【生理学总结】呼吸

合集下载

生理学——呼吸(一)

生理学——呼吸(一)

第五章呼吸第一节肺通气一、肺通气的原理(一)肺通气的动力直接动力:肺内压与外界大气压之间的压力差是肺通气的直接动力。

原动力:呼吸肌的收缩与舒张所引起的呼吸运动是实现肺通气的原动力。

1.呼吸运动呼吸运动:呼吸肌的收缩和舒张所引起的胸廓节律性的扩大或缩小称为呼吸运动。

主要吸气肌:膈肌和肋间外肌;主要呼气肌:肋间内肌和腹肌辅助吸气肌:斜角肌和胸锁乳突肌等(仅在用力呼吸时起作用)(1)呼吸运动的过程:(2)呼吸运动的型式:腹式呼吸:以膈肌舒缩活动为主的呼吸运动;胸式呼吸:以肋间外肌舒缩活动为主的呼吸运动;一般情况下:腹胸混合式呼吸特殊情况:①仅胸式呼吸:妊娠后期女性、腹腔巨大肿块、腹水、胃肠道胀气、腹膜炎等因膈肌运动受限,主要依靠肋间外肌舒缩运动呼吸。

②仅腹式呼吸:胸腔积液、胸膜炎、婴幼儿等因胸廓运动受限,主要依靠膈肌舒缩运动进行呼吸。

2.肺内压❖吸气:肺容积增大,肺内压随之降低,低于大气压后,气体进入肺,随着肺内气体的增加,肺内压逐渐升高,至吸气末,肺内压升高到与大气压相等,吸气停止;❖呼气:肺容积减小,肺内压随之升高,高于大气压后,气体流出肺,随着肺内气体的减少,肺内压逐渐降低,至呼气末,肺内压降低到与大气压相等,呼气停止。

❖总结:肺内压:吸气——先降低后升高;呼气——先升高后降低。

3.胸膜腔内压胸膜腔内压随呼吸运动而发生周期性波动。

平静呼气末,胸膜腔内压较大气压低3~5mmHg,平静吸气末,较大气压低5~10mmHg。

胸膜腔内压在平静呼吸时,始终低于大气压,若以大气压为0计,胸膜腔内压为负压。

用力呼吸时,胸膜腔内压波动幅度增大。

胸膜腔内压=-肺回缩压。

胸膜腔内压由肺回缩压决定。

胸膜腔负压的意义:①不仅扩张肺,而且使肺能随胸廓的张缩而张缩;②作用于胸腔内的腔静脉和胸导管,使之扩张,有利于静脉血和淋巴液的回流保持负压的前提:胸腔保持其密闭性。

(二)肺通气的阻力1.弹性阻力和顺应性(1)顺应性顺应性:是指弹性组织在外力作用下发生变形的难易程度。

解释生理学名词解释呼吸

解释生理学名词解释呼吸

解释生理学名词解释呼吸
呼吸是生理学中一个重要的概念,它是指机体与外界环境之间气体交换的过程。

这个过程包括三个相互联系的环节:
1. 外呼吸:包括肺通气和肺换气。

肺通气是指肺与外界环境之间的气体交换过程,而肺换气则是指肺泡与肺毛细血管之间的气体交换过程。

2. 气体在血液中的运输:吸入的氧气和呼出的二氧化碳在血液中主要通过红细胞进行运输。

3. 内呼吸:指组织细胞与血液间的气体交换,也称为细胞呼吸。

细胞呼吸是细胞利用氧气来氧化糖类,释放能量的过程。

此外,呼吸运动是呼吸的组成部分,它使胸廓有节律地扩大和缩小,从而完成吸气与呼气,为身体提供氧气并排出二氧化碳。

正常成人安静时呼吸一次为6.4秒为最佳,每次吸入和呼出的气体量大约为500毫升,称为潮气量。

当人用力吸气直到不能再吸的时候为止,然后再用力呼气直到不能再呼的时候为止,这时呼出的气体量称为肺活量。

总的来说,呼吸是一个复杂而精细的生理过程,它需要多个器官和系统的协同作用才能实现。

生理学关于【呼吸】名词解释集锦(二)

