变电站设计中主要电气设备的选型计算

合集下载

变电站主要电气设备的选择

变电站主要电气设备的选择

变电站主要电气设备的选择摘要:为贯彻落实国家建设服务好、管理好、形象好的电网企业中长期战略,运用先进的计算机技术,通信技术,建立一个覆盖城乡的智能、高效、可靠的绿色电网。

结合本人变电站的设计工作经验,从变电站主要电气设备的选择出发,简要阐述了部分主要电气一次设备的选型原则和相关计算。

关键词:变电站;电气一次;主要电气设备;设备校验概述电力系统由发电厂,变电站,线路和用户组成,变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

变电站主要由一次设备和二次设备构成,而电气一次设备是构成变电站的基本单元,其主要电气设备包括:主变压器、断路器、隔离开关、电流互感器、电压互感器、35kV开关柜、10kV开关柜。

1、主要设备选择及校验(110kV变电站为例)根据电力系统污区分布图,拟建的变电站位于d级污秽区范围内。

所有变电站屋外电气设备推荐采用d级(III级)防污,其外绝缘泄露比距不小于2.5cm/kV (最高运行电压)。

户内设备采用d级防污,其外绝缘泄露比距不小于2.5cm/kV (最高运行电压)。

(1)短路电流计算为取得合理的经济效益,应从网架设计,采用的电压等级、主接线,变压器的容量和阻抗的选择,运行方式等方面。

综合控制短路电流,使各级电压等级断路器的开断电流以及设备的动热稳定电流能满足要求。

拟建的变电站短路电流计算结果如下:根据计算结果,变电站110kV、35kV电气设备可按40kA,10kV电气设备按31.5kA进行选择。

(2)主变压器选择变电站设计时应按照将来5~10年规划进行负荷选择,并同时考虑将来10~20年的负荷发展情况。

变压器中性点应允许长时通过不小于10Ad 直流偏磁电流,而不影响变压器的正常运行。

拟建变电站变电站选择为三相、油浸、常规阻抗或者高阻抗、低损耗电力变压器。

设备参数如下:SSZ11-40000/110,110±8x1.25%/37 ±2x2.5%/10.5kV,Uk1-2%=10.5,Uk2-3%=18,Uk1-3%=6.5,YNyn0d11(3)110kV配电装置拟建的变电站110kV配电装置采用户外布置、选用进口或合资产品。

220kv变电站计算书

220kv变电站计算书

220k v变电站计算书-CAL-FENGHAI.-(YICAI)-Company One1第一章220KV 变电站电气主接线设计第节原始资料变电所规模及其性质:电压等级220/110/35 kv线路回数220kv 本期2回交联电缆(发展1回)110kv 本期4回电缆回路(发展2回)35kv 30回电缆线路,一次配置齐全本站为大型城市变电站2.归算到220kv侧系统参数(SB=100MVA,UB=230KV)近期最大运行方式:正序阻抗X1=;零序阻抗X0=近期最大运行方式:正序阻抗X1=;零序阻抗X0=远期最大运行方式:正序阻抗X1=;零序阻抗X0=3.110kv侧负荷情况:本期4回电缆线路最大负荷是160MW 最小负荷是130MW 远期6回电缆线路最大负荷是280MW 最小负荷是230MW4.35kv侧负荷情况:(30回电缆线路)远期最大负荷是240MW 最小负荷是180MW近期最大负荷是170MW 最小负荷是100MW5.环境条件:当地年最低温度-24℃,最高温度+35℃,最热月平均最高温度+25℃,海拔高度200m,气象条件一般,非地震多发区,最大负荷利用小时数6500小时。

