增大,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,如皮带运输机提升机等机械负载VF控制就是变频器输出频率与输出电压比值为恒定值或正比例50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制矢量控制,把输出电流分励磁和转矩电流并分别控制矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。

一、V/F控制方式变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。

由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。

不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。

一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。

空载电流很大,励磁也越大。

何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。

变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。

故空载电流是影响变频器输出电流的主要因素之一。

V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。

变频器Vf控制与矢量控制

变频器V/f控制与矢量控制发布时间:2011-8-25 (点击33)1. V/f(电压-频率)控制V/f控制是从初期的可控硅变频器到现在通用变频器,一般采用的控制方式。

V/f控制方式,是对应频率f设定变频器输出电压V的方式工。

无须象带PG(脉冲发生器)矢量控制方式那样检测电机的转速,可以说是最简便的控制方式。

下图为PWM晶体管变频器的V/f控制回路。

(1)转矩补偿功能下图显示V/f控制时的电压与频率的关系。

将变频器输出电压根据负载机械特性而变化的特点制成曲线。

由下图的曲线可知高起动转矩负载的场合,与恒转矩负载的场合相比,电机定子绕组电压降的补偿设定要大,但如果电压补偿太大,轻载时(定子绕组的电压降少时),电机过励磁(电机铁芯饱和),会造成电机过热或变频器过负载。

因此,设定电压补偿时要根据转矩特性、电机和变频器容量等进行设定。

(2)通过计算转矩进行V/f补偿的方式该方式是根据变频器的输出电压、电流和频率近似计算负载转矩,并根据该负载转矩调整电压补偿的方式。

不管是在加速还是在恒速运行中,均对V/f进行自动调整。

象这样低速或加速时,根据运行中负载转速战速决的增大等进行电压补偿的方式,叫做转矩补偿。

转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围V/f增大的方法。

设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。

如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。

对于变转矩负载(风机、泵类负载),如转矩提升参数设置不当,会出现低速时的输出电压过高,电动机带负载起动时电流大,而转速上不去的现象。

变频器原理---之安川变频器seven[分享]2、矢量控制使用感应电机时,为获得伺服电机那样的高速响应性而改善转矩控制性能的方法即为矢量控制。

下图所示,转矩I2 →I’2变化时,电机定子电流的振幅变化为I1→I’1,同时相位随之变化为θ→θ’,象这样改变电机定子电流的振幅和相位(即电流的瞬时值)的控制方式,叫做矢量控制。

VF控制与矢量控制(瞬间弄懂)

之阳早格格创做针对付同步电机,为了包管电机磁通战着力稳定(转矩稳定),电机改变频次时,需保护电压V战频次F的比率近似稳定,所以那种办法称为恒压频比(VF)统造.VF 统造-统造简朴,通用性强,经济性好,用于速度粗度央供不格中庄重或者背载变动较小的场合.从真量上道,VF统造本量上统造的是三相接流电的电压大小战频次大小,然而接流电有三果素,便是除了电压大小战频次除中,还存留相位.VF统造不对付电压的相位举止统造,那便引导正在瞬态变更历程中,比圆突加背载的时间,电机转速受冲打会变缓,然而是电机供电频次也便是共步速仍旧脆持稳定,那样同步电机会爆收瞬时得步,进而引起转矩战转速振荡,通过一段时间后正在一个更大转好下脆持仄稳.那个瞬时历程中不对付相位举止统造,所以回复历程较缓,而且电机转速会随背载变更,那便是所谓VF统造粗度不下战赞同较缓的本果.矢量统造海中也喊磁场定背统造,本来量是正在三相接流电的电压大小战频次大小统造的前提上,还加上了相位统造,那个相位正在简曲支配中体现为一个角度,简朴的道便是电机定子电流相对付于转子的位子角.综上,尔感触矢量统造战VF统造的最真量的辨别便是加进了电压相位统造上.从支配层里上瞅,矢量统造普遍把电流领会成转矩电流战励磁电流,那里转矩电流战励磁电流的比率便是由转子位子角度(也便是定子电压相位)决断的,那时转矩电流战励磁电流共共爆收的转矩是最好.宏瞅上瞅,矢量统造战VF统造的电压,电流,频次正在电机宁静运止时出进不大,皆是三相对付称接流,基础上皆谦脚压频比关系,不过正在瞬态历程如突加、突减背载的情况下,矢量统造会随着速度的变更自动安排所加电压、频次的大小战相位,使那个瞬时历程更快回复仄稳.变频器采与V/F统造办法时,对付电机参数依好不大,普遍强调“空载电流”的大小.变频器做矢量统造时,对付电机参数的依好很大,所以必须对付电机做转动自整定(自教习),参数自整定前,必须树立粗确的电机机型参数,真足脱启电机背载.矢量统造,把输出电流分励磁战转矩电流并分别统造,转矩可控,系统是一个以转矩干内环,转速干中环的单关环统造系统.它既不妨统造电机的转速,也不妨统造电机的扭矩.矢量统造本理是模仿曲流电效果的统造本理,根据同步电效果的动背数教模型,利用一系列坐标变更把定子电流矢量领会为励磁分量战转矩分量,对付电机的转矩电流分量战励磁分量分别举止统造,正在转子磁场定背后真止磁场战转矩的解耦,进而达到统造同步电效果转矩的手段,使同步电机得到靠近他励曲流电机的统造本能.简曲干法是将同步电效果的定子电流矢量领会为爆收磁场的电流分量(励磁电流)战爆收转矩的电流分量(转矩电流)分别加以统造,并共时统造二分量间的幅值战相位,即统造定子电流矢量,所以称那种统造办法称为矢量统造办法. 矢量统造分有速度传感器矢量统造战无速度传感器矢量统造二种,前者粗度下后者粗度矮.矢量统造系统的无速度传感器运止办法,最先必须办理电机转速战转子磁链位子角的正在线辨识问题.时常使用的要领有鉴于检测定子电流旗号的辨识要领,有共时使用电流检测旗号战电压检测旗号的辨识要领,另有根据电流检测旗号战顺变器的启关统造旗号沉构电压旗号的要领.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转矩控制矢量控制和V F控制解析Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】转矩控制、矢量控制和V F控制解析1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。