生理学关于【呼吸】名词解释集锦(二)

生理学关于【呼吸】名词解释集锦(二)引言概述:本文是关于生理学中与呼吸相关的名词解释集锦(二)。

呼吸是人类生命不可或缺的重要生理过程,涉及到多个生理学概念和机制。

本文将深入解释与呼吸相关的一些关键名词,包括呼吸节律、呼吸频率、肺泡通气量、肺活量和呼吸困难等。

正文:一、呼吸节律1. 呼吸节律是指通过肺泡内压力的周期性变化来完成呼吸气体的交换。

它由中枢神经系统的呼吸中枢调控,具有一定的自主调节能力。

2. 呼吸节律可分为静息呼吸和运动呼吸两种。

静息呼吸是身体在安静状态下的正常呼吸,而运动呼吸则是在运动状态下的呼吸。

二、呼吸频率1. 呼吸频率是指单位时间内呼吸次数的数量。

成年人静息状态下的正常呼吸频率约为每分钟12-20次。

2. 呼吸频率受多种因素影响,包括体内的CO2浓度、动脉血氧分压、身体活动水平和药物等。

三、肺泡通气量1. 肺泡通气量是单位时间内肺泡中的气体交换量。

它由呼吸频率和每次呼吸的潮气量所决定。

2. 肺泡通气量的测量可通过呼气流量仪等仪器进行,对于评估呼吸功能很有意义。

四、肺活量1. 肺活量是指在不同情况下肺部可以容纳的气体量。

通常包括呼气余量、肺活量、功能残气量和通气量。

2. 肺活量的测量对于评估肺功能非常重要,常使用肺活量计等工具进行。

五、呼吸困难1. 呼吸困难是指呼吸过程中感到困难、不适或无法满足生理需要的症状。

常见的症状包括气短、胸闷、呼吸急促等。

2. 呼吸困难可能由多种原因引起,包括肺部疾病(如哮喘、慢性阻塞性肺疾病)、心血管疾病、神经肌肉疾病等。

总结:本文对生理学中与呼吸相关的一些重要名词进行了解释。

呼吸节律是肺内压力周期性变化的过程,呼吸频率是单位时间内呼吸次数的数量,肺泡通气量是指单位时间内肺泡中的气体交换量,肺活量是肺部可以容纳的气体量,呼吸困难是呼吸过程中出现不适或困难的症状。