第节主接线设计本变电站为大型城市终端站。

220VKV为电源侧,110kv侧和35kv侧为负荷侧。

220kv 和110kv采用SF6断路器。

220kv 采取双母接线,不加旁路。

110kv 采取双母接线,不加旁路。

35kv 出线30回,采用双母分段。

低压侧采用分列运行,以限制短路电流。

第节电气主接线图第二章主变压器选择和负荷率计算第节原始资料1.110kv侧负荷情况:本期4回电缆线路最大负荷是160MW 最小负荷是130MW 远期6回电缆线路最大负荷是280MW 最小负荷是230MW 2.35kv侧负荷情况:(30回电缆线路)远期最大负荷是240MW 最小负荷是180MW近期最大负荷是170MW 最小负荷是100MW3.由本期负荷确定主变压器容量。

某变电站电气部分设计计算及设备选型

某变电站电气部分设计计算及设备选型
型号 。
采 用 单母 线 分段 。 1 V ! 联 调 相机 补 偿装 置 k  ̄并 0 J l 进 行 主变损 耗及 负荷 功率 因数 补偿 。
1 电气 主 接线设 计
主 变 规 模 :远 景 ( 3×1 0 MVA),本 期 8 ( 8 MV 1 1 0 A)。 x 主 变选 型 :选 用 三绕组 有 载调压 变 。
2 2% ~2 4% ; U2 —3= 7% ~9% 。


] <

r _
产 品 特 点 :S P Z - 1 0 0 /2 电力 变 压 F S 9 8 0 02 0
器 具 有 高 阻 抗 、油浸 、风 冷 、强 迫 油 循 环 及 三 绕组 、有 载调压 等性 能 。
12 电气 主接 线接线 方式 的选 择[ . 3 1
线的确定与电力系统整体 及变电所本身 运行 的
可 靠 性 、灵 活 性 和 经 济 性 密 切 相关 ,并 且对 电 气 设 备 选 择 、配 电装 置 、继 电保 护 和控 制 方式
的拟定有 较 大影 响 。
根据 《 电所 设计 技 术 规程 》规定 :变 变
电所 的 主 接 线 应 根 据 变 电所 在 电 力 系 统 中 的 地 位 、回路 数 、设 备 特 点 及 负 荷 性 质 等 条 件 确 定 ,并 且 满 足 运 行 可 靠 ,简 单 灵 活 、操 作方 便 和 节 约 投 资 等 要 求 ,便 于 扩 建 。变 电 站设 计 满 足 可靠性 、灵活性 、经 济性 。
对 一 般 性 能 的 变 电 所 , 当 一 台 主 变 压 器
停 运 时 ,其余 变压 器 容量 应保 证 全部 负荷 的
7%~8 。该变 电所是按7 全部 负荷来选择口 0 % 0 % 0 0 。 根据 ( 2 k 一 0k 变 电所 设 计技术 规程 》 20 V 50 V

10kV变电站低压并联电容器的选型与计算

10kV变电站低压并联电容器的选型与计算

=474 V,即电容器两端的电压可达到 474 V。
同时,电容器还应能承受 1.15 倍长期工频电压,还
需考虑谐波引起的电网电压升高、相间和串联段间的
容差、轻负荷引起电网电压升高等情况。
因此,当并联电容器串联的电抗器电抗率为 13.5%
时,并联电容器额定电压选取为 525 V。
2.2 低压电容器安装容量的选择
1 串联电抗器的选型
电网三次谐波较大,为限制电容器投切时的涌流 及三次谐波对电容器的损坏,低压电容器回路需串联 接入电抗器,电抗器的电抗率选取为 13.5%。
2 低压电容器的选型
根据工程要求补偿 240 kvar 的三相无功容量,低 压并联电容器采用三角形接线方式,三相自动补偿,分 4 组投切,每组补偿 60 kvar。低压并联电容器的选型需 要考虑额定电压及额定安装容量,以下分别予以计算。 2.1 低压电容器额定电压的选择
相对地接线。
避雷器选用型号为 Y3W-0.5/2.6,系统电压为 0.4
kV,避雷器额定电压为 0.5 kV,持续运行电压为 0.42
kV,直流 1 mA 参考电压≮1.2 kV,雷电残压峰值≯2.6
kV,通流容量(2 ms)为 90 A。
5 低压无功功率自动补偿控制器的选择
选用功率因数型自动补偿控制器。功率因数控制
> = 姨 3 =1.8
(4)
式中: 为熔断器额定电流,A; 为并联电容器的
容量,kvar; 为计算系数,当电容器的额定电压为 525
V 时,= 1.8
×103 =1.98≈2。
姨 3 ×525
因此,并联电容器实际输出容量为 60 kvar 时,上
口熔断器熔断体额定电流 为 2×60=120(A),选额定

