苏汝铿量子力学I 课件打印版-2

合集下载

高考物理竞赛量子力学部分第八章 散射理论ppt课件

高考物理竞赛量子力学部分第八章 散射理论ppt课件
▪ 归结为散射相移
§8.2 分波法
2020届高考物理竞赛量子力学部分第 八章 散射理论(共69张ppt)
§8.2 分波法
2020届高考物理竞赛量子力学部分第 八章 散射理论(共69张ppt)
2020届高考物理竞赛量子力学部分第 八章 散射理论(共69张ppt)
§8.2 分波法
2020届高考物理竞赛量子力学部分第 八章 散射理论(共69张ppt)
§8.3 分波法示例
2020届高考物理竞赛量子力学部分第 八章 散射理论(共69张ppt)
§8.3 分波法示例
➢球对称常势阱
2020届高考物理竞赛量子力学部分第 八章 散射理论(共69张ppt)
2020届高考物理竞赛量子力学部分第 八章 散射理论(共69张ppt)
§8.3 分波法示例
2020届高考物理竞赛量子力学部分第 八章 散射理论(共69张ppt)
2020届高考物理竞赛量子力学部分第 八章 散射理论(共69张ppt)
§8.1 散射问题的一般描述
§8.2 分波法
➢关键:
▪ 入射平面波是{p, Lz, H}的共同本征态
▪ 当势场U=U(r)时,p不再守恒,散射波是 {L^2, Lz, H}的共同本征态
▪ 当将平面波按角动量平方L^2的本征态,即球 面波展开后,对每个分波,因为是{L^2, Lz, H}的本征函数,所以在U(r)作用后,每个分 波只是向前或者向后移动
高考物理竞赛量子力学部分第八章 散射理论ppt课件
第八章 散射理论
复旦大学 苏汝铿
高考物理竞赛量子力学部分第八章 散射理论ppt课件
A bird’s eye view of RHIC
A bird’s eye view of LHC(CERN)

【高考】物理竞赛量子力学部分课程小结ppt课件

【高考】物理竞赛量子力学部分课程小结ppt课件

课程总结
EPR佯谬:
粒子 II
粒子 I
粒子 II
粒子 I
课程总结
EPR佯谬: 对(I)作不同的测量,对(II)有不同的预言 • 无相互作用的分开(I)和(II) • Ψ(x1,x2)=ΣΨn(x2)un(x1) (0<t<T) • Ψ(x1,x2)=ΣΦs(x2)vs(x1) • 对(I)测A:{un(x1)}得ak,(II)的态必为Ψk(x2) • 对(I)测B:{vs(x1)}得bs,(II)的态必为Φs(x2)
课程总结
Von Neumann定理:(d>1) • 若<1>=1;<cA>=c<A>;若A非负,则
<A>≥0;<A+B+C+…>=<A>+<B>+<C>+… 则必存在<ΔD^2>≠0的可观测量D
课程总结
Gleason修正:(d>2,A,B,C对易算符) 天地人靈,難道是,隂陽互補兩昇騰?枉費暸,先賢門半世心,依舊是,白濛濛一天霧!
课程总结
课程总结
课程总结
课程总结
➢量子力学近年来的发展 • 更多的应用 • 量子纠缠和量子信息 • 量子计算 •…
课程总结
Gleason修正:(d>2,A,B,C对易算符) 定域隐变数理论及Bell不等式
欲知后事如何,且聽高等量子力学分解 Ψ(x1,x2)=ΣΦs(x2)vs(x1)
Ψ(x1,x2)=ΣΦs(x2)vs(x1) 算它“完備”又如何?想“測準”,終難定! |Ψ>给出任何观测量的测量结果和几率分布 <A+B+C+…>=<A>+<B>+<C>+… 互补原理是个最普遍的原理 单粒子行为还是单粒子“系综”的行为? Ψ(x1,x2)=ΣΦs(x2)vs(x1) 欲知后事如何,且聽高等量子力学分解 枉費暸,意懸懸半世心; 定域隐变数理论及Bell不等式 好一似,蕩悠悠三更夢。 生前心已碎,死后性空靈。 对(I)测B:{vs(x1)} 得bs,(II)的态必为Φs(x2)