深入了解这些概念有助于我们更好地了解和评估呼吸功能。

生理呼吸知识点总结

生理呼吸知识点总结

一、呼吸系统的构成呼吸系统包括呼吸道、肺部和呼吸肌肉,其功能是将氧气吸入体内,将二氧化碳排出体外。

呼吸系统分为上呼吸道和下呼吸道,上呼吸道包括鼻腔、咽部和喉部,下呼吸道包括气管和支气管。

二、呼吸的生理过程1. 外呼吸外呼吸是指人体从外界吸入氧气,然后将氧气输送到血液中,并将二氧化碳排出体外的过程。

外呼吸的重要器官是肺部,它主要由气管、支气管、肺泡和肺组织等组成,是气体交换的场所。

呼吸的主要肌肉是膈肌和肋间肌,它们的活动使肺部能够进行呼吸。

2. 内呼吸内呼吸是指体液和细胞内氧气与二氧化碳的交换过程。

在内呼吸过程中,氧气从血液中进入细胞内,而二氧化碳则从细胞内进入血液中,并经过呼吸系统排出体外。

三、呼吸的调节呼吸的调节主要由呼吸中枢和周围化学和机械感受器组成。

呼吸中枢位于延髓和脑桥,它受到化学感受器和机械感受器的输入,调节人体的呼吸频率和深度。

化学感受器主要通过血液中氧气、二氧化碳和酸碱度的状态来调节呼吸,而机械感受器主要通过肺部的扩张程度和肋间肌的紧张度来调节呼吸。

在正常情况下,化学感受器和机械感受器的输入会使呼吸中枢作出相应的调节,保持人体呼吸的平衡和稳定。

当身体处于高海拔、运动锻炼、情绪激动或疾病状态时,呼吸中枢会作出相应的调节来适应这些变化。

四、呼吸和环境的关系氧气是呼吸作用的重要物质,它由环境中进入人体,然后通过血液传递到组织细胞中,进行细胞呼吸。

植物通过光合作用产生氧气,而动物通过呼吸消耗氧气,并产生二氧化碳。

因此,呼吸和环境有着密切的关系。

环境中的氧气含量、污染物、气温和湿度等因素都会影响呼吸系统的功能。

高海拔地区的氧气含量较低,会导致人体的短期或慢性缺氧。

空气污染物如二氧化硫、一氧化碳和臭氧等会对呼吸系统造成伤害。

气温和湿度的变化也会对呼吸系统产生影响。

另外,呼吸系统也会对环境产生影响。

人类的呼吸活动会产生大量的二氧化碳,对大气层的碳循环和气候变化产生影响。

1. 支气管炎支气管炎是指支气管黏膜的变态反应,引起黏膜充血、肿胀、黏液分泌增加,导致支气管狭窄和咳嗽、咳痰等症状。

《生理学》第五章呼吸

《生理学》第五章呼吸

《生理学》第五章呼吸呼吸,这一我们习以为常的生命活动,却蕴含着极其复杂而精妙的生理机制。

从我们每一次不经意的吸气到呼气,身体内部都在进行着一系列有条不紊的运作。

呼吸的过程,简单来说,就是气体在我们体内进出的过程,但这个看似简单的过程实际上包含了多个环节。

首先是肺通气,这是呼吸的第一步。

当我们吸气时,肋间外肌和膈肌收缩。

肋间外肌的收缩会使得肋骨向上向外移动,从而增大胸廓的前后径和左右径;膈肌的收缩则会使其顶部下降,增加胸廓的上下径。

这样一来,胸廓的容积就增大了,导致肺内的压力低于大气压,外界的空气便顺着压力差被吸入肺内。

而当我们呼气时,情况则相反,肋间外肌和膈肌舒张,胸廓容积缩小,肺内压力高于大气压,肺内的气体被排出。

接下来是肺换气。

吸入的空气到达肺泡后,并不是直接就进入血液被运输到全身各处了。

在肺泡和肺毛细血管之间,需要进行气体交换。

