九年级《三角函数》知识点、经典例题
初中三角函数知识点总结及中考真题讲解

锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
A90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 C A90B 90∠-︒=∠︒=∠+∠得由B A8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)9、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。
(完整版)新北师大初三三角函数知识点总结及中考真题汇总有答案

锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
A 90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 C A90B 90∠-︒=∠︒=∠+∠得由B A8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)9、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。
初三下学期锐角三角函数知识点总结及经典例题

初三下学期锐角三角函数知识点总结及经典例题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:A 90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h和水平宽度l的比叫做坡度(坡比)。
用字母i表示,即hil=。
坡度一般写成1:m的形式,如1:5i=等。
把坡面与水平面的夹角记作α(叫做坡角),那么tanhilα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA、OB、OC、OD的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。
如图4,OA、OB、OC、OD的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向)。
九年级数学三角函数全章知识点整理

初中三角函数整理复习一.三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠二、特殊角的三角函数: sia 30°、cos45° 、 tan60° 归纳结果练习: 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)04530cos sia +ta60°-tan30°三.解直角三角形主要依据(1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:tanA=的邻边的对边A A ∠∠例题评析:例1、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c , 且b=2 ,a=6,解这个三角形.例2、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20B ∠=350,解这个三角形(精确到0.1). 斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin例 3、在Rt △ABC 中,a=104.0,b=20.49,解这个三角形.例4、在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。
四.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角. 例1如图(6-16),某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 距离(精确到1米)解:在Rt △ABC 中sinB=AB AC∴AB=B AC sin =2843.01200=4221(米)答:飞机A 到控制点B 的距离约为4221米.巩固练习:1.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋楼底部的俯角为600,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1`m)2.如图6-17,某海岛上的观察所A发现海上某船只B并测得其俯角α=80°14′.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)3 如图6-19,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.例2.如图,一艘海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南东340方向上的B处。
三角函数知识点及典型例题

三角函数知识点及典型例题三角函数知识点及典型例题§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角α终边相同的角的集合:{}|360,S k k Z ββα==+?∈.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α.3、弧长公式: R4、扇形面积公式: S=21 lr=21αr 2.§1.2.1、任意角的三角函数1、设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin . 2、设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=)_______sin r y =α,________cos rx=α,_____tan x y =α.3、αsin ,αcos ,αtan 在四个象限的符号一正二正弦三切四余和三角函数线的画法. 4、诱导公式一:()()()_tan _2tan _cos _2cos _sin _2sin απααπααπα=+=+=+kk k (Z k ∈)5、特殊角0°,30°,45°,60°,90°,180°,270°的三角函数值. §1.2.2、同角三角函数的基本关系式1、平方关系:22sin cos 1αα+=.2、商数关系:sin tan cos ααα=. §1.3、三角函数的诱导公式1、诱导公式二:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ=+-=+-=+2、诱导公式三:()()()._tan _tan _____,cos _cos _,sin _sin αααααα-=-=--=-3、诱导公式四:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ-=--=-=-4、诱导公式五:._sin _2cos _,cos _2sin ααπααπ=??-=-5、诱导公式六:._sin _2cos _,cos _2sin ααπααπ-=??+=+ §1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.§1.4.2、正弦、余弦函数的性质1、周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:2、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. §1.5、函数()?ω+=x A y sin 的图象1、能够讲出函数x y sin =的图象和函数()b x A y ++=?ωsin 的图象之间的平移伸缩变换关系.2、对于函数:()()0,0sin >>++=ω?ωA b x A y 有:振幅A ,周期ωπ2=T ,初相?,相位?ω+x ,频率πω21==f .第三章、三角恒等变换两角和与差的正弦、余弦、正切公式cos()cos cos sin sin αβαβαβ-=+cos()cos cos sin sin αβαβαβ+=-sin()αβ+=sin cos cos sin αβαβ+sin()sin cos cos sin αβαβαβ-=-tan()αβ-tan tan 1tan tan αβαβ-=+ . tan()αβ+tan tan 1tan tan αβαβ+=-二倍角的正弦、余弦、正切公式1、_cos sin 2_2sin ααα=,变形:cos α=ααsin 22sin .2、22cos2cossin ααα=-22cos 1α=-212sin α=-变形1:21cos 2cos 2αα+=,变形2:21cos 2sin 2αα-=. 3、22tan tan 21tan ααα=- 1、注意正切化弦、平方降次. 解三角形 1、正弦定理R CcB b A a 2sin sin sin === 2、余弦定理a A bc c b cos 222-+=变形 cosA=bca cb 2222-+b B ac c a cos 2222-+=变形 cosB=acb c a 2222-+c C ab b a cos 2222-+=变形cosC=abc b a 2222-+3、三角形面积公式: S =21absinC=21bcsinA=21acsinB 课本题(必修4)1.(P 11 习题13)若扇形的周长为定值l ,则该扇形的圆心角为多大时,扇形的面积最大?22.(P 23 练习4)已知sin (4π-x )=-51,且0<x<="">623.( P 24 习题9(2))设tan α=-21,计算αααα22cos 2cos sin sin 1--。
初三下学期锐角三角函数知识点总结及经典例题