量子力学(第二版)答案 苏汝铿 第二章课后答案2.13-2#08

量子力学(第二版)答案 苏汝铿 第二章课后答案2.13-2#08

选择 i ,在渐进区域 x 我们有 (1 y)
代表从左边入射的平面波,而第二项代表在金属表面反射的平面波,因此

AI eikx AR eikx
( x )
于是反射系数是
R
AR (2 )( )( 1) ……(13) AI (2 )( )( 1)
2 2 如果 V0 E 0 , 则有 , 于是 是实数。 当 x 时 y
F 1 e x / a 0 ,
而 们有
y
e x / a 。于是,如果选择 0 ,则解(9)当 x 时为零。如果 E 0 ,我
2 2 , 因 而 是 纯 虚 数 , 比 如 说 i 。 于 是 当 x 是 ,
n 2 2 2 8ma 2
F
En a
2


n 2 2 8m

2 a3
2 En a 2 ∴ F E a
dr



0
r 2 e
r i r a
dr

r i r x a 1 4 原式 3 ( 2 ) a3


0
x2 ex
1 (a
i
dx )
3

1 8 a3 3 3 ( 2 )3 a3 ( i a)
批注 [JL1]: 即去掉一个 overal 相位 因子, 但好像仍有差别。
2r r2 e y dy 3 0 a 2 4 a0 4 y 3 ( ) 6e 0 a 2 3 ( a a0 ) a 2
2
2) e / r r sin (
2 2 V

量子力学(第二版)答案 苏汝铿 第二章课后答案2.10-2#07

量子力学(第二版)答案 苏汝铿 第二章课后答案2.10-2#07

x Nne
1 2 x2 2
H n x
Ek
势能平均值
2 p2 2 , 2m 2m x 2
Ep
1 m 2 x 2 2
1 E p n* x m 2 x 2 n x dx 2 m 2 2 2 y2 2 3 N n y e H n y dy 2
a
1 n* x n x
0
An 2 sin 2
0
a
n xdx a

a 2 An 2
a 0 a
1 * x x A2 x 2 a x dx
2 0

a5 2 A 30
得:
A
30 , a5

An
2 a
由态叠加定理有:

2
2m
2
Nn2 e


1 2 x2 2
H n x
2 x2 2 1 2 e H n x dx 2 x
2m
2
N n 2 e

1 y2 2
H n y y 2 1 H n 4nyH n 1 4n n 1 H n 2 e
可想而知,对两个方势垒,则需解八元一次代数方程组,这是不好做的。
我们认为近似处理可以得到: D D1D2 e
2 [ 2 m (U1 E )a 2 m (U 2 E ) c b ]
12.证明对于一维谐振子,无论处在哪个本征态,它的动能平均值恒等于势能平均值。 证明: 一维谐振子的波函数是
6

其中,查表可得:
480 2 ma 2 4 5 2 ma 2

量子力学答案 苏汝铿 第二章课后答案2#02

量子力学答案 苏汝铿 第二章课后答案2#02

d 2W dV ( ) 0 , 相 应 的 必 有 ), 则 若 满 足 W ( 0) 0, 且 dx 2 dx
d ( ) 0. dx
(1) 证 决定 2 P 和 3D 态能级的 Schondinger 方程是 (2m
1)
批注 [JL1]:
u "
g2 2 u 2 u V u r r g2 6 v 2 v V v r r



u 2 v2 dr r r
(5)
d r
0

r
u r v 2 r dr r r
2
u 2 v 2 dr 0
0
而在 r 很大时 , 由 I r 的特性知 I r 0 , 所以 J r I r dr 0 , 综合上述可知在
U ( x) ( x d ) U ( x) 0 ( x d )
中运动,求:
(i)当势壁离粒子很远时,对束缚态能量的修正值。并据此说明“远离”的意义; (ii)至少存在一个束缚态时, U 0 和 d 应满足的条件。 解: (1) x d 时,势为无穷大,波函数 0
则 U ( x) 的束缚态不超过 V2 ( x) 的束缚态个数,而后者的束缚态个数为 [
2m a 2