肺泡内的氧气浓度高,而肺毛细血管内的氧气浓度低;同时,肺毛细血管内的二氧化碳浓度高,肺泡内的二氧化碳浓度低。

这样,在浓度差的驱动下,氧气从肺泡扩散进入血液,二氧化碳则从血液扩散进入肺泡,完成气体交换。

气体在血液中的运输也是呼吸过程中的重要环节。

氧气主要是与血红蛋白结合形成氧合血红蛋白,通过血液循环被输送到身体的各个部位。

而二氧化碳则有三种运输形式:碳酸氢盐形式、氨基甲酰血红蛋白形式和物理溶解形式。

其中,碳酸氢盐形式是最主要的运输方式。

呼吸运动的调节是保证呼吸功能正常运行的关键。

呼吸中枢位于脑干,包括延髓、脑桥等部位。

延髓是产生呼吸节律的基本中枢,而脑桥则对呼吸节律有调整作用。

此外,外周化学感受器和中枢化学感受器也在呼吸调节中发挥着重要作用。

外周化学感受器主要感受动脉血中的氧分压、二氧化碳分压和氢离子浓度的变化;中枢化学感受器则对脑脊液中的氢离子浓度敏感。

当体内的二氧化碳分压升高、氧分压降低或者氢离子浓度升高时,化学感受器会将这些信号传递给呼吸中枢,从而调节呼吸运动的频率和深度,以保证体内气体的平衡。

呼吸的知识点总结

呼吸的知识点总结

呼吸的知识点总结1. 呼吸的生理过程呼吸的过程包括呼吸道的空气进入、通过肺部的气体交换和二氧化碳的排出。

当我们呼吸时,空气通过口腔或鼻腔进入气管,然后通过气管分支进入肺部。

在肺部,氧气被吸入血液,而二氧化碳从血液中释放出来,然后被排出体外。

2. 呼吸的类型人类有两种类型的呼吸:胸式呼吸和腹式呼吸。

胸式呼吸是通过扩张和收缩胸部来进行的,而腹式呼吸是通过扩张和收缩腹部来进行的。

正常呼吸通常是胸式呼吸和腹式呼吸的结合。

3. 呼吸的频率成年人的正常呼吸频率大约是每分钟12-20次。

呼吸的频率受到很多因素的影响,包括年龄、体重、健康状况和活动水平等。

4. 呼吸肌肉呼吸是通过肌肉运动来实现的。

主要的呼吸肌肉包括肋间肌、膈肌和腹肌。

肋间肌的收缩扩张使得肺部能够充分膨胀和收缩,而膈肌的收缩也能够帮助肺部进行呼吸。

5. 呼吸与健康呼吸对身体的健康起着重要的作用,它不仅能够为身体提供氧气,还有助于排出体内的废物和毒素。

正常的呼吸还可以帮助维持酸碱平衡,提高免疫力,促进消化和新陈代谢等。

6. 呼吸与情绪呼吸与情绪之间有着密切的联系。

深呼吸和缓慢呼吸可以帮助缓解焦虑和压力,改善睡眠质量,促进身心放松。

7. 呼吸与运动在运动过程中,呼吸也扮演着非常重要的角色。

运动时,肺部会加大呼吸频率和深度,以满足肌肉对氧气的需求。

同时,呼吸还可以帮助维持体温和排出体内的废物。

8. 呼吸与疾病呼吸系统的疾病会影响到身体的正常呼吸功能,包括哮喘、慢性阻塞性肺病、肺炎、肺癌等。

如果患有呼吸系统疾病,需要及时进行治疗和管理,以维护身体的正常功能。

9. 呼吸与环境环境中的空气质量和气体成分也会对呼吸功能产生影响。

空气中的污染物和有害物质会对呼吸系统造成损害,从而影响到身体的健康。

总之,呼吸是维持生命所必需的生理活动,它与健康、情绪、运动、疾病和环境等方方面面都有着密切的联系。

因此,了解呼吸的知识点,加强对呼吸的健康管理和保护,对于维护身体健康和提高生活质量至关重要。

生理学关于【呼吸】名词解释集锦(一)

生理学关于【呼吸】名词解释集锦(一)