35kV变电站的设计计算毕业设计论文

35kV变电站的设计计算毕业设计论文

第二部分设计计算书第1章负荷计算和主变压器的选择1.1负荷计算的意义计算负荷是根据已知的用电设备安装容量确定的、预期不变的最大假想负荷。

它是设计时作为选择电力系统供电线路的导线截面、变压器容量、开关电器及互感器等的额定参数的重要依据。

负荷计算的目的是为了掌握用电情况,合理选择配电系统的设备和元件,如导线、电缆、变压器、开关等。

负荷计算过小,则依此选用的设备和载流部分有过热危险,轻者使线路和配电设备寿命降低,重者影响供电系统的安全运行.负荷计算偏大,则造成设备的浪费和投资的增大。

为此,正确进行负荷计算是供电设计的前提,也是实现供电系统安全、经济运行的必要手段。

1.2负荷计算方法目前负荷计算常用需要系数法、二项式法、和利用系数法,前二种方法在国内设计单位的使用最为普遍。

此外还有一些尚未推广的方法如单位产品耗电法、单位面积功率法、变值系数法和ABC法等. 常采用需用系数法计算用电设备组的负荷时,应将性质相同的用电设备划作一组,并根据该组用电设备的类别,查出相应的需用系数K,然后x按照上述公式求出该组用电设备的计算负荷。

1.3负荷统计及计算本次设计主要为满足农村生产生活,其用电负荷统计表如表1-1。

2五堡供电区:1Sjs =(0.7×2000+0.85×1900+0.7×800)×0.85=3038.75 (kVA ) 龙兴供电区:2Sjs =(0.75×1500+0.7×700+0.85×1700)×0.8=3060 (kVA ) 鱼咀供电区:3Sjs =(0.8×1800+0.7×600+0.7×900)×0.8=2500 (kVA ) 变电所设计当年的计算负荷由:∑=+=41%)1(i jsi t js x S K S (1-1)式中Kt ——同时系数;一般取0.85-0.9%x ——线损率:高低压网络的综合线损率在8%—12%,系统设计时采用10%)(4321js js js js t js S S S S K S +++=×(1+%x )=0.9×(3038.75+3060+2500)×(1+10%) =8512.76(kVA )计算负荷增长后的变电所最大计算负荷为n m js jszd e S S ⨯= (1-2)式中 n ——年数 取6年m ——年负荷增长率 取5% jszd S ——N 年后的最大计算负荷1149176.8512%56=⨯=⨯e S jszd (kVA )1.4 主变压器的选择为保证供电的可靠性,避免一台主变故障或检修时影响供电,变电所一般装设两台主变压器,但一般不超过两台变压器。

220kV降压变电站主变压器选型与参数计算

220kV降压变电站主变压器选型与参数计算

长沙电力职业技术学院2014届毕业论文(设计)题目:220kV降压变电站主变压器选型与参数计算专业:发电厂及电力系统:纪翰林学号:201101013811班级:电气1138班指导老师:王芳媛2013年11 月长沙电力职业技术学院毕业设计(论文)课题任务书(2013 年下学期)系部名称:电力工程系长沙电力职业技术学院毕业设计(论文)评阅表前言电力已成为人类历史发展的主要动力资源,要科学合理地驾驭电力,必须从电力工程的设计原则和方法上来理解和掌握其精髓,提高电力系统的安全可靠性和运行效率,从而达到降低生产成本、提高经济效益的目的。