如皮带运输机提升机等机械负载控制就是变频器输出频率与输出电压比值为恒定值或正比。

例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm式中:E1--定子每相由气隙磁通感应的电动势的有效值,V;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。

那么要保证Φm不变,只要U1/f1始终为一定值即可。

这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。

基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。

在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。

3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。

它既可以控制电机的转速,也可以控制电机的扭矩。

矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG的反馈或速度推定值)的偏差值为0。

带PG的V/f控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG的反馈或速度推定值)的偏差值为0。

矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。

具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

矢量控制分有速度传感器矢量控制和无速度传感器矢量控制两种,前者精度高后者精度低。

矢量控制系统的无速度传感器运行方式,首先必须解决电机转速和转子磁链位置角的在线辨识问题。

常用的方法有基于检测定子电流信号的辨识方法,有同时使用电流检测信号和电压检测信号的辨识方法,还有根据电流检测信号和逆变器的开关控制信号重构电压信号的方法。

基于蓝海华腾变频器V6-H说明书作以上说明1. V/F控制方式?变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。

由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。

不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。

一般有如下百分比数据:~15?kW,空载电流的值为30%~50%的电机额定电流;kW及以下的,空载电流的值为50%左右的电机额定电流;特殊情况时,kW、kW、kW,空载电流的值为70%~80%的电机额定电流;有的kW功率段,参数自整定后空载电流为电机额定电流的90%。

空载电流很大,励磁也越大。

何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。

变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。

故空载电流是影响变频器输出电流的主要因素之一。

V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),=最大输出电压U,=基频F。

上图中有个公式,描述转矩、转速、功率之间的关系。

变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。

速度与出力,高速或者低速时,两者不可兼得,这里有个数据概念:调速范围,指满足额定转矩出力的最低频率与最高频率的比值。

以前一般的VF控制方式调试范围为1:20~1:40,我司产品V/F控制调速范围可以达到1:100,能够满足更多范围的行业应用。

在开环矢量时可以达到1:200,闭环矢量时达到1:1000,接近伺服的性能。

变频器V/F控制系统运行时,有两种方式进行转矩的提升:1)、自动转矩提升:必须在=0且=0时,自动转矩提升才有效。

其作用为:变频器V/F控制低频运行时,提高输出电压,抵消定子压降以产生足够的转矩,保证电机正常运行。

自动转矩提升与变频器设置“空载电流”和静止学习的“定子电阻”有关系,变频器必须作电机参数静止自整定,才能更好的控制电机运行。

变频器作自动转矩提升控制电机时,见上图所示输出电压和频率的线性关系,运行中因为负载变化对电压输出作适当的增减,由于响应时间的快慢,所以会出现出力不稳定因素。

2)、手动转矩提升?设置为某一数值时,或者设置为非零时,手动转矩提升才有效。

手动转矩提升只与变频器设置“空载电流”有关系,受电机其他参数设置影响较小。

如下图所示,为手动转矩提升曲线图。

变频器输出作手动转矩提升,其转矩出力在原来基础上成线性增加,所以出力稳定,不受负载变化的影响,出力稳定。

但是转矩提升不益太大,转矩提升的幅度应根据负载情况适当设定,提升过多,在启动过程中将产生较大的电流冲击。

自动转矩提升只能满足一拖一的输出情况,当涉及一台变频器拖动多台电机时,V/F控制时必须采用手动转矩提升,即设置为非0值。

V/F控制时的有关性能参数调试:为V/F控制转差补偿增益,设置此参数时,可以参考电机额定转速来设定参数。

该功能有助于变频器在负载波动及重载情况下保持电机转速恒定,即补偿由于负载波动而导致的电机转速增减,但是由于补偿本身的响应时间问题,导致系统出现不稳定因素增多,在系统波动较大的情况下,此功能码设置为0有一定效果。