生理学关于【呼吸】名词解释集锦(一)引言概述:呼吸是生命活动中不可或缺的过程,涉及多个生理学概念和名词。

本文将介绍与呼吸相关的一些重要术语和定义,帮助读者更好地理解呼吸过程的生理学基础。

正文内容:一、呼吸系统1. 呼吸系统的组成:鼻腔、咽喉、气管、支气管和肺组成了呼吸系统。

其功能是将空气引入体内,并将体内产生的二氧化碳排出。

2. 肺活量:指个体在一次最大吸气和呼气的过程中,所能吸入或呼出的气体量。

正常人的肺活量约为4-6升。

3. 肺泡:是肺组织的最小结构单位,呈球状,并与微小血管毛细血管相临。

肺泡的主要功能是进行气体交换,供氧气进入血液,同时将二氧化碳从血液中排出。

二、呼吸控制1. 自主呼吸:指由脑干呼吸中枢控制的正常呼吸。

该呼吸模式主要受到呼吸中枢的调控,包括延髓和桥脑。

2. 呼吸频率:指每分钟呼吸的次数。

正常成年人的呼吸频率约为12-20次/分钟。

3. 肺通气量:指单位时间内肺泡内气体与外界交换的量,可分为静态肺通气量和动态肺通气量。

三、呼吸气体交换1. 氧合作用:指在肺泡内,氧气通过肺的薄膜分子层和微血管内膜渗出到毛细血管,与血红蛋白结合而形成氧合血红蛋白。

2. 氧输送:指氧分子通过血液到达组织细胞的过程,取决于动脉氧分压、血红蛋白浓度、心输出量等因素。

3. 氧解离:指在组织细胞内,氧合血红蛋白与氧分子的结合被破坏,使氧分子能够进一步传递到细胞内。

四、呼吸肌肉1. 膈肌:位于胸腔和腹腔之间的薄而宽的肌肉,是呼吸过程中的主要肌肉之一。

膈肌的收缩和放松控制着肺的容积变化。

2. 外肋间肌:位于肋骨间的肌肉,参与胸腔的扩张和收缩,进而影响呼吸的深浅。

3. 锁骨上肌和胸锁乳突肌:位于颈部和肩部的肌肉,与呼吸过程中的颈部姿势和肩部活动密切相关。

五、呼吸调节1. 呼吸酸中毒和呼吸碱中毒:指血液中pH值因呼吸功能失调而出现偏酸或偏碱的情况。

呼吸调节主要通过控制呼吸频率和深度来维持酸碱平衡。

2. 呼吸神经元:是位于呼吸中枢中的神经元,负责控制和调节呼吸。

【生理学总结】呼吸

【生理学总结】呼吸

【生理学总结】呼吸呼吸呼吸过程呼吸全过程包括三个相互联系的环节(1)外呼吸,包括肺通气和肺换气;(2)气体在血液中的运输;(3)内呼吸。

掌握要点:(1)外呼吸是大气与肺进行气体交换以及肺泡与肺毛细血管血液进行气体交换的全过程。

呼吸性细支气管以上的管腔不进行气体交换,仅是气体进出肺的通道,称为传送带。

对肺泡的气体交换来说,传送带构成解剖无效腔。

而呼吸性细支气管及以下结构则可进行气体交换,称为呼吸带,是气体交换的结构。

呼吸带内不能进行气体交换的部分则成为肺泡无效腔。

正常肺组织内肺泡无效腔为零,在病理情况下,可出现较大的肺泡无效腔,它和解剖无效腔一起构成生理无效腔,所以,生理无效腔随肺泡无效腔增大而增大。

(2)内呼吸指的是血液与组织细胞间的气体交换,而细胞内的物质氧化过程也可以认为是内呼吸的一部分。

肺通气:气体经呼吸道出入肺的过程1.肺通气肺通气的直接动力——肺泡气与大气之间的压力差(指混合气体压力差,而不是某种气体的分压差)。

肺通气的原始动力——呼吸运动。

平静呼吸(安静状态下的呼吸)时吸气是主动的,呼气是被动的,即吸气动作是由吸气肌收缩引起,而呼气动作则主要是吸气肌舒张引起,而不是呼气肌收缩。

用力呼吸时,吸气和呼气都是主动的。

吸气肌主要有膈肌和肋间外肌,呼气肌主要是肋间内肌。

吸气肌收缩可使胸廓容积增大,肺内气压降低,引起吸气过程。

主要由膈肌完成的呼吸运动称腹式呼吸,主要由肋间外肌完成的呼吸运动称为胸式呼吸。

正常生理状况下,呼吸运动是胸式和腹式的混合型式。

2.肺通气阻力:包括弹性阻力和非弹性阻力,平静呼吸时弹性阻力是主要因素。

(1)弹性阻力指胸郭和肺的弹性回缩力(主要来自肺),其大小常用顺应性表示,顺应性=1/弹性阻力。

肺的顺应性可用单位压力的变化引起多少容积的改变来表示,它与弹性阻力、表面张力成反变关系,顺应性越小表示肺越不易扩张。

在肺充血、肺纤维化时顺应性降低。

肺泡的回缩力来自肺组织的弹力纤维和肺泡的液一气界面形成的表面张力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