] 1,
则所给的势 U ( x) 对应的束缚态个数在 [
2m a 2 m a 2 ] 和[ ] 1 之间 2
v 无节点,且满足
u(0) v(0) 0 ?
uv ' vu ' (
0
r
4 E2 P E3 D )uvdr ' F (r ) , r '2

苏汝铿高等量子力学讲义

苏汝铿高等量子力学讲义

§2.1 Second quantization
§2.1 Second quantization
§2.1 Second quantization
§2.1 Second quantization
Discussions The wave function is already symmetric nk is the particle number operator of k state
§2.4 Landau phase transition theory
§2.4 Landau phase transition theory
§2.4 Landau phase transition theory
§2.5 Superfluidity theory
Landau superfluidity theory New idea: elementary excitation
§2.4 Landau phase transition theory
§2.4 Landau phase transition theory
Landau theory Introducing “order parameter ”

p , T ,
§2.4 Landau phase transition theory
§2.4 Landau phase transition theory
Van Laue criticism Can 2nd order phase transition exist?

§2.4 Landau phase transition theory
§2.4 Landau phase transition theory

高考物理竞赛量子力学部分 第五章 近似方法ppt课件

高考物理竞赛量子力学部分 第五章 近似方法ppt课件

2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
§5.2 简并定态微扰
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
§5.2 简并定态微扰
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
§5.1 非简并定态微扰论
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)源自§5.1 非简并定态微扰论
➢说明: ▪ H’<<H0是指
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
§5.1 非简并定态微扰论
§5.1 非简并定态微扰论
§5.1 非简并定态微扰论
§5.1 非简并定态微扰论
§5.1 非简并定态微扰论
§5.1 非简并定态微扰论
§5.1 非简并定态微扰论
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
§5.1 非简并定态微扰论
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
§5.1 非简并定态微扰论
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
2020届高考物理竞赛量子力学部分 第五章 近似方法(共118张ppt)
§5.1 非简并定态微扰论
➢说明: ▪ 电介质在x方向加均匀弱电场E后的极化率

量子力学(第二版)【苏汝铿】课后习题解答

量子力学(第二版)【苏汝铿】课后习题解答

解:矩阵
的本征多项式
.
即矩阵 的本征值为
.
当 时,解本征方程
.由
得归一化本征函数
.

时,解本征方程
.由
得归一化本征函数
.
当 时,解本征方程
.由
得归一化本征函数
.
即矩阵
的本征值为
,归一化的本征矢量是
,

.
这些本征矢量不正交,因为只有对称矩阵的本征矢量才正交,而矩阵 只是一般矩阵,不是对称矩阵.
*限于水平,错误或不妥之处在所难免,诚恳地希望读者批评指正。E-mail:ifreestudy@
量 和 可能得到的值.
解:设体系处在 状态, 与 有共同的本征函数
,满足本征方程


,即
. .
又 也是
的本征态,同时

表象中, 的本征值为

表象中, 的本)
,
;(2)
,
;
故测量 和 可能得到的值是
.
计算概率,以 为例
设 出现
的概率分别为
由归一化解:
.
由对称性:
12

.
(v)由 表象到 表象的幺正变换矩阵 满足
其中

,于是使 对角化的幺正变换
. ,

9
量子力学(第二版)【苏汝铿】课后习题解答
4.3 如果体系的哈密顿量不显含时间,证明下列求和规则
式中 是坐标, , 是相应于 态和 态的能量,求和对一切可能的状态进行. (注:由于质量 与态 字母一样,故将质量 改为 ,避免混淆)
解:
,
,

4.6 证明两个厄米矩阵能用同一个幺正变换对角化的充要条件是它们彼此对易.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档