、为电流限定功能,由于瞬时负载过大而导致系统没法正常运行,可以适当增大限定值。

V/F控制涉及到以上注意要点和关键功能码。

2.矢量控制方式?变频器作矢量控制时,对电机参数的依赖很大,所以必须对电机作旋转自整定,参数自整定前,必须设置正确的电机机型参数,完全脱开电机负载。

、、、、、、参数说明:下图所示为速度环比例增益与积分时间、电流环比例系数与积分系数调节。

~?为速度环比例增益与积分时间调节参数,设置=5HZ,当电机运行频率大于5HZ的时候,、调节参数起作用;当电机运行频率小于5HZ的时候,、调节参数起作用。

运行参数输出T与比例增益P成正比,与积分时间I成反比,所以~?四组参数,P设置越大,I设置越小,那么T就越大,变频器控制电机动态响应就越快,此时速度环输入频率与反馈频率一旦有频率差,系统就响应迅速。

但是响应太快了会导致电机出现震荡非常厉害。

举例:某现场,和为出厂值2或3,此两参数设置在5HZ上下时的比例增益P。

开始调试,进行参数自学习,作矢量控制,设置=4,点运行,此时电机震动非常厉害,电流很大,运行根本不正常。

后来设置=1和=1,然后再运行电机,运行很稳定,无任何异常情况。

这里我们让动态响应变慢了,那么系统响应慢些了,频率及电流输出就稳定些了。

但是调试基本原则是,“在系统无震荡的前提下”,响应越快越好,也就是和越大,和越小,响应就越快,越好。

因为实时跟踪反馈的速度,然后作出频率及电流、转矩输出调整,这是开环矢量型变频器控制出力稳定性的基本要求。

一般小功率的变频器带电机场合,需要适当减小和,增大和,这样更能适应现场的调试工作,当然是根据具体情况来调节数据,不能一概而论。

和为电流环比例系数和积分系数。

下图所示电流环调节过程。

在电流环调整时,比例系数P、积分系数I越大,对系统作用越强。

一般此两参数不作更改。

举例:1)、某现场测试,变频器带一台电机空载,作旋转自学习以后,矢量控制,点运行。

电机平稳运行着,只是电机内部会发出嗡嗡的声音,感觉电机轴在内部遇到什么阻碍,象棉花塞着了一样,我们观察电机输出空载电流,比通常情况电流输出要高一些,系统不会有大的抖动和震动,就只出现上面文字说明的情况,也不严重,但是就是与正常情况有点区别。

后来我们更改和参数由1000变成400,然后再运行电机,此时有明显效果,电流偏小了,与正常运行电流一致了,也没有嗡嗡的声响了。

此时我们调节参数把电流环作用减弱了,响应不是那么快了,然后能满足此电机的正常运行。

2)、当现场控制需要高速运行,超过基频50HZ(举例),那么电机进入弱磁场区域,存在系统震荡,那么此时可以把由1000减小为0,让电流环积分增益I作用为0,此时,弱磁区高速运行就不存在问题了,系统运行稳定无震荡。

、参数说明:此两个参数分别对驱动转矩和制动转矩进行限定,值越大,那么变频器启动瞬间输出的瞬间转矩力就越大,VF控制和矢量控制时加减速响应时间越快。

参数说明:此功能设置欲激磁时间,欲激磁是在电机启动前事先建立起磁通,以达到电机启动时快速响应的目的。

当有运行指令时,先按本功能码设定的时间进入欲激磁状态,磁通建立起来后,再进入正常的加速运行。

在不影响加速的情况下,此参数设置的越长,那么电机起动出力越好。

我们出厂值设置为,有些电机可以设置为0,不需要预激磁。

在实际调试过程中,适当增加点预激磁时间,对控制电机有一定的效果。

、此两个参数分别设置电机在电动、发电时的转差补偿。

调试此两个参数时,需要与、作配合调试。

在矢量开环、矢量闭环、电动状态时有效,比如机床加速可调试此参数。

在矢量开环、矢量闭环、发电(制动)时有效,比如机床减速可调试此参数。

、、、此四组参数在闭环矢量控制时设置相关的参数。

、、在闭环矢量控制时实现零伺服功能。

该参数对恒功率区的转矩限定进行补偿。

改变该参数可以优化变频器运行在恒功率区的加减速时间和输出转矩。

举例:在机床开环矢量调试时,机床要求速度到3000到4000转每分钟,但是调试时速度只能达到3000转,然后速度就上不去了,并且速度会缓缓降下来。

相关文档
最新文档