呼吸呼吸过程呼吸全过程包括三个相互联系的环节(1)外呼吸,包括肺通气和肺换气;(2)气体在血液中的运输;(3)内呼吸。

掌握要点:(1)外呼吸是大气与肺进行气体交换以及肺泡与肺毛细血管血液进行气体交换的全过程。

呼吸性细支气管以上的管腔不进行气体交换,仅是气体进出肺的通道,称为传送带。

对肺泡的气体交换来说,传送带构成解剖无效腔。

而呼吸性细支气管及以下结构则可进行气体交换,称为呼吸带,是气体交换的结构。

呼吸带内不能进行气体交换的部分则成为肺泡无效腔。

正常肺组织内肺泡无效腔为零,在病理情况下,可出现较大的肺泡无效腔,它和解剖无效腔一起构成生理无效腔,所以,生理无效腔随肺泡无效腔增大而增大。

(2)内呼吸指的是血液与组织细胞间的气体交换,而细胞内的物质氧化过程也可以认为是内呼吸的一部分。

肺通气:气体经呼吸道出入肺的过程1.肺通气肺通气的直接动力——肺泡气与大气之间的压力差(指混合气体压力差,而不是某种气体的分压差)。

肺通气的原始动力——呼吸运动。

平静呼吸(安静状态下的呼吸)时吸气是主动的,呼气是被动的,即吸气动作是由吸气肌收缩引起,而呼气动作则主要是吸气肌舒张引起,而不是呼气肌收缩。

用力呼吸时,吸气和呼气都是主动的。

吸气肌主要有膈肌和肋间外肌,呼气肌主要是肋间内肌。

吸气肌收缩可使胸廓容积增大,肺内气压降低,引起吸气过程。

主要由膈肌完成的呼吸运动称腹式呼吸,主要由肋间外肌完成的呼吸运动称为胸式呼吸。

正常生理状况下,呼吸运动是胸式和腹式的混合型式。

2.肺通气阻力:包括弹性阻力和非弹性阻力,平静呼吸时弹性阻力是主要因素。

(1)弹性阻力指胸郭和肺的弹性回缩力(主要来自肺),其大小常用顺应性表示,顺应性=1/弹性阻力。

肺的顺应性可用单位压力的变化引起多少容积的改变来表示,它与弹性阻力、表面张力成反变关系,顺应性越小表示肺越不易扩张。

在肺充血、肺纤维化时顺应性降低。

肺泡的回缩力来自肺组织的弹力纤维和肺泡的液一气界面形成的表面张力。

(2)非弹性阻力包括气道阻力、惯性阻力和组织的粘滞阻力,其中气道阻力主要受气道管经大小的影响。

使气道平滑肌舒张的因素有:跨壁压增大、肺实质的牵引、交感神经兴奋、PGE2、儿茶酚胺类等。

使气道平滑肌收缩的因素有:副交感神经兴奋、组织胺、PGF2→5-HT、过敏原等。

平静呼吸时气道阻力主要发生在直径2mm细支气管以上的部位。

胸内压:即胸膜腔内的压力1.胸膜腔是由胸膜壁层与胸膜脏层所围成的密闭的潜在的腔隙,其间仅有少量起润滑作用的浆液,无气体存在。

2.胸内压大小:正常情况下,胸内压力总是低于大气压,故称为胸内负压。

胸内压=大气压(肺内压)-肺回缩力,在吸气末和呼气末,肺内压等于大气压,这时胸内压=-肺回缩力,故胸内负压是肺的回缩力造成的。

3.胸内负压形成原因:由于婴儿出生后胸廓比肺的生长快,而胸腔的壁层和脏层又粘在一起,故肺处于被动扩张状态,产生一定的回缩力。

吸气末回缩力大,胸内负压绝对值大,呼气时,胸内负压绝对值变小。

4.胸内负压的意义:(1)保持肺的扩张状态。

(2)促进血液和淋巴液的回流(导致胸腔内静脉和胸导管扩张)。

肺换气即肺泡与肺毛细血管血液之间的气体交换。

1.结构基础呼吸膜(肺泡膜),包括六层结构:(1)单分子的表面活性物质层和肺泡液体层;(2)肺泡上皮层;(3)上皮基底膜层;(4)组织间隙层;(5)毛细血管基底膜层;(6)毛细血管内皮细胞层。

学习方法:呼吸膜是气体由肺泡到血液或由血液到肺泡所经过的结构,所以呼吸膜必须包括肺泡上皮和毛细血管内皮两层,而上皮和内层组织都带有自己的基底膜,两层基底膜之间应有空隙,这样呼吸膜就包括五层结构,加上肺泡表面的液体层,共有六层。