通过本次的电力系统课程设计,便可以很好的体现上述观点。

本课题要为一个电压等级为220/110/35KV的变电站选择主变压器型号,并对主变压器进行参数计算。

本次设计的变电站的类型为降压变电站,要求根据老师给出的设计资料和要求,并结合所学的基础知识和文献资料完成设计和计算。

通过本设计,使我加强对所学知识的理解和掌握,并掌握变电站主变压器的选型方法,为以后从事电力工作打下一定的基础。

电力系统专业的毕业设计是一次比较综合的训练,它是我们将在校期间所学的专业知识进行理论与实践的很好结合,运用理论知识和所学到的专业技能进行工程设计和科学研究,提高分析问题和解决问题的能力。

在完成此设计过程中,我们可以学习电力工程设计、技术问题研究的程序和方法,获得搜集资料、查阅文献、调查研究、方案比较、设计制图等多方面训练,并进一步补充新知识和技能。

目录摘要 (I)第1章主变压器的选择 (1)1.1原始材料 (1)1.2变电所与系统联系情况 (1)1.3变电所在系统中的地位分析 (2)1.4主变压器选择的相关原则 (3)1.5三相三绕组电力变压器的绕组顺序 (6)1.6主变压器的选定 (7)1.6.1主变压器容量的确定 (7)1.6.2主变压器型号的确定 (8)第2章变压器损耗 (10)2.1变压器损耗 (10)2.1.1杂散损耗 (10)2.1.2变压器损耗的特征 (10)2.2变损电量的计算 (11)2.2.1铁损电量的计算 (11)2.2.2铜损电量的计算 (11)2.3变压器空载损耗 (12)2.4变压器负载损耗、阻抗电压的计算 (14)第3章变压器的参数计算 (18)3.1电阻的计算 (18)3.2电抗的计算 (18)3.3导纳的计算 (19)参考文献 (20)致 (21)摘要本毕业设计论文是220kV降压变电站主变压器选型与参数计算。