初三下学期锐角三角函数知识点总结及经典例题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:A 90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。
三角函数知识点及题型归纳

三角函数知识点及题型归纳三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。
下面我们来详细归纳一下三角函数的知识点和常见题型。
一、三角函数的基本概念1、角的概念角可以分为正角、负角和零角。
按旋转方向,逆时针旋转形成的角为正角,顺时针旋转形成的角为负角,没有旋转的角为零角。
2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。
用弧度作为单位来度量角的制度叫做弧度制。
弧度与角度的换算公式为:180°=π 弧度。
3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r(r =√(x²+ y²) > 0),则角α的正弦、余弦、正切分别为:sinα = y/r,cosα = x/r,tanα = y/x(x ≠ 0)。
4、三角函数线有正弦线、余弦线、正切线,它们分别是角α的终边与单位圆交点的纵坐标、横坐标、纵坐标与横坐标的比值。
二、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα/cosα三、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。
例如:sin(π +α) =sinα,cos(π α) =cosα 等。
四、三角函数的图象和性质1、正弦函数 y = sin x图象:是一条波浪形曲线,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ, 0)(k∈Z)。
性质:在π/2 +2kπ, π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ(k∈Z)上单调递减。
2、余弦函数 y = cos x图象:也是一条波浪形曲线,周期为2π,对称轴为 x =kπ(k∈Z),对称中心为(π/2 +kπ, 0)(k∈Z)。
性质:在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ(k∈Z)上单调递减。
初三《三角函数》经典习题汇编(易错题、难题)