其中肺泡表面的液体层与肺泡气体形成液一气交界构成表面张力,是弹性阻力的主要成份,而液体层表面的肺泡表面活性物质能降低表面张力。

2.肺换气的动力气体的分压差。

分压是指在混合气体中某一种气体所占的压力。

3.肺换气的原理:肺换气与组织换气的原理完全相同。

在肺部,氧气从分压高的肺泡通过呼吸膜扩散到血液,而二氧化碳则从分压高的肺毛细血管血液中扩散到分压低的肺泡中。

4.影响肺换气的因素:(1)呼吸膜的面积和厚度影响肺换气。

在肺组织纤维化时,呼吸膜面积减小,厚度增加,将出现肺换气效率降低。

凡影响到呼吸膜的病变均将影响肺换气,而呼吸道的病变首先影响的是肺通气,仅当肺通气改变造成肺泡气体分压变化时才影响到肺换气。

(2)气体分子的分子量,溶解度以及分压差也影响肺换气。

O2的分子量小于CO2,肺泡与血液间O2分压差大于CO2分压差,仅从这两方面看,O2的扩散速度比CO2快,但由于CO2在血浆中的溶解度远大于O2(24倍),故综合结果是CO2比O2扩散速度快,所以当肺换气功能不良时,缺O2比CO2潴留明显。

(3)通气/血流比值是影响肺换气的另一重要因素。

通气/血流比值(V/Q)是指每分钟肺泡通气量与每分肺血流量的比值,正常值为0.84左右。

V/Q>0.84表示肺通气过度或肺血流量减少,这意味着部分肺泡无法进行气体交换,相当于肺泡无效腔增大。

V/Q<0.84表示肺通气不足或血流过剩或两者同时存在,这意味着有部分静脉血流过无气体的肺泡后再回流入静脉(动脉血),也就是发生了功能性动—静脉短路。

通气/血流比值的学习方法:将通气/血流比值看作一个“标准”的分数,写在前面的是分子,写在后面的是分母,故通气/血流比值(V/Q)表示每分钟肺泡通气量与每分钟肺血流量的比值。

肺泡表面活性物质是由肺泡Ⅱ型细胞分泌的一种脂蛋白,主要成分是二棕搁酰卵磷脂,分布于肺泡液体分子层的表面,即在液一气界面之间。

肺泡表面活性物质的生理意义:(1)降低肺泡表面张力;(2)增加肺的顺应性;(3)维持大小肺泡容积的相对稳定;(4)防止肺不张;(5)防止肺水肿。

肺泡表面活性物质缺乏将出现:肺泡的表面张力增加,大肺泡破裂小肺泡萎缩,初生儿呼吸窘迫综合征等病变。

肺容量与肺通气量1.潮气量:平静呼吸时,每次吸入或呼出的气量。

2.余气量:在尽量呼气后,肺内仍保留的气量。

3.功能余量=余气量+补呼气量。

4.肺总容量=潮气量+补吸气量+补呼气量+余气量。

5.肺活量:最大吸气后,从肺内所能呼出的最大气量。

6.时间肺活量:是评价肺通气功能的较好指标,正常人头3秒分别为83%、96%、99%的肺活量。

时间肺活量比肺活量更能反映肺通气状况,时间肺活量反映的为肺通气的动态功能,测定时要求以最快的速度呼出气体。

7.每分肺通气量=潮气量×呼吸频率。

8.每分钟肺泡通气量=(潮气量-无效腔气量)×呼吸频率。

潮气量和呼吸频率的变化,对肺通气和肺泡通气有不同的影响。

如潮气量减少1/2,呼吸频率增加1倍,此时肺通气不变,而解剖无效腔占的比例比正常潮气量时大,所以肺泡通气量减少。

从气体交换的效果看,深慢呼吸比浅快呼吸有利于气体交换。

评价肺通气功能的常用指标有肺活量、时间肺活量、肺泡通气旱等,从气体交换的意义来说,最好的指标是肺泡通气量。

因为肺通气的生理意义在于摄入氧气和排出体内的二氧化碳,进入肺内的气体中只有肺泡气能与机体进行气体交换,因此肺通气效果的好坏主要取决于肺泡通气量的大小以及肺泡通气量是否与肺血流相适应,其它评价肺通气的指标都不能直接反映肺通气的效果。