110kV变电站的电气主接线设计要点分析

110kV变电站的电气主接线设计要点分析

110kV变电站的电气主接线设计要点分析【摘要】110kV变电站的电气主接线设计是电力系统中的重要环节,直接影响系统的运行稳定性和安全性。

本文从110kV电气主接线设计的背景、基本原则、技术要求、注意事项和实施步骤等方面进行了深入分析。

首先介绍了110kV电气主接线设计的背景,指出其在电网中的重要性。

其次提出了110kV电气主接线设计的基本原则,包括可靠性、经济性等方面的考虑。

然后详细探讨了110kV电气主接线设计的技术要求,包括电气设备的选型、工程参数的确定等内容。

还重点强调了110kV电气主接线设计的注意事项,如引入防雷措施、接地方式的选择等。

最后总结了110kV变电站的电气主接线设计要点,强调了设计过程中需要综合考虑各种因素,确保设计方案的完善和实施的顺利进行。

整体而言,本文为110kV变电站的电气主接线设计提供了全面的指导和参考。

【关键词】110kV变电站、电气主接线设计、背景、基本原则、技术要求、注意事项、实施步骤、总结。

1. 引言1.1 110kV变电站的电气主接线设计要点分析110kV变电站的电气主接线设计是电网系统中至关重要的一环,其设计质量直接影响到电网的安全稳定运行。

在实际工程应用中,必须严格遵循相关的设计要点和规范,确保设计的科学性和合理性。

电网系统中,110kV变电站扮演着连接输电线路和配电网的关键角色。

其电气主接线设计需考虑到输电线路的电力传输需求、安全性、可靠性以及供电负荷的合理分配。

在设计过程中,需要充分考虑各种因素,综合分析,确保设计方案的合理性和实用性。

本文将围绕110kV变电站的电气主接线设计展开分析,探讨设计背景、基本原则、技术要求、注意事项以及实施步骤等方面的内容。

通过对这些要点的深入分析和总结,旨在为电气工程师提供指导和借鉴,确保110kV变电站的电气主接线设计符合标准规范,达到安全可靠的运行要求。

愿本文内容能帮助读者更好地了解和掌握110kV变电站的电气主接线设计要点,提升工程设计质量。

110kv变电站设计及其配电设备选择计算

110kv变电站设计及其配电设备选择计算

前言可以说,变电站就是国家电网中的中枢,一方面它连接外网,在这里进行着电压转换,另一方面再把汇集的电力源源不断的输向终端用户。

本论题所设计的区域终端变电站为新建的110KV站,所面向的用户为周边居民和工业厂区,以保证人们生活和经济发展的基本动力。

变电站的设计是依据电气设计类国家和地方标准,以带动地方发展和满足人民生产生活的需求为根本目的,同时结合区域的规划设计和工程的实际情况,在满足基本需求的基础上,尽可能的节约用地和降低成本费用,争取以最小的投入带来更多的经济效益。

同时在设计过程中要把灵活性和易操作性融入进去,后期维护的便捷也是设计考虑的因素之一。

110kV 变电站电气设计涉及的内容比较广,既有变压器等主要设备、线路与线路连接、配电装置等的选择,也包括了短电流、直流系统、消弧与过压保护等方面的计算与设计,材料与设备的硬件设施是变电站最基本的结构单元,而设施选择的各类计算与设计就是保障变电站技术层面的平稳可靠、安全经济的核心部分,是变电站技术上的优势所在。

所以在具体的设计任务中,最先应该就是分析技术资料和标准要求,进一步论证与确立技术参数,进而选择适合技术要求的设备数量、规格型号、容量大小,以及对电气设备、继电保护等方面还需要规划、计算、矫验这些必不可少的过程。

摘要随着我国科学技术的快速发展,变电站不仅从设备和技术上,都有了新的革新,110KV变电站是我国变电站的重要组成部分,其电气设计工作十分重要。

在整个电力系统中,变电站在实际上发挥着其监控和中转机构的作用,是从高压输电向终端输电的重要模块,所以如何在变电站的新建过程中,在基于现代科学技术和规范的基础上,电气主接线、重要设备类型和连接方式等都直接影响着使用过程中的经济、安全和可靠性等,这不仅体现了建设设计的重要性和可持续发展,也体现了在设施设备选择上的科学严谨的态度。

对于设计人员来说,把握这些内容做到心里有数才能更好的完成任务。

本论文就是基于110kV 变电站电气部分的整体设计,把握设计过程中的每一个部分,包括了设施设备的选择、设计与论证以及安全与检修方面等内容,其目标主要是在合乎技术规范的基础上,集约、经济、有效、安全、可靠的完成电气化设计工作,同时也是为行业技术领域的发展提供一个参考模板,共同努力把这块工作做的更好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变电站设计中主要电气设备的选型计算
随着国民经济的发展和人们生活水平的提高,目前我们的生产、生活对电能已经高度依赖,电力系统也对整个国家的稳定至关重要。

变电站作为电力系统中的重要组成,其设计和建造是否合理将会直接影响一些地区人们的正常生活。

从变电站主要电气设备的选择出发,介绍了一些选型原则和相关计算的问题。

标签:变电站;主要电气设备;选型计算
1 概述
众所周知,电能的输送距离一般是很远的,如果以低压电的形式输送,那么电能的损耗量将会很大,所以先将电压升高,到了用户处再做降压处理,升降电压的过程就是由变电站(变电所)完成的。

变电站的主要电气设备包括有:隔离开关、接地开关、断路器、变压器以及互感器等等。

2 变电站电气设备选择原则及技术条件
2.1 选择原则
(1)满足运行、检修以及故障情况下相关要求,此外还要考虑之后5-10年的发展情况;(2)在对设备进行校核时应在当地的条件环境下进行;(3)既要保证电气设备的先进性,又要控制相关成本;(4)设备的各类指标要和整个工程保持一定的一致性;(5)同类产品应尽可能选自同一个厂家的产品;(6)如果需选用新产品,应检查试验数据及合格证书,此外还要获得上级批准[1]。