初三《三角函数》经典习题汇编(易错题、
难题)
初三《三角函数》经典题汇编(易错题、难题)
概述
本文档以初三数学学科的《三角函数》为主题,整理了一些经
典的题,主要包括易错题和难题。
这些题旨在帮助学生加深对三角
函数的理解和应用能力。
题目列表
1. 题目:已知直角三角形的一条直角边为5,斜边为13,求另
一条直角边的长度。
难度:易错题
答案:12
2. 题目:已知角A的正弦值为1/2,求角A的度数。
难度:易错题
答案:30°
3. 题目:已知角B的余弦值为3/5,求角B的度数。
难度:易错题
答案:53.13°
4. 题目:已知角C的正切值为2,求角C的度数。
难度:难题
答案:63.43°
5. 题目:已知直角三角形的一条直角边为8,角A的正弦值为3/4,求斜边的长度。
难度:难题
答案:10
6. 题目:已知角A的弧度为π/6,求角A的正弦值。
难度:难题
答案:1/2
7. 题目:已知角B的弧度为5π/6,求角B的正切值。
难度:难题
答案:√3
结论
通过解答这些经典习题,学生可以巩固对三角函数的基本概念和相关计算方法的掌握。
这些题目既包括易错题,帮助学生强化知识记忆,又包括难题,提高学生的解题能力。
建议学生针对这些题目进行练习,加深对三角函数的理解和应用能力,从而在考试中取得好成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级《三角函数》知识点、例题、中考真题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边ACA90B 90∠-︒=∠︒=∠+∠得由B A依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)9、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
10、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
11、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。
12、解斜三角形所根据的定理 (在△ABC 中)① 正弦定理:SinCcSinB b SinA a ===2R. (R 是△ABC 外接圆半径). ② 余弦定理: c 2=a 2+b 2-2abCosC ; b 2=c 2+a 2-2ca CosB ; a 2=c 2+b 2-2cbCosA. ③ 互补的两个角的三角函数的关系:Sin(180ο-A)= sinA , Cos(180ο-A)= - cosA , tan(180ο-A)=-cotA , cotA(180ο-A)=-tanA. ④ S △ABC =21absinC=21bcsinA=21casinB.三角函数中考试题分类例题解说一、三角函数的定义:i h l=hlα图1例1:(滨州市) 如图1,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A .sin A 的值越大,梯子越陡B .cos A 的值越大,梯子越陡C .tan A 的值越小,梯子越陡D .陡缓程度与A ∠的函数值无关分析:由锐角的正切、正弦和余弦的定义可知:锐角的正切、正弦值越大,梯子越陡,余弦值越小,梯子越陡。
因此选A 。
二、利用特殊角的三角函数值计算例4:(辽宁省十二市) 计算:242(2cos 45sin 60)4︒-︒+ 解:23262(2)224=⨯-+原式66222=-+ 2=点评:熟记特殊角的三角函数值是解决此类问题的关键。
三、求线段的长度例5:(云南省) 已知:如图3,在△ABC 中,∠B = 45°,∠C = 60°,AB = 6。
求BC 的长(结果保留根号).分析:解决此类问题需要根据题意构造直角三角形,在直角三角形中加以研究。
如图4,过点A 作AD ⊥BC 于点D 。
在Rt △ABD 中,∠B =45°,则AD = BD 。
不妨设AD = x ,又AB = 6,所以有x 2+ x 2= 62,解得x =32,即AD = BD =32。
在Rt △ACD 中,由∠ACD = 60°得∠CAD = 30°而tan30°=CD AD ,即32CD3=3,解得CD =6。
因此BC = BD + DC =32+6。
下面也是2007年关于锐角三角函数的中考题,请自己完成。
1、(江西省) 如图5,在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .2、(大连市)在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则BC 的长为___cm 。
3、(丽水市) 如图6,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为 米。
4、(天津市) οο45cos 45sin +的值等于( )A.2B.213+ C.3D. 15、(连云港市)计算:02122sin 45--+o6、(岳阳市)计算:10)21()13(---+|2-3|+sin 245°图3图4ACBcb图5图6ABC7、(眉山市) 计算: 2sin450+cos300·tan600—2)3(8、(中山市) 如图7,Rt △ABC 的斜边AB =5,cosA =53。
(1)用尺规作图作线段AC 的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l 与AB 、AC 分别相交于D 、E 两点,求DE 的长。
答案:1、12。
2、8。
3、4。
4、A 。
5、2。
6、 12。
7、- 12。
8、2。
图7AC B一、选择题1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tanα的值是()A .35B.43C.34D.452.(2008·威海中考)在△ABC中,∠C=90°,tan A=13,则sin B=()A.1010B.23C.34D.310103.(2009·湖州中考)如图,在Rt ABC△中,ACB∠=Rt∠,1BC=,2AB=,则下列结论正确的是()A.3sin2A=B.1tan2A=C.3cos2B=D.tan3B=3 题4题5题4.(2008·温州中考)如图,在Rt ABC△中,CD是斜边AB上的中线,已知2CD=,3AC=,则sin B的值是()A.23B.32C.34D.435(2007·泰安中考)如图,在ABC△中,90ACB∠=o,CD AB⊥于D,若23AC=,32AB=,则tan BCD∠的值为()(A)2(B)22(C)6(D)3二、填空题6.(2009·梧州中考)在△ABC中,∠C=90°,BC=6 cm,53sin=A,则AB的长是cm.7.(2009·孝感中考)如图,角α的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一点P(3,4),则sinα=.7题8题ACBD8.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2. 三、解答题9.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.10.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长. 一、选择题2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .2,B .2),C .211),D .(121),3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B .83C .833米 D .433米 4.(2008·宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒805.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛- ⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭,C .1323⎛-- ⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭,6.(2007·襄樊中考)计算:2cos 45tan 60cos30+o o og 等于( )(A )1 (B )2 (C )2 (D )3 二、填空题7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.8.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).10.(2007·济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。
三、解答题11.(2009·黄石中考)计算:3-1+(2π-1)0-33tan30°-tan45° 12.(2009·崇左中考)计算:0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°.要点三、解直角三角形在实际问题中的运用 一、选择题1.(2009·白银中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .83 C 83 D 43米 2.(2009·衢州中考)为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是( ) A .14B .4C 17D 173.(2009·益阳中考)如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( ) A. αcos 5 B.αcos 5C. αsin 5D. αsin 51题2题3题4.(2009·兰州中考)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5m B.6m C.7m D.8m4题5题5.(2009·潍坊中考)如图,小明要测量河内小岛B到河边公路l的距离,在A点测得30BAD∠=°,在C点测得60BCD∠=°,又测得50AC=米,则小岛B到公路l的距离为()米.A.25 B.253C.10033D.25253+二、填空题6.(2009·沈阳中考)如图,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正弦值为35,则坡面AC的长度为m.7. (2009·南宁中考)如图,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为_____________海里(结果保留根号).6题7题8题9题8.(2008·庆阳中考)如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,3cos4BAC∠=,则梯子长AB = 米.9.(2007·湖州中考)小明发现在教学楼走廊上有一拖把以15°的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全。