呼吸中枢及呼吸节律的形式1.呼吸中枢是指中枢神经系统内产生和调节呼吸运动的神经细胞群,分布在大脑皮层、间脑、脑桥、延髓、脊髓等部位。

呼吸运动的基本调节中枢在脑桥和延髓呼吸中枢。

基本呼吸节律产生于延髓,延髓是自主呼吸的最基本中枢。

2.呼吸中枢的结构和功能特性:呼吸节律的发生依赖脑干两侧多个不同部位的多组神经元活动的组合,这些部位包括延髓呼吸中枢和呼吸调整中枢等。

(1)延髓呼吸中枢包括背侧呼吸组和腹侧呼吸组。

背侧呼吸组实际上是孤束核的腹外侧核,大多数为吸气相关神经元,轴突交叉至对侧终止至脊髓颈、胸段的膈神经和肋间神经的运动神经元。

腹侧呼吸组包括疑核、后疑核、包氏复合体等神经核团,其中既含有吸气相关神经元又含有呼气相关神经元。

(2)呼吸调整中枢包括脑桥前端的2对神经核团,即臂旁内侧核和相邻的Kolliker-Fuse复合体。

其作用可能是传递冲动给吸气切断机制,使吸气及时终止,向呼气转化。

此作用与刺激迷走神经引起的吸气向呼气转化相似,如果同时切除呼吸调整中枢、迷走神经传入纤维,动物将出现长吸气呼吸。

3.呼吸节律形成的假说—吸气切断机制:引起吸气向呼气转化的信息来自三个方面:①吸气神经元;②呼吸调整中枢的纤维投射;③肺牵张感受器兴奋经传入神经将信息传至吸气切断机制。

呼吸的反射性调节1.肺牵张反射(黑—伯反射)感受器位于气管和支气管平滑肌内,是牵张感受器,传入纤维是通过迷走神经粗纤维进入延髓。

肺牵张反射包括肺扩张时抑制吸气的肺扩张反射和肺缩小时引起吸气的肺缩小反射。

平静呼吸时,这两种反射都不参与人的呼吸调节,仅在病理情况下发挥作用。

2.肺毛细血管旁(J)感受器引起的呼吸反射:J感受器是位于肺胞壁毛细血管的组织间隙内,它接受组织间隙膨胀作用的刺激,反射地引起呼吸变浅变快。

化学因素对呼吸的调节1.调节呼吸的化学因素:动脉血或脑脊液中的O2、CO2、H+。

2.中枢化学感受器与外周化学感受器的异同点:位置感受细胞感受刺激中枢感受器延髓腹外侧浅表部位神经细胞[H+]↑(pH↓)p(CO2)↑外周感受器颈动脉体和主动脉体Ⅰ型细胞pH↓、p(CO2)↑、p(O2)↓3.CO2对呼吸的调节CO2对呼吸有很强的刺激作用,一定水平的p(CO2)对维持呼吸中枢的兴奋性是必要的。

CO2通过刺激中枢和外周化学感受器,使呼吸加深加快,其中刺激中枢化学感受器是主要途径。

CO2是调节呼吸的最重要的生理性体液因子,因为:血中CO2变化既可直接作用于外周感受器,又可以增高脊液中H+浓度作用于中枢感受器;而血中H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢;O2含量变化不能刺激中枢化学感受器,同时低O2对中枢则是抑制作用。

4.[H+]对呼吸的调节:血液中[H+]升高通过刺激中枢和外周化学感受器,使呼吸加强。

H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢,而中枢感受器的有效刺激是脑脊液中的H+。

5.低O2对呼吸的调节O2含量变化不能刺激中枢化学感受器,p(O2)降低兴奋外周化学感受器,对中枢则是抑制作用。

6.中枢化学感受器的直接生理刺激是[H+]变化而不是O2、CO2的变化。

学习方法:(1)调节呼吸的体液因子有O2、CO2、H+,其中O2、CO2是脂溶性小分子物质,可以自由地通过细胞膜,在细胞内外达到同一浓度,因此“正常”细胞不能感受O2、CO2的变化。

中枢化感的细胞是神经细胞,属于“正常”细胞,故不能感受浓O2、CO2度的变化,而外周化感的感受细胞是Ⅰ型细胞,是“特殊”功能的细胞,故能受到O2、CO2浓度变化的刺激。

相关文档
最新文档