2.2 技术条件
由于选择的电气设备都是在高压条件下工作的,所以对它们的技术条件有一些特殊的要求。

(1)在长期的工作条件下,选择的电气设备其最高工作电压应大于线路中可能出现的最高运行电压;最高额定电流也要大于线路中可能出现的最大持续电流值;电气端子的允许载荷应大于线路的最大作用力;(2)电气设备的热稳定性和动稳定性应按照线路可能通过的最大电流进行校验,一般取三相短路时电流;但被熔断器保护的电气设备可以不再进行热、动稳定性的校验;(3)电气设备的绝缘水平应按照国家规定的标准值进行,若低于标准值,则应增加适当的过电压设备进行保护。

3 选型计算(以35kV侧为例)
文章以35kV降压变电站为实例(降压侧为6kV),对一些电气设备的选型计算进行介绍。

3.1 断路器和隔离开关的选择
在35kV侧,选用的是六氟化硫断路器,具体型号为LW8-35A(T),这种断路器具有开断能力强,断口电压适于做得较高,允许连续开断次数较多,适用于频繁操作,噪音小,无火灾危险,机电磨损小等,是一种性能优异的“无维修”断路器[2]。

(1)流过断路器的最大持续工作电流:
Imax=(2×STN)/■UTN2×20000/(■×35)
≈660A
LW8-35A(T)断路器的额定电流1600A,所以满足要求;
(2)LW8-35A(T)断路器的额定电压35kV,系统电压也是35kV,所以满足要求。

(3)LW8-35A(T)断路器短路开断电流为20kA,大于线路的电流周期分量值5.3kA。

具体对比见表1:
高压隔离开关的选择型号为GW5-35(W)/1000,结构为双柱水平回转式。

此开关具有导电可靠、维修方便、触头元件方便更换等优点。

表2列出了此型号开关与线路参数的对比,我们可以看出其完全满足使用要求。

3.2 互感器的选择
互感器分电压互感器和电流互感器两种,下面分别介绍。

一般在我国35-110kV的配电装置中,很多以前的变电站采用的是油浸绝缘结构电磁式电压互感器。

而我们采用了JDZXF9-35型电容式电压互感器,实现无油化运行,减少电磁谐振。

其额定电压比(V)为35000/■/100/■/100/■/100/3,额定输出(V A)25/50/100,极限输出(V A)2×500,额定绝缘水平(kV)40.5/95/200。

此型号电压互感器适用于本变电站户内电力系统起到做测量和继电保护用途。

本实例中选用的是LCZ-35(Q)型浇注绝缘加强型电流互感器做保护、测量和计算用。

其额定电压42kV,额定一次电流1000A,二次电流5A,动稳定电流120kA,热稳定为2300[(kA)2S],均满足使用要求[3]。

3.3 熔断器的选择
熔断器的主要作用就是保护电气设备免受过载以及短路电流的损害,按照安装条件分为屋外跌开式和屋内式。

要求其额定电压和电流均不小于电网,本站35kV侧选用RW5-35/600型跌开式熔断器,其额定电压35kV,最大断开电流为100kA,大于本站的短路冲击电流13.36kA。

但是其断流容量为600MV A,需要加适当的限流电阻。

4 结束语
变电站的电气设备对于整个电力系统的安全运行至关重要,在设计之初,就要充分考虑电气设备的选型和安装,以安全、可靠、经济为中心,还要保证其在5-10年内不落伍。

此外,设计人员、校验人员和安装人员任何一方遇到问题应及时保持沟通,在充分考虑问题后选择一个令各个人员都认同的解决方案,一定要确保变电站的安全、科学、合理。

参考文献
[1]罗学深.气体绝缘全封闭组合电器(GIS)[J].北京:中国电力出版社,2009(10):15-16.
[2]贾沛义.变电站典型标准设计方案、设备选型以及运行维护[M].北京:中国电力出版社,2005(12).
[3]宋继成.220~500kV变电所电气接线设计[M].北京:中国电力出版社,2004(8).
作者简介:杨震(1983,5-),男,内蒙包头市人,毕业于内蒙古科技大学,本科学历,工程师,主要从事变电站电气一次设计。

相关文档
